1
|
Begovic M, Schneider L, Zhou X, Hamdani N, Akin I, El-Battrawy I. The Role of Human-Induced Pluripotent Stem Cells in Studying Cardiac Channelopathies. Int J Mol Sci 2024; 25:12034. [PMID: 39596103 PMCID: PMC11593457 DOI: 10.3390/ijms252212034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiac channelopathies are inherited diseases that increase the risk of sudden cardiac death. While different genes have been associated with inherited channelopathies, there are still subtypes, e.g., catecholaminergic polymorphic ventricular tachycardia and Brugada syndrome, where the genetic cause remains unknown. Various models, including animal models, heterologous expression systems, and the human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSCs-CMs) model, have been used to study the pathophysiological mechanisms of channelopathies. Recently, researchers have focused on using hiPSCs-CMs to understand the genotype-phenotype correlation and screen drugs. By combining innovative techniques such as Clustered Regularly Interspaced Short Palindromic Repeats/Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 (CRISPR/Cas9)-mediated genome editing, and three-dimensional (3D) engineered heart tissues, we can gain new insights into the pathophysiological mechanisms of channelopathies. This approach holds promise for improving personalized drug treatment. This review highlights the role of hiPSCs-CMs in understanding the pathomechanism of Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia and how these models can be utilized for drug screening.
Collapse
Affiliation(s)
- Merima Begovic
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Luca Schneider
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Xiaobo Zhou
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, University Maastricht, 6229HX Maastricht, The Netherlands
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, 1089 Budapest, Hungary
- Department of Cardiology and Rhythmology, St. Josef Hospital, Ruhr University, 44791 Bochum, Germany
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Ibrahim El-Battrawy
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Cardiology and Rhythmology, St. Josef Hospital, Ruhr University, 44791 Bochum, Germany
| |
Collapse
|
2
|
Janicek R, Camors EM, Potenza DM, Fernandez-Tenorio M, Zhao Y, Dooge HC, Loaiza R, Alvarado FJ, Egger M, Valdivia HH, Niggli E. Dual ablation of the RyR2-Ser2808 and RyR2-Ser2814 sites increases propensity for pro-arrhythmic spontaneous Ca 2+ releases. J Physiol 2024; 602:5179-5201. [PMID: 39316734 PMCID: PMC11493507 DOI: 10.1113/jp286453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
During exercise or stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor (β-AR) activation, resulting in phosphorylation of the cardiac ryanodine receptor (RyR2). Three RyR2 phosphorylation sites have taken prominence in excitation-contraction coupling: S2808 and S2030 are described as protein kinase A specific and S2814 as a Ca2+/calmodulin kinase type-2-specific site. To examine the contribution of these phosphosites to Ca2+ signalling, we generated double knock-in (DKI) mice in which Ser2808 and Ser2814 phosphorylation sites have both been replaced by alanine (RyR2-S2808A/S2814A). These mice did not exhibit an overt phenotype. Heart morphology and haemodynamic parameters were not altered. However, they had a higher susceptibility to arrhythmias. We performed confocal Ca2+ imaging and electrophysiology experiments. Isoprenaline was used to stimulate β-ARs. Measurements of Ca2+ waves and latencies in myocytes revealed an increased propensity for spontaneous Ca2+ releases in DKI myocytes, both in control conditions and during β-AR stimulation. In DKI cells, waves were initiated from a lower threshold concentration of Ca2+ inside the sarcoplasmic reticulum, suggesting higher Ca2+ sensitivity of the RyRs. The refractoriness of Ca2+ spark triggering depends on the Ca2+ sensitivity of the RyR2. We found that RyR2-S2808A/S2814A channels were more Ca2+ sensitive in control conditions. Isoprenaline further shortened RyR refractoriness in DKI cardiomyocytes. Together, our results suggest that ablation of both the RyR2-Ser2808 and RyR2-S2814 sites increases the propensity for pro-arrhythmic spontaneous Ca2+ releases, as previously suggested for hyperphosphorylated RyRs. Given that the DKI cells present a full response to isoprenaline, the data suggest that phosphorylation of Ser2030 might be sufficient for β-AR-mediated sensitization of RyRs. KEY POINTS: Phosphorylation of cardiac sarcoplasmic reticulum Ca2+-release channels (ryanodine receptors, RyRs) is involved in the regulation of cardiac function. Ablation of both the RyR2-Ser2808 and RyR2-Ser2814 sites increases the propensity for pro-arrhythmic spontaneous Ca2+ releases, as previously suggested for hyperphosphorylated RyRs. The intra-sarcoplasmic reticulum Ca2+ threshold for spontaneous Ca2+ wave generation is lower in RyR2-double-knock-in cells. The RyR2 from double-knock-in cells exhibits increased Ca2+ sensitivity. Phosphorylation of Ser2808 and Ser2814 might be important for basal activity of the channel. Phosphorylation of Ser2030 might be sufficient for a β-adrenergic response.
Collapse
Affiliation(s)
| | - Emmanuel M Camors
- Department of Pediatrics, Division of Cardiology, University of Tennessee Health Science Center, Le Bonheur Children’s Hospital Research Center, Memphis, Tennessee 38103, USA
| | | | | | - Yanting Zhao
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Holly C. Dooge
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Randall Loaiza
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Francisco J Alvarado
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Marcel Egger
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Hector H. Valdivia
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Ernst Niggli
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Hamilton S, Terentyev D. The yellow brick road to understanding the RyR2 signalosome. J Physiol 2024; 602:5135-5136. [PMID: 39355981 DOI: 10.1113/jp287538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Affiliation(s)
- Shanna Hamilton
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Gandon-Renard M, Val-Blasco A, Oughlis C, Gerbaud P, Lefebvre F, Gomez S, Journé C, Courilleau D, Mercier-Nomé F, Pereira L, Benitah JP, Gómez AM, Mercadier JJ. Dual effect of cardiac FKBP12.6 overexpression on excitation-contraction coupling and the incidence of ventricular arrhythmia depending on its expression level. J Mol Cell Cardiol 2024; 188:15-29. [PMID: 38224852 DOI: 10.1016/j.yjmcc.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
FKBP12.6, a binding protein to the immunosuppressant FK506, which also binds the ryanodine receptor (RyR2) in the heart, has been proposed to regulate RyR2 function and to have antiarrhythmic properties. However, the level of FKBP12.6 expression in normal hearts remains elusive and some controversies still persist regarding its effects, both in basal conditions and during β-adrenergic stimulation. We quantified FKBP12.6 in the left ventricles (LV) of WT (wild-type) mice and in two novel transgenic models expressing distinct levels of FKBP12.6, using a custom-made specific anti-FKBP12.6 antibody and a recombinant protein. FKBP12.6 level in WT LV was very low (0.16 ± 0.02 nmol/g of LV), indicating that <15% RyR2 monomers are bound to the protein. Mice with 14.1 ± 0.2 nmol of FKBP12.6 per g of LV (TG1) had mild cardiac hypertrophy and normal function and were protected against epinephrine/caffeine-evoked arrhythmias. The ventricular myocytes showed higher [Ca2+]i transient amplitudes than WT myocytes and normal SR-Ca2+ load, while fewer myocytes showed Ca2+ sparks. TG1 cardiomyocytes responded to 50 nM Isoproterenol increasing these [Ca2+]i parameters and producing RyR2-Ser2808 phosphorylation. Mice with more than twice the TG1 FKBP12.6 value (TG2) showed marked cardiac hypertrophy with calcineurin activation and more arrhythmias than WT mice during β-adrenergic stimulation, challenging the protective potential of high FKBP12.6. RyR2R420Q CPVT mice overexpressing FKBP12.6 showed fewer proarrhythmic events and decreased incidence and duration of stress-induced bidirectional ventricular tachycardia. Our study, therefore, quantifies for the first time endogenous FKBP12.6 in the mouse heart, questioning its physiological relevance, at least at rest due its low level. By contrast, our work demonstrates that with caution FKBP12.6 remains an interesting target for the development of new antiarrhythmic therapies.
