1
|
Hassel KR, Gibson AM, Šeflová J, Cho EE, Blair NS, Van Raamsdonk CD, Anderson DM, Robia SL, Makarewich CA. Another-regulin regulates cardiomyocyte calcium handling via integration of neuroendocrine signaling with SERCA2a activity. J Mol Cell Cardiol 2024:S0022-2828(24)00169-X. [PMID: 39437886 DOI: 10.1016/j.yjmcc.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Calcium (Ca2+) dysregulation is a hallmark feature of cardiovascular disease. Intracellular Ca2+ regulation is essential for proper heart function and is controlled by the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2a). Another-regulin (ALN) is a newly discovered cardiomyocyte-expressed SERCA2a inhibitor, suggesting cardiomyocyte Ca2+-handling is more complex than previously appreciated. To study the role of ALN in cardiomyocytes, we generated ALN null mice (knockout, KO) and found that cardiomyocytes from these animals displayed enhanced Ca2+ cycling and contractility compared to wildtype (WT) mice, indicating enhanced SERCA2a activity. In vitro and in vivo studies show that ALN is post-translationally modified via phosphorylation on Serine 19 (S19), suggesting this contributes to its ability to regulate SERCA2a. Immunoprecipitation and FRET analysis of ALN-WT, phospho-deficient ALN (S19A), or phosphomimetic ALN (S19D) revealed that S19 phosphorylation alters the SERCA2a-ALN interaction, leading to relief of its inhibitory effects. Adeno-associated virus mediated delivery of ALN-WT or phospho-mutant ALN-S19A/D in ALN KO mice showed that cardiomyocyte-specific expression of phospho-deficient ALN-S19A resulted in increased SERCA2a inhibition characterized by reduced rates of cytoplasmic Ca2+ clearance compared to ALN-WT and ALN-S19D expressing cells, further supporting a role for this phosphorylation event in controlling SERCA2a-regulation by ALN. Levels of ALN phosphorylation were markedly increased in cardiomyocytes in response to Gαq agonists (angiotensin II, endothelin-1, phenylephrine) and Gαq-mediated phosphorylation of ALN translated to increased Ca2+ cycling in cardiomyocytes from WT but not ALN KO mice. Collectively, these results indicate that ALN uniquely regulates Ca2+ handling in cardiomyocytes via integration of neuroendocrine signaling with SERCA2a activity.
Collapse
Affiliation(s)
- Keira R Hassel
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Aaron M Gibson
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jaroslava Šeflová
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Ellen E Cho
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - N Scott Blair
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, B.C., Canada
| | - Douglas M Anderson
- Department of Medicine, Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
2
|
Kampourakis T, Ponnam S, Campbell KS, Wellette-Hunsucker A, Koch D. Cardiac myosin binding protein-C phosphorylation as a function of multiple protein kinase and phosphatase activities. Nat Commun 2024; 15:5111. [PMID: 38877002 PMCID: PMC11178824 DOI: 10.1038/s41467-024-49408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) is a determinant of cardiac myofilament function. Although cMyBP-C phosphorylation by various protein kinases has been extensively studied, the influence of protein phosphatases on cMyBP-C's multiple phosphorylation sites has remained largely obscure. Here we provide a detailed biochemical characterization of cMyBP-C dephosphorylation by protein phosphatases 1 and 2 A (PP1 and PP2A), and develop an integrated kinetic model for cMyBP-C phosphorylation using data for both PP1, PP2A and various protein kinases known to phosphorylate cMyBP-C. We find strong site-specificity and a hierarchical mechanism for both phosphatases, proceeding in the opposite direction of sequential phosphorylation by potein kinase A. The model is consistent with published data from human patients and predicts complex non-linear cMyBP-C phosphorylation patterns that are validated experimentally. Our results suggest non-redundant roles for PP1 and PP2A under both physiological and heart failure conditions, and emphasize the importance of phosphatases for cMyBP-C regulation.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Daniel Koch
- Max Planck Institute for Neurobiology of Behavior-caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
3
|
Egger C, Fernandez-Tenorio M, Blanch J, Janicek R, Egger M. Dual mode of action of IP 3-dependent SR-Ca 2+ release on local and global SR-Ca 2+ release in ventricular cardiomyocytes. J Mol Cell Cardiol 2024; 186:107-110. [PMID: 37993093 DOI: 10.1016/j.yjmcc.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
In heart muscle, the physiological function of IP3-induced Ca2+ release (IP3ICR) from the sarcoplasmic reticulum (SR) is still the subject of intense study. A role of IP3ICR may reside in modulating Ca2+-dependent cardiac arrhythmogenicity. Here we observe the propensity of spontaneous intracellular Ca2+ waves (SCaW) driven by Ca2+-induced Ca2+ release (CICR) in ventricular myocytes as a correlate of arrhythmogenicity on the organ level. We observe a dual mode of action of IP3ICR on SCaW generation in an IP3R overexpression model. This model shows a mild cardiac phenotype and mimics pathophysiological conditions of increased IP3R activity. In this model, IP3ICR was able to increase or decrease the occurrence of SCaW depending on global Ca2+ activity. This IP3ICR-based regulatory mechanism can operate in two "modes" depending on the intracellular CICR activity and efficiency (e.g. SCaW and/or local Ryanodine Receptor (RyR) Ca2+ release events, respectively): a) in a mode that augments the CICR mechanism at the cellular level, resulting in improved excitation-contraction coupling (ECC) and ultimately better contraction of the myocardium, and b) in a protective mode in which the CICR activity is curtailed to prevent the occurrence of Ca2+ waves at the cellular level and thus reduce the probability of arrhythmogenicity at the organ level.