Collapse
Affiliation(s)
- Marine Gandon-Renard
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Almudena Val-Blasco
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Célia Oughlis
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Pascale Gerbaud
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Florence Lefebvre
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Susana Gomez
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Clément Journé
- Fédération de Recherche en Imagerie Multimodale (FRIM), Université Paris Cité, 75018 Paris, France
| | | | - Françoise Mercier-Nomé
- UMS-IPSIT, Université Paris-Saclay, 91400 Orsay, France; Inflammation, Microbiome and Immunosurveillance, Inserm UMR-996, Université Paris-Saclay, 92140 Clamart, France
| | - Laetitia Pereira
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Jean-Pierre Benitah
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Ana Maria Gómez
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France.
| | - Jean-Jacques Mercadier
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France; Université Paris Cité, Paris, France.
| |
Collapse
|
5
|
Dries E, Gilbert G, Roderick HL, Sipido KR. The ryanodine receptor microdomain in cardiomyocytes. Cell Calcium 2023; 114:102769. [PMID: 37390591 DOI: 10.1016/j.ceca.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The ryanodine receptor type 2 (RyR) is a key player in Ca2+ handling during excitation-contraction coupling. During each heartbeat, RyR channels are responsible for linking the action potential with the contractile machinery of the cardiomyocyte by releasing Ca2+ from the sarcoplasmic reticulum. RyR function is fine-tuned by associated signalling molecules, arrangement in clusters and subcellular localization. These parameters together define RyR function within microdomains and are subject to disease remodelling. This review describes the latest findings on RyR microdomain organization, the alterations with disease which result in increased subcellular heterogeneity and emergence of microdomains with enhanced arrhythmogenic potential, and presents novel technologies that guide future research to study and target RyR channels within specific microdomains.
Collapse
Affiliation(s)
- Eef Dries
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Guillaume Gilbert
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Laboratoire ORPHY EA 4324, Université de Brest, Brest, France
| | - H Llewelyn Roderick
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Jung E, Capel R, Jiang C, Venturi E, Neagu G, Pearcey S, Zhou Y, Zhang Y, Lei M. Cardiac deficiency of P21-activated kinase 1 promotes atrial arrhythmogenesis in mice following adrenergic challenge. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220168. [PMID: 37122217 PMCID: PMC10150202 DOI: 10.1098/rstb.2022.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/24/2022] [Indexed: 05/02/2023] Open
Abstract
P21-activated kinase 1 (Pak1) signalling plays a vital and overall protective role in the heart. However, the phenotypes of Pak1 deficiency in the cardiac atria have not been well explored. In this study, Pak1 cardiac-conditional knock-out (cKO) mice were studied under baseline and adrenergic challenge conditions. Pak1 cKO mice show atrial arrhythmias including atrial fibrillation (AF) in vivo, detected during anaesthetized electrocardiography without evidence of interstitial fibrosis upon Masson's trichrome staining. Optical mapping of left atrial preparations from Pak1 cKO mice revealed a higher incidence of Ca2+ and action potential alternans under isoprenaline challenge and differences in baseline action potential and calcium transient characteristics. Type-2 ryanodine receptor (RyR2) channels from Pak1 cKO hearts had a higher open probability than those from wild-type. Reverse transcription-quantitative polymerase chain reaction and Western blotting indicated that pCamkIIδ and RyR2 are highly phosphorylated at baseline in the atria of Pak1 cKO mice, while the expression of Slc8a2 and Slc8a3 as a Na+-Ca2+ exchanger, controlling the influx of Ca2+ from outside of the cell and efflux of Na+ from the cytoplasm, are augmented. Chromatin immunoprecipitation study showed that pCreb1 interacts with Slc8a2 and Slc8a3. Our study thus demonstrates that deficiency of Pak1 promotes atrial arrhythmogenesis under adrenergic stress, probably through post-translational and transcriptional modifications of key molecules that are critical to Ca2+ homeostasis. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Eunjeong Jung
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Rebecca Capel
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Congshan Jiang
- National Regional Children's Medical Center (Northwest); Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province; Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University. No. 69, Xijuyuan Lane, Xi'an 710003, People's Republic of China
| | - Elisa Venturi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Georgiana Neagu
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Sarah Pearcey
- Paediatric Intensive Care, Addenbrooke's Hospital, Cambridge CB2 1QY, UK
| | - Yafei Zhou
- National Regional Children's Medical Center (Northwest); Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province; Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University. No. 69, Xijuyuan Lane, Xi'an 710003, People's Republic of China
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Yanmin Zhang
- National Regional Children's Medical Center (Northwest); Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province; Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University. No. 69, Xijuyuan Lane, Xi'an 710003, People's Republic of China
- Institute of Cardiovascular Sciences, Faculty of Medicine and Human Science, University of Manchester, Manchester, M13, 9GB UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
7
|
Hamilton S, Terentyev D. ER stress and calcium-dependent arrhythmias. Front Physiol 2022; 13:1041940. [PMID: 36425292 PMCID: PMC9679650 DOI: 10.3389/fphys.2022.1041940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The sarcoplasmic reticulum (SR) plays the key role in cardiac function as the major source of Ca2+ that activates cardiomyocyte contractile machinery. Disturbances in finely-tuned SR Ca2+ release by SR Ca2+ channel ryanodine receptor (RyR2) and SR Ca2+ reuptake by SR Ca2+-ATPase (SERCa2a) not only impair contraction, but also contribute to cardiac arrhythmia trigger and reentry. Besides being the main Ca2+ storage organelle, SR in cardiomyocytes performs all the functions of endoplasmic reticulum (ER) in other cell types including protein synthesis, folding and degradation. In recent years ER stress has become recognized as an important contributing factor in many cardiac pathologies, including deadly ventricular arrhythmias. This brief review will therefore focus on ER stress mechanisms in the heart and how these changes can lead to pro-arrhythmic defects in SR Ca2+ handling machinery.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States,*Correspondence: Shanna Hamilton,
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
8
|
Turcotte MG, Thakur H, Kapiloff MS, Dodge-Kafka KL. A perinuclear calcium compartment regulates cardiac myocyte hypertrophy. J Mol Cell Cardiol 2022; 172:26-40. [PMID: 35952391 PMCID: PMC9727780 DOI: 10.1016/j.yjmcc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
The pleiotropic Ca2+/calmodulin-dependent phosphatase calcineurin is a key regulator of pathological cardiac myocyte hypertrophy. The selective activation of hypertrophic calcineurin signaling under stress conditions has been attributed to compartmentation of Ca2+ signaling in cardiac myocytes. Here, perinuclear signalosomes organized by the scaffold protein muscle A-Kinase Anchoring Protein β (mAKAPβ/AKAP6β) are shown to orchestrate local Ca2+ transients, inducing calcineurin-dependent NFATc nuclear localization and myocyte hypertrophy in response to β-adrenergic receptor activation. Fluorescent biosensors for Ca2+ and calcineurin and protein kinase A (PKA) activity, both diffusely expressed and localized by nesprin-1α to the nuclear envelope, are used to define an autonomous mAKAPβ signaling compartment in adult and neonatal rat ventricular myocytes. Notably, β-adrenergic-stimulated perinuclear Ca2+ and PKA and CaN activity transients depended upon mAKAPβ expression, while Ca2+ elevation and PKA and CaN activity in the cytosol were mAKAPβ independent. Buffering perinuclear cAMP and Ca2+ prevented calcineurin-dependent NFATc nuclear translocation and myocyte hypertrophy, without affecting cardiac myocyte contractility. Additional findings suggest that the perinuclear Ca2+ transients were mediated by signalosome-associated ryanodine receptors regulated by local PKA phosphorylation. These results demonstrate the existence of a functionally independent Ca2+ signaling compartment in the cardiac myocyte regulating hypertrophy and provide a premise for targeting mAKAPβ signalosomes to prevent selectively cardiac hypertrophy in disease.
Collapse
Affiliation(s)
- Moriah Gildart Turcotte
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Hrishikesh Thakur
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Kimberly L Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
9
|
Muslimova E, Rebrova T, Kondratieva D, Korepanov V, Sonduev E, Kozlov B, Afanasiev S. Expression of the β1-adrenergic receptor (ADRB1) gene in the myocardium and β-adrenergic reactivity of the body in patients with a history of myocardium infraction. Gene 2022; 844:146820. [PMID: 35987510 DOI: 10.1016/j.gene.2022.146820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
Abstract
β1-adrenergic receptors (β1-AR) directly affect on intracardiac hemodynamic and the ability of the heart to tolerate physical activity by regulating its inotropic and chronotropic functions. Severe hypersympathicotonia, specific to coronary artery disease (CAD) and chronic heart failure (HF), leads to impaired functioning of β1-AR. The aim of this research was to assess the expression level of the β1-AR ADRB1 gene in the myocardium, to evaluate the β-adrenergic reactivity of the membrane (β-ARM) of erythrocytes, and to analyze the association of these parameters with myocardial contractile dysfunction in patients with a myocardial infarction (MI) in the past and without it. The study included 126 patients with chronic CAD. Among the patients, 55.6 % had a history of MI at least 6 months ago. The expression of the ADRB1 gene was assessed using real-time polymerase chain reaction. With this purpose, we isolated RNA from the right atrial appendage, which was excised when a heart-lung machine was connected during a planned coronary bypass surgery. β-ARM was evaluated in 57 patients. This method is based on the fact of inhibition of hemolysis of erythrocytes, placed in a hyposmotic medium, in the presence of a β-blocker. Within the whole sample of patients, the expression of the ADRB1 gene is comparable in different functional classes of HF. There was no linear correlation between the expression of the ADRB1 gene and left ventricle ejection fraction (LVEF). In patients with a history of MI, the expression of the ADRB1 gene was elevated when compared to a group of patients without MI (p = 0.017). Patients with a history of MI had higher values of β-ARM than those without MI (p = 0.017). The reverse correlation between β-ARM and LVEF (r = -0,570, p = 0,002) was revealed in the group of patients without MI but not in the group of patients with a history of MI (r = -0,137, p = 0,479). In the sample of patients with chronic CAD, in the myocardium of subjects with a history of MI, the relative expression of ADRB1 gene was higher compared to the group of patients without MI. In patients with different functional classes (FC) of HF and with different ejection fraction, both with MI and without it, ADRB1 gene expression was comparable. In the group of patients with a history of MI, an increase in β-ARM was observed, i.e. decrease in the number or sensitivity of β-AR. Among patients without MI, an inverse correlation was found between β-ARM and LVEF.
Collapse
Affiliation(s)
- Elvira Muslimova
- Laboratory of Molecular and Cellular Pathology and Gene Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - Tatiana Rebrova
- Laboratory of Molecular and Cellular Pathology and Gene Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Dina Kondratieva
- Laboratory of Molecular and Cellular Pathology and Gene Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Viacheslav Korepanov
- Laboratory of Molecular and Cellular Pathology and Gene Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Erdeni Sonduev
- Department of Cardiovascular Surgery, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Boris Kozlov
- Department of Cardiovascular Surgery, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sergey Afanasiev
- Laboratory of Molecular and Cellular Pathology and Gene Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
10
|
Nusier M, Shah AK, Dhalla NS. Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca2+-Transport. Physiol Res 2022; 70:S443-S470. [DOI: 10.33549/physiolres.934805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sarcoplasmic reticulum (SR) is a specialized tubular network, which not only maintains the intracellular concentration of Ca2+ at a low level but is also known to release and accumulate Ca2+ for the occurrence of cardiac contraction and relaxation, respectively. This subcellular organelle is composed of several phospholipids and different Ca2+-cycling, Ca2+-binding and regulatory proteins, which work in a coordinated manner to determine its function in cardiomyocytes. Some of the major proteins in the cardiac SR membrane include Ca2+-pump ATPase (SERCA2), Ca2+-release protein (ryanodine receptor), calsequestrin (Ca2+-binding protein) and phospholamban (regulatory protein). The phosphorylation of SR Ca2+-cycling proteins by protein kinase A or Ca2+-calmodulin kinase (directly or indirectly) has been demonstrated to augment SR Ca2+-release and Ca2+-uptake activities and promote cardiac contraction and relaxation functions. The activation of phospholipases and proteases as well as changes in different gene expressions under different pathological conditions have been shown to alter the SR composition and produce Ca2+-handling abnormalities in cardiomyocytes for the development of cardiac dysfunction. The post-translational modifications of SR Ca2+ cycling proteins by processes such as oxidation, nitrosylation, glycosylation, lipidation, acetylation, sumoylation, and O GlcNacylation have also been reported to affect the SR Ca2+ release and uptake activities as well as cardiac contractile activity. The SR function in the heart is also influenced in association with changes in cardiac performance by several hormones including thyroid hormones and adiponectin as well as by exercise-training. On the basis of such observations, it is suggested that both Ca2+-cycling and regulatory proteins in the SR membranes are intimately involved in determining the status of cardiac function and are thus excellent targets for drug development for the treatment of heart disease.
Collapse
Affiliation(s)
| | | | - NS Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen, Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6 Canada.
| |
Collapse
|
11
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
12
|
Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021; 86:110070. [PMID: 34217833 PMCID: PMC8963383 DOI: 10.1016/j.cellsig.2021.110070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.
Collapse
Affiliation(s)
- Xun Ai
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Jiajie Yan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
13
|
Sadredini M, Manotheepan R, Lehnart SE, Anderson ME, Sjaastad I, Stokke MK. The oxidation-resistant CaMKII-MM281/282VV mutation does not prevent arrhythmias in CPVT1. Physiol Rep 2021; 9:e15030. [PMID: 34558218 PMCID: PMC8461029 DOI: 10.14814/phy2.15030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is an inherited arrhythmogenic disorder caused by missense mutations in the cardiac ryanodine receptors (RyR2), that result in increased β-adrenoceptor stimulation-induced diastolic Ca2+ leak. We have previously shown that exercise training prevents arrhythmias in CPVT1, potentially by reducing the oxidation of Ca2+ /calmodulin-dependent protein kinase type II (CaMKII). Therefore, we tested whether an oxidation-resistant form of CaMKII protects mice carrying the CPVT1-causative mutation RyR2-R2474S (RyR2-RS) against arrhythmias. Antioxidant treatment (N-acetyl-L-cysteine) reduced the frequency of β-adrenoceptor stimulation-induced arrhythmogenic Ca2+ waves in isolated cardiomyocytes from RyR2-RS mice. To test whether the prevention of CaMKII oxidation exerts an antiarrhythmic effect, mice expressing the oxidation-resistant CaMKII-MM281/282VV variant (MMVV) were crossed with RyR2-RS mice to create a double transgenic model (RyR2-RS/MMVV). Wild-type mice served as controls. Telemetric ECG surveillance revealed an increased incidence of ventricular tachycardia and an increased arrhythmia score in both RyR2-RS and RyR2-RS/MMVV compared to wild-type mice, both following a β-adrenoceptor challenge (isoprenaline i.p.), and following treadmill exercise combined with a β-adrenoceptor challenge. There were no differences in the incidence of arrhythmias between RyR2-RS and RyR2-RS/MMVV mice. Furthermore, no differences were observed in β-adrenoceptor stimulation-induced Ca2+ waves in RyR2-RS/MMVV compared to RyR2-RS. In conclusion, antioxidant treatment reduces β-adrenoceptor stimulation-induced Ca2+ waves in RyR2-RS cardiomyocytes. However, oxidation-resistant CaMKII-MM281/282VV does not protect RyR2-RS mice from β-adrenoceptor stimulation-induced Ca2+ waves or arrhythmias. Hence, alternative oxidation-sensitive targets need to be considered to explain the beneficial effect of antioxidant treatment on Ca2+ waves in cardiomyocytes from RyR2-RS mice.
Collapse
Affiliation(s)
- Mani Sadredini
- Institute for Experimental Medical Research and KG Jebsen Cardiac Research CentreOslo University Hospital and University of OsloOsloNorway
| | - Ravinea Manotheepan
- Institute for Experimental Medical Research and KG Jebsen Cardiac Research CentreOslo University Hospital and University of OsloOsloNorway
| | - Stephan E. Lehnart
- Heart Research Center GöttingenDepartment of Cardiology and PulmonologyUniversity Medical Center GöttingenGeorg August University GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
- DZHK (German Centre for Cardiovascular Research)GöttingenGermany
| | - Mark E. Anderson
- Division of CardiologyDepartment of MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA
| | - Ivar Sjaastad
- Institute for Experimental Medical Research and KG Jebsen Cardiac Research CentreOslo University Hospital and University of OsloOsloNorway
| | - Mathis K. Stokke
- Institute for Experimental Medical Research and KG Jebsen Cardiac Research CentreOslo University Hospital and University of OsloOsloNorway
- Department of CardiologyOslo University HospitalRikshospitaletOsloNorway
| |
Collapse
|
14
|
Wu T, Yao H, Zhang B, Zhou S, Hou P, Chen K. κ Opioid Receptor Agonist Inhibits Myocardial Injury in Heart Failure Rats through Activating Nrf2/HO-1 Pathway and Regulating Ca 2+-SERCA2a. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7328437. [PMID: 34373768 PMCID: PMC8349291 DOI: 10.1155/2021/7328437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We aimed to observe the protective effect of κ opioid receptor (κ-OR) agonist on myocardial injury in heart failure (HF) rats and its effect on Ca2+-SERCA2a and to explore the regulatory mechanism with the Nrf2/HO-1 signaling pathway. METHODS 50 Sprague-Dawley rats were randomly divided into the following groups: the sham operation group (sham group), HF model group (HF group), HF+κ-OR agonist U50488 group (HU group), HF+U50488H+novel calmodulin-dependent protein kinase II (CaMKII) agonist (oleic acid) (HUO group), and HF+U50488H+Nrf2 inhibitor (HUM group). The HF rat's model was established through surgical ligation of the left anterior descending coronary artery and the exhausting swimming exercise. After that, rat's cardiac function was monitored by echocardiography. HE and MASSON staining was used to detect the myocardial injury, and TUNEL staining was used to detect the myocardial apoptosis. ELISA was performed to detect the biomarkers of oxidative stress. Moreover, the distribution of reactive oxygen species (ROS) and Nrf2 was detected under immunofluorescence. The expression of sarco/endoplasmic reticulum calcium (Ca2+) ATPase (SERCA) 2a, calmodulin, endoplasmic reticulum stress- (ERS-) related proteins, and Nrf2/HO-1 signaling pathway-related proteins were detected by Western Blotting. RESULTS κ-OR agonist U50488H can significantly enhance rat's cardiac function, reduce the injury and apoptosis of myocardial cells, and alleviate endoplasmic reticulum stress injury in HF rats via upregulating the SERCA2a expression and inhibiting the Ca2+ influx. Furthermore, U50488H could also inhibit the phosphorylation of CaMKII and cAMP-response element binding protein (CREB). Additionally, administration of CaMKII-specific agonist could partially block the therapeutic effect of κ-OR agonist on the myocardium of HF rats. Interestingly, the antagonist of Nrf2 could also significantly reverse the therapeutic effect of κ-OR agonist. Therefore, these results suggested that the effect of U50488H on HF rats is dependent on regulating CaMKII phosphorylation and activating the Nrf2/HO-1 pathway. CONCLUSION κ-OR agonists U50488H can improve ERS in cardiomyocytes and relieve myocardial injury in HF rats through activating the Nrf2/HO-1 pathway and regulating Ca2+-SERCA2a to inhibit Ca2+ influx.
Collapse
Affiliation(s)
- Tengfei Wu
- Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Hui Yao
- Department of Congenital Heart Disease, General Hospital of Northern Theater Command, Shenyang, Liaoning Province 110016, China
| | - Binghua Zhang
- Sino-British Union College, China Medical University, Shenyang, Liaoning 110122, China
| | - Shenglai Zhou
- Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Ping Hou
- Department of Cardiology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
15
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
17
|
Hamilton S, Terentyeva R, Clements RT, Belevych AE, Terentyev D. Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. J Mol Cell Cardiol 2021; 156:105-113. [PMID: 33857485 DOI: 10.1016/j.yjmcc.2021.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
Sudden cardiac death due to ventricular tachyarrhythmias remains the major cause of mortality in the world. Heart failure, diabetic cardiomyopathy, old age-related cardiac dysfunction and inherited disorders are associated with enhanced propensity to malignant cardiac arrhythmias. Both defective mitochondrial function and abnormal intracellular Ca2+ homeostasis have been established as the key contributing factors in the pathophysiology and arrhythmogenesis in these conditions. This article reviews current advances in understanding of bidirectional control of ryanodine receptor-mediated sarcoplasmic reticulum Ca2+ release and mitochondrial function, and how defects in crosstalk between these two organelles increase arrhythmic risk in cardiac disease.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Richard T Clements
- Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States of America
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America.
| |
Collapse
|
18
|
Pathological conformations of disease mutant Ryanodine Receptors revealed by cryo-EM. Nat Commun 2021; 12:807. [PMID: 33547325 PMCID: PMC7864917 DOI: 10.1038/s41467-021-21141-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Ryanodine Receptors (RyRs) are massive channels that release Ca2+ from the endoplasmic and sarcoplasmic reticulum. Hundreds of mutations are linked to malignant hyperthermia (MH), myopathies, and arrhythmias. Here, we explore the first MH mutation identified in humans by providing cryo-EM snapshots of the pig homolog, R615C, showing that it affects an interface between three solenoid regions. We also show the impact of apo-calmodulin (apoCaM) and how it can induce opening by bending of the bridging solenoid, mediated by its N-terminal lobe. For R615C RyR1, apoCaM binding abolishes a pathological ‘intermediate’ conformation, distributing the population to a mixture of open and closed channels, both different from the structure without apoCaM. Comparisons show that the mutation primarily affects the closed state, inducing partial movements linked to channel activation. This shows that disease mutations can cause distinct pathological conformations of the RyR and facilitate channel opening by disrupting interactions between different solenoid regions. Ryanodine Receptors (RyRs) release Ca2+ from the endoplasmic and sarcoplasmic reticulum. Mutations in RyR are linked to malignant hyperthermia (MH), myopathies, and arrhythmias. Here, a collection of cryoEM structures provides insights into the molecular consequences of MHrelated RyR mutation R615C, and how apoCaM opens RyR1.
Collapse
|
19
|
Wang X, Chen X, Dobrev D, Li N. The crosstalk between cardiomyocyte calcium and inflammasome signaling pathways in atrial fibrillation. Pflugers Arch 2021; 473:389-405. [PMID: 33511453 DOI: 10.1007/s00424-021-02515-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia in adults. The prevalence and incidence of AF is going to increase substantially over the next few decades. Because AF increases the risk of stroke, heart failure, dementia, and others, it severely impacts the quality of life, morbidity, and mortality. Although the pathogenesis of AF is multifaceted and complex, focal ectopic activity and reentry are considered as the fundamental proarrhythmic mechanisms underlying AF development. Over the past 2 decades, large amount of evidence points to the key role of intracellular Ca2+ dysregulation in both initiation and maintenance of AF. More recently, emerging evidence reveal that NLRP3 (NACHT, LRR, PYD domain-containing 3) inflammasome pathway contributes to the substrate of both triggered activity and reentry, ultimately promoting AF. In this article, we review the current state of knowledge on Ca2+ signaling and NLRP3 inflammasome activity in AF. We also discuss the potential crosstalk between these two quintessential contributors to AF promotion.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Xiaohui Chen
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Mechanisms underlying pathological Ca 2+ handling in diseases of the heart. Pflugers Arch 2021; 473:331-347. [PMID: 33399957 PMCID: PMC10070045 DOI: 10.1007/s00424-020-02504-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Cardiomyocyte contraction relies on precisely regulated intracellular Ca2+ signaling through various Ca2+ channels and transporters. In this article, we will review the physiological regulation of Ca2+ handling and its role in maintaining normal cardiac rhythm and contractility. We discuss how inherited variants or acquired defects in Ca2+ channel subunits contribute to the development or progression of diseases of the heart. Moreover, we highlight recent insights into the role of protein phosphatase subunits and striated muscle preferentially expressed protein kinase (SPEG) in atrial fibrillation, heart failure, and cardiomyopathies. Finally, this review summarizes current drug therapies and new advances in genome editing as therapeutic strategies for the cardiac diseases caused by aberrant intracellular Ca2+ signaling.
Collapse
|
21
|
Dridi H, Kushnir A, Zalk R, Yuan Q, Melville Z, Marks AR. Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target. Nat Rev Cardiol 2020; 17:732-747. [PMID: 32555383 PMCID: PMC8362847 DOI: 10.1038/s41569-020-0394-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
Ca2+ is a fundamental second messenger in all cell types and is required for numerous essential cellular functions, including cardiac and skeletal muscle contraction. The intracellular concentration of free Ca2+ ([Ca2+]) is regulated primarily by ion channels, pumps (ATPases), exchangers and Ca2+-binding proteins. Defective regulation of [Ca2+] is found in a diverse spectrum of pathological states that affect all the major organs. In the heart, abnormalities in the regulation of cytosolic and mitochondrial [Ca2+] occur in heart failure (HF) and atrial fibrillation (AF), two common forms of heart disease and leading contributors to morbidity and mortality. In this Review, we focus on the mechanisms that regulate ryanodine receptor 2 (RYR2), the major sarcoplasmic reticulum (SR) Ca2+-release channel in the heart, how RYR2 becomes dysfunctional in HF and AF, and its potential as a therapeutic target. Inherited RYR2 mutations and/or stress-induced phosphorylation and oxidation of the protein destabilize the closed state of the channel, resulting in a pathological diastolic Ca2+ leak from the SR that both triggers arrhythmias and impairs contractility. On the basis of our increased understanding of SR Ca2+ leak as a shared Ca2+-dependent pathological mechanism in HF and AF, a new class of drugs developed in our laboratory, known as rycals, which stabilize RYR2 channels and prevent Ca2+ leak from the SR, are undergoing investigation in clinical trials.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alexander Kushnir
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ran Zalk
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zephan Melville
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
22
|
Köhn M. Turn and Face the Strange: A New View on Phosphatases. ACS CENTRAL SCIENCE 2020; 6:467-477. [PMID: 32341996 PMCID: PMC7181316 DOI: 10.1021/acscentsci.9b00909] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 05/08/2023]
Abstract
Phosphorylation as a post-translational modification is critical for cellular homeostasis. Kinases and phosphatases regulate phosphorylation levels by adding or removing, respectively, a phosphate group from proteins or other biomolecules. Imbalances in phosphorylation levels are involved in a multitude of diseases. Phosphatases are often thought of as the black sheep, the strangers, of phosphorylation-mediated signal transduction, particularly when it comes to drug discovery and development. This is due to past difficulties to study them and unsuccessful attempts to target them; however, phosphatases have regained strong attention and are actively pursued now in clinical trials. By giving examples for current hot topics in phosphatase biology and for new approaches to target them, it is illustrated here how and why phosphatases made their comeback, and what is envisioned to come in the future.
Collapse
Affiliation(s)
- Maja Köhn
- Faculty
of Biology, Institute of Biology III, University
of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Zaitsev AV, Warren M. "Heart Oddity": Intrinsically Reduced Excitability in the Right Ventricle Requires Compensation by Regionally Specific Stress Kinase Function. Front Physiol 2020; 11:86. [PMID: 32132931 PMCID: PMC7040197 DOI: 10.3389/fphys.2020.00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
The traditional view of ventricular excitation and conduction is an all-or-nothing response mediated by a regenerative activation of the inward sodium channel, which gives rise to an essentially constant conduction velocity (CV). However, whereas there is no obvious biological need to tune-up ventricular conduction, the principal molecular components determining CV, such as sodium channels, inward-rectifier potassium channels, and gap junctional channels, are known targets of the “stress” protein kinases PKA and calcium/calmodulin dependent protein kinase II (CaMKII), and are thus regulatable by signal pathways converging on these kinases. In this mini-review we will expose deficiencies and controversies in our current understanding of how ventricular conduction is regulated by stress kinases, with a special focus on the chamber-specific dimension in this regulation. In particular, we will highlight an odd property of cardiac physiology: uniform CV in ventricles requires co-existence of mutually opposing gradients in cardiac excitability and stress kinase function. While the biological advantage of this peculiar feature remains obscure, it is important to recognize the clinical implications of this phenomenon pertinent to inherited or acquired conduction diseases and therapeutic interventions modulating activity of PKA or CaMKII.
Collapse
Affiliation(s)
- Alexey V Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
24
|
Potenza DM, Janicek R, Fernandez-Tenorio M, Niggli E. Activation of endogenous protein phosphatase 1 enhances the calcium sensitivity of the ryanodine receptor type 2 in murine ventricular cardiomyocytes. J Physiol 2020; 598:1131-1150. [PMID: 31943206 DOI: 10.1113/jp278951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Increased protein phosphatase 1 (PP-1) activity has been found in end stage human heart failure. Although PP-1 has been extensively studied, a detailed understanding of its role in the excitation-contraction coupling mechanism, in normal and diseased hearts, remains elusive. The present study investigates the functional effect of the PP-1 activity on local Ca2+ release events in ventricular cardiomyocytes, by using an activating peptide (PDP3) for the stimulation of the endogenous PP-1 protein. We report that acute de-phosphorylation may increase the sensitivity of RyR2 channels to Ca2+ in situ, and that the RyR2-serine2808 phosphorylation site may mediate such a process. Our approach unmasks the functional importance of PP-1 in the regulation of RyR2 activity, suggesting a potential role in the generation of a pathophysiological sarcoplasmic reticulum Ca2+ leak in the diseased heart. ABSTRACT Changes in cardiac ryanodine receptor (RyR2) phosphorylation are considered to be important regulatory and disease related post-translational protein modifications. The extent of RyR2 phosphorylation is mainly determined by the balance of the activities of protein kinases and phosphatases, respectively. Increased protein phosphatase-1 (PP-1) activity has been observed in heart failure, although the regulatory role of this enzyme on intracellular Ca2+ handling remains poorly understood. To determine the physiological and pathophysiological significance of increased PP-1 activity, we investigated how the PP-1 catalytic subunit (PP-1c) alters Ca2+ sparks in permeabilized cardiomyocytes and we also applied a PP-1-disrupting peptide (PDP3) to specifically activate endogenous PP-1, including the one anchored on the RyR2 macromolecular complex. We compared wild-type and transgenic mice in which the usually highly phosphorylated site RyR2-S2808 has been ablated to investigate its involvement in RyR2 modulation (S2808A+/+ ). In wild-type myocytes, PP-1 increased Ca2+ spark frequency by two-fold, followed by depletion of the sarcoplasmic reticulum Ca2+ store. Similarly, PDP3 transiently increased spark frequency and decreased sarcoplasmic reticulum Ca2+ load. RyR2 Ca2+ sensitivity, which was assessed by Ca2+ spark recovery analysis, was increased in the presence of PDP3 compared to a negative control peptide. S2808A+/+ cardiomyocytes did not respond to both PP-1c and PDP3 treatment. Our results suggest an increased Ca2+ sensitivity of RyR2 upon de-phosphorylation by PP-1. Furthermore, we have confirmed the S2808 site as a target for PP-1 and as a potential link between RyR2s modulation and the cellular response.
Collapse
Affiliation(s)
| | | | | | - Ernst Niggli
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Al Kury LT. Calcium Homeostasis in Ventricular Myocytes of Diabetic Cardiomyopathy. J Diabetes Res 2020; 2020:1942086. [PMID: 33274235 PMCID: PMC7683117 DOI: 10.1155/2020/1942086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder commonly characterized by high blood glucose levels, resulting from defects in insulin production or insulin resistance, or both. DM is a leading cause of mortality and morbidity worldwide, with diabetic cardiomyopathy as one of its main complications. It is well established that cardiovascular complications are common in both types of diabetes. Electrical and mechanical problems, resulting in cardiac contractile dysfunction, are considered as the major complications present in diabetic hearts. Inevitably, disturbances in the mechanism(s) of Ca2+ signaling in diabetes have implications for cardiac myocyte contraction. Over the last decade, significant progress has been made in outlining the mechanisms responsible for the diminished cardiac contractile function in diabetes using different animal models of type I diabetes mellitus (TIDM) and type II diabetes mellitus (TIIDM). The aim of this review is to evaluate our current understanding of the disturbances of Ca2+ transport and the role of main cardiac proteins involved in Ca2+ homeostasis in the diabetic rat ventricular cardiomyocytes. Exploring the molecular mechanism(s) of altered Ca2+ signaling in diabetes will provide an insight for the identification of novel therapeutic approaches to improve the heart function in diabetic patients.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, UAE
| |
Collapse
|
26
|
Trebacz M, Wang Y, Makotta L, Henschke L, Köhn M. Development of a Photoactivatable Protein Phosphatase-1-Disrupting Peptide. J Org Chem 2019; 85:1712-1717. [PMID: 31841001 PMCID: PMC7011174 DOI: 10.1021/acs.joc.9b02548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
We describe here the development of a photoreleasable
version of
a protein phosphatase-1 (PP1)-disrupting peptide (PDP-Nal) that triggers protein phosphatase-1 activity. PDP-Nal is a 23 mer that binds to PP1 through several interactions. It was
photocaged on a tyrosine residue, which required the exchange of phenylalanine
in PDP-Nal to tyrosine in order to disrupt the most
important binding interface. This PDP-caged can
be light-controlled in live cells.
Collapse
Affiliation(s)
- Malgorzata Trebacz
- Faculty of Biology, Institute of Biology III , University of Freiburg , Schänzlestraße 18 , 79104 Freiburg , Germany.,Signalling Research Centres BIOSS and CIBSS , University of Freiburg , 79104 Freiburg , Germany.,European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| | - Yansong Wang
- European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| | - Leslie Makotta
- European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| | - Lars Henschke
- European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III , University of Freiburg , Schänzlestraße 18 , 79104 Freiburg , Germany.,Signalling Research Centres BIOSS and CIBSS , University of Freiburg , 79104 Freiburg , Germany.,European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| |
Collapse
|
27
|
Hamilton S, Terentyev D. Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart. Int J Mol Sci 2019; 20:ijms20102386. [PMID: 31091723 PMCID: PMC6566636 DOI: 10.3390/ijms20102386] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Aging of the heart is associated with a blunted response to sympathetic stimulation, reduced contractility, and increased propensity for arrhythmias, with the risk of sudden cardiac death significantly increased in the elderly population. The altered cardiac structural and functional phenotype, as well as age-associated prevalent comorbidities including hypertension and atherosclerosis, predispose the heart to atrial fibrillation, heart failure, and ventricular tachyarrhythmias. At the cellular level, perturbations in mitochondrial function, excitation-contraction coupling, and calcium homeostasis contribute to this electrical and contractile dysfunction. Major determinants of cardiac contractility are the intracellular release of Ca2+ from the sarcoplasmic reticulum by the ryanodine receptors (RyR2), and the following sequestration of Ca2+ by the sarco/endoplasmic Ca2+-ATPase (SERCa2a). Activity of RyR2 and SERCa2a in myocytes is not only dependent on expression levels and interacting accessory proteins, but on fine-tuned regulation via post-translational modifications. In this paper, we review how aberrant changes in intracellular Ca2+ cycling via these proteins contributes to arrhythmogenesis in the aged heart.
Collapse
Affiliation(s)
- Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Collins HE, Pat BM, Zou L, Litovsky SH, Wende AR, Young ME, Chatham JC. Novel role of the ER/SR Ca 2+ sensor STIM1 in the regulation of cardiac metabolism. Am J Physiol Heart Circ Physiol 2018; 316:H1014-H1026. [PMID: 30575437 PMCID: PMC6580390 DOI: 10.1152/ajpheart.00544.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry, is expressed in cardiomyocytes and has been implicated in regulating multiple cardiac processes, including hypertrophic signaling. Interestingly, cardiomyocyte-restricted deletion of STIM1 (crSTIM1-KO) results in age-dependent endoplasmic reticulum stress, altered mitochondrial morphology, and dilated cardiomyopathy in mice. Here, we tested the hypothesis that STIM1 deficiency may also impact cardiac metabolism. Hearts isolated from 20-wk-old crSTIM1-KO mice exhibited a significant reduction in both oxidative and nonoxidative glucose utilization. Consistent with the reduction in glucose utilization, expression of glucose transporter 4 and AMP-activated protein kinase phosphorylation were all reduced, whereas pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase phosphorylation were increased, in crSTIM1-KO hearts. Despite similar rates of fatty acid oxidation in control and crSTIM1-KO hearts ex vivo, crSTIM1-KO hearts contained increased lipid/triglyceride content as well as increased fatty acid-binding protein 4, fatty acid synthase, acyl-CoA thioesterase 1, hormone-sensitive lipase, and adipose triglyceride lipase expression compared with control hearts, suggestive of a possible imbalance between fatty acid uptake and oxidation. Insulin-mediated alterations in AKT phosphorylation were observed in crSTIM1-KO hearts, consistent with cardiac insulin resistance. Interestingly, we observed abnormal mitochondria and increased lipid accumulation in 12-wk crSTIM1-KO hearts, suggesting that these changes may initiate the subsequent metabolic dysfunction. These results demonstrate, for the first time, that cardiomyocyte STIM1 may play a key role in regulating cardiac metabolism. NEW & NOTEWORTHY Little is known of the physiological role of stromal interaction molecule 1 (STIM1) in the heart. Here, we demonstrate, for the first time, that hearts lacking cardiomyocyte STIM1 exhibit dysregulation of both cardiac glucose and lipid metabolism. Consequently, these results suggest a potentially novel role for STIM1 in regulating cardiac metabolism.
Collapse
Affiliation(s)
- Helen E Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Betty M Pat
- Division of Cardiovascular Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Silvio H Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Martin E Young
- Division of Cardiovascular Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
29
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018. [PMID: 30425651 DOI: 10.3389/fphys.2018.01517, 10.3389/fpls.2018.01517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
30
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018; 9:1517. [PMID: 30425651 PMCID: PMC6218530 DOI: 10.3389/fphys.2018.01517] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
31
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018; 9:1517. [PMID: 30425651 PMCID: PMC6218530 DOI: 10.3389/fphys.2018.01517,+10.3389/fpls.2018.01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States,*Correspondence: Dmitry Terentyev,
| |
Collapse
|
32
|
Qadota H, Matsunaga Y, Bagchi P, Lange KI, Carrier KJ, Pols WV, Swartzbaugh E, Wilson KJ, Srayko M, Pallas DC, Benian GM. Protein phosphatase 2A is crucial for sarcomere organization in Caenorhabditis elegans striated muscle. Mol Biol Cell 2018; 29:2084-2097. [PMID: 29949401 PMCID: PMC6232960 DOI: 10.1091/mbc.e18-03-0192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimer composed of single catalytic and scaffolding subunits and one of several possible regulatory subunits. We identified PPTR-2, a regulatory subunit of PP2A, as a binding partner for the giant muscle protein UNC-89 (obscurin) in Caenorhabditis elegans. PPTR-2 is required for sarcomere organization when its paralogue, PPTR-1, is deficient. PPTR-2 localizes to the sarcomere at dense bodies and M-lines, colocalizing with UNC-89 at M-lines. PP2A components in C. elegans include one catalytic subunit LET-92, one scaffolding subunit (PAA-1), and five regulatory subunits (SUR-6, PPTR-1, PPTR-2, RSA-1, and CASH-1). In adult muscle, loss of function in any of these subunits results in sarcomere disorganization. rsa-1 mutants show an interesting phenotype: one of the two myosin heavy chains, MHC A, localizes as closely spaced double lines rather than single lines. This "double line" phenotype is found in rare missense mutants of the head domain of MHC B myosin, such as unc-54(s74). Analysis of phosphoproteins in the unc-54(s74) mutant revealed two additional phosphoserines in the nonhelical tailpiece of MHC A. Antibodies localize PPTR-1, PAA-1, and SUR-6 to I-bands and RSA-1 to M-lines and I-bands. Therefore, PP2A localizes to sarcomeres and functions in the assembly or maintenance of sarcomeres.
Collapse
Affiliation(s)
- Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Yohei Matsunaga
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA 30322
| | - Karen I. Lange
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Karma J. Carrier
- Department of Biochemistry and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | | | | | | | - Martin Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - David C. Pallas
- Department of Biochemistry and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Guy M. Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
33
|
Successful overexpression of wild-type inhibitor-2 of PP1 in cardiovascular cells. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:859-873. [PMID: 29797049 DOI: 10.1007/s00210-018-1515-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/13/2018] [Indexed: 01/16/2023]
Abstract
About half of the cardiac serine/threonine phosphatase activity is due to the activity of protein phosphatase type 1 (PP1). The activity of PP1 can be inhibited by an endogenous protein for which the expression inhibitor-2 (I-2) has been coined. We have previously described a transgenic mouse overexpressing a truncated form of I-2. Here, we have described and initially characterized several founders that overexpress the non-truncated (i.e., full length) I-2 in the mouse heart (TG) and compared them with non-transgenic littermates (WT). The founder with the highest overexpression of I-2 displayed under basal conditions no difference in contractile parameters (heart rate, developed tension, and its first derivate) compared to WT. The relative level of PP1 inhibition was similar in mice overexpressing the non-truncated as well as the truncated form of I-2. For comparison, we overexpressed I-2 by an adenoviral system in several cell lines (myocytes from a tumor-derived cell line (H9C2), neonatal rat cardiomyocytes, smooth muscle cells from rat aorta (A7R5)). We noted gene dosage-dependent staining for I-2 protein in infected cells together with reduced PP1 activity. Finally, I-2 expression in neonatal rat cardiomyocytes led to an increase of Ca2+ transients by about 60%. In summary, we achieved immunologically confirmed overexpression of wild-type I-2 in cardiovascular cells which was biochemically able to inhibit PP1 in the whole heart (using I-2 transgenic mice) as well as in isolated cells including cardiomyocytes (using I-2 coding virus) indirectly underscoring the importance of PP1 for cardiovascular function.
Collapse
|
34
|
Abstract
Heart failure is a growing cardiovascular disease with significant epidemiological, clinical, and societal implications and represents a high unmet need. Strong efforts are currently underway by academic and industrial researchers to develop novel treatments for heart failure. Biomarkers play an important role in patient selection and monitoring in drug trials and in clinical management. The present review gives an overview of the role of available molecular, imaging, and device-derived digital biomarkers in heart failure drug development and highlights capabilities and limitations of biomarker use in this context.
Collapse
|
35
|
Savi M, Bocchi L, Mena P, Dall'Asta M, Crozier A, Brighenti F, Stilli D, Del Rio D. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 2017; 16:80. [PMID: 28683791 PMCID: PMC5501434 DOI: 10.1186/s12933-017-0561-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
Background Emerging evidence suggests that specific (poly)phenols may constitute new preventative strategies to counteract cell oxidative stress and myocardial tissue inflammation, which have a key role in the patho-physiology of diabetic cardiomyopathy. In a rat model of early diabetes, we evaluated whether in vivo administration of urolithin A (UA) or urolithin B (UB), the main gut microbiota phenolic metabolites of ellagitannin-rich foods, can reduce diabetes-induced microenvironmental changes in myocardial tissue, preventing cardiac functional impairment. Methods Adult Wistar rats with streptozotocin-induced type-1 diabetes (n = 29) were studied in comparison with 10 control animals. Diabetic rats were either untreated (n = 9) or subjected to daily i.p. injection of UA (n = 10) or UB (n = 10). After 3 weeks of hyperglycaemia, hemodynamics, cardiomyocyte contractile properties and calcium transients were measured to assess cardiac performance. The myocardial expression of the pro-inflammatory cytokine fractalkine and proteins involved in calcium dynamics (sarcoplasmic reticulum calcium ATPase, phospholamban and phosphorylated phospholamban) were evaluated by immunoblotting. Plasma, urine and tissue distribution of UA, UB and their phase II metabolites were determined. Results In vivo urolithin treatment reduced by approximately 30% the myocardial expression of the pro-inflammatory cytokine fractalkine, preventing the early inflammatory response of cardiac cells to hyperglycaemia. The improvement in myocardial microenvironment had a functional counterpart, as documented by the increase in the maximal rate of ventricular pressure rise compared to diabetic group (+18% and +31% in UA and UB treated rats, respectively), and the parallel reduction in the isovolumic contraction time (−12%). In line with hemodynamic data, both urolithins induced a recovery of cardiomyocyte contractility and calcium dynamics, leading to a higher re-lengthening rate (+21%, on average), lower re-lengthening times (−56%), and a more efficient cytosolic calcium clearing (−32% in tau values). UB treatment also increased the velocity of shortening (+27%). Urolithin metabolites accumulated in the myocardium, with a higher concentration of UB and UB-sulphate, potentially explaining the slightly higher efficacy of UB administration. Conclusions In vivo urolithin administration may be able to prevent the initial inflammatory response of myocardial tissue to hyperglycaemia and the negative impact of the altered diabetic milieu on cardiac performance.
Collapse
Affiliation(s)
- Monia Savi
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.,Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Pedro Mena
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Margherita Dall'Asta
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Alan Crozier
- Department of Nutrition, University of California, 3143 Meyer Hall One Shields Avenue, Davis, CA, 95616-5270, USA
| | - Furio Brighenti
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.
| |
Collapse
|
36
|
Heijman J, Ghezelbash S, Wehrens XHT, Dobrev D. Serine/Threonine Phosphatases in Atrial Fibrillation. J Mol Cell Cardiol 2017; 103:110-120. [PMID: 28077320 DOI: 10.1016/j.yjmcc.2016.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Serine/threonine protein phosphatases control dephosphorylation of numerous cardiac proteins, including a variety of ion channels and calcium-handling proteins, thereby providing precise post-translational regulation of cardiac electrophysiology and function. Accordingly, dysfunction of this regulation can contribute to the initiation, maintenance and progression of cardiac arrhythmias. Atrial fibrillation (AF) is the most common heart rhythm disorder and is characterized by electrical, autonomic, calcium-handling, contractile, and structural remodeling, which include, among other things, changes in the phosphorylation status of a wide range of proteins. Here, we review AF-associated alterations in the phosphorylation of atrial ion channels, calcium-handling and contractile proteins, and their role in AF-pathophysiology. We highlight the mechanisms controlling the phosphorylation of these proteins and focus on the role of altered dephosphorylation via local type-1, type-2A and type-2B phosphatases (PP1, PP2A, and PP2B, also known as calcineurin, respectively). Finally, we discuss the challenges for phosphatase research, potential therapeutic significance of altered phosphatase-mediated protein dephosphorylation in AF, as well as future directions.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shokoufeh Ghezelbash
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine (Cardiology), Pediatrics, Baylor College of Medicine, Houston, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|