Collapse
Affiliation(s)
- Caroline Egger
- Department of Physiology, University of Bern, Buehlplatz 5, CH 3012 Bern, Switzerland; Department of Emergency Medicine (Notfallzentrum) Inselspital - University of Bern, Freiburgstrasse 10, CH 3010 Bern, Switzerland
| | | | - Joaquim Blanch
- Department of Physiology, University of Bern, Buehlplatz 5, CH 3012 Bern, Switzerland
| | - Radoslav Janicek
- Department of Physiology, University of Bern, Buehlplatz 5, CH 3012 Bern, Switzerland
| | - Marcel Egger
- Department of Physiology, University of Bern, Buehlplatz 5, CH 3012 Bern, Switzerland.
| |
Collapse
|
4
|
Jin X, Meletiou A, Chung J, Tilunaite A, Demydenko K, Dries E, Puertas RD, Amoni M, Tomar A, Claus P, Soeller C, Rajagopal V, Sipido K, Roderick HL. InsP 3R-RyR channel crosstalk augments sarcoplasmic reticulum Ca 2+ release and arrhythmogenic activity in post-MI pig cardiomyocytes. J Mol Cell Cardiol 2023; 179:47-59. [PMID: 37003353 DOI: 10.1016/j.yjmcc.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Ca2+ transients (CaT) underlying cardiomyocyte (CM) contraction require efficient Ca2+ coupling between sarcolemmal Ca2+ channels and sarcoplasmic reticulum (SR) ryanodine receptor Ca2+ channels (RyR) for their generation; reduced coupling in disease contributes to diminished CaT and arrhythmogenic Ca2+ events. SR Ca2+ release also occurs via inositol 1,4,5-trisphosphate receptors (InsP3R) in CM. While this pathway contributes negligeably to Ca2+ handling in healthy CM, rodent studies support a role in altered Ca2+ dynamics and arrhythmogenic Ca2+ release involving InsP3R crosstalk with RyRs in disease. Whether this mechanism persists in larger mammals with lower T-tubular density and coupling of RyRs is not fully resolved. We have recently shown an arrhythmogenic action of InsP3-induced Ca2+ release (IICR) in end stage human heart failure, often associated with underlying ischemic heart disease (IHD). How IICR contributes to early stages of disease is however not determined but highly relevant. To access this stage, we chose a porcine model of IHD, which shows substantial remodelling of the area adjacent to the infarct. In cells from this region, IICR preferentially augmented Ca2+ release from non-coupled RyR clusters that otherwise showed delayed activation during the CaT. IICR in turn synchronised Ca2+ release during the CaT but also induced arrhythmogenic delayed afterdepolarizations and action potentials. Nanoscale imaging identified co-clustering of InsP3Rs and RyRs, thereby allowing Ca2+-mediated channel crosstalk. Mathematical modelling supported and further delineated this mechanism of enhanced InsP3R-RyRs coupling in MI. Our findings highlight the role of InsP3R-RyR channel crosstalk in Ca2+ release and arrhythmia during post-MI remodelling.
Collapse
Affiliation(s)
- Xin Jin
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Anna Meletiou
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Joshua Chung
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium; Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Agne Tilunaite
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia; Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Australia
| | - Kateryna Demydenko
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Eef Dries
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Matthew Amoni
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Ashutosh Tomar
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Piet Claus
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | | | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Karin Sipido
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - H Llewelyn Roderick
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium.
| |
Collapse
|
5
|
Demydenko K, Ekhteraei-Tousi S, Roderick HL. Inositol 1,4,5-trisphosphate receptors in cardiomyocyte physiology and disease. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210319. [PMID: 36189803 PMCID: PMC9527928 DOI: 10.1098/rstb.2021.0319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contraction of cardiac muscle underlying the pumping action of the heart is mediated by the process of excitation-contraction coupling (ECC). While triggered by Ca2+ entry across the sarcolemma during the action potential, it is the release of Ca2+ from the sarcoplasmic reticulum (SR) intracellular Ca2+ store via ryanodine receptors (RyRs) that plays the major role in induction of contraction. Ca2+ also acts as a key intracellular messenger regulating transcription underlying hypertrophic growth. Although Ca2+ release via RyRs is by far the greatest contributor to the generation of Ca2+ transients in the cardiomyocyte, Ca2+ is also released from the SR via inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs). This InsP3-induced Ca2+ release modifies Ca2+ transients during ECC, participates in directing Ca2+ to the mitochondria, and stimulates the transcription of genes underlying hypertrophic growth. Central to these specific actions of InsP3Rs is their localization to responsible signalling microdomains, the dyad, the SR-mitochondrial interface and the nucleus. In this review, the various roles of InsP3R in cardiac (patho)physiology and the mechanisms by which InsP3 signalling selectively influences the different cardiomyocyte cell processes in which it is involved will be presented. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Samaneh Ekhteraei-Tousi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Wang L, Wang P, Xu S, Li Z, Duan DD, Ye J, Li J, Ding Y, Zhang W, Lu J, Liu P. The cross-talk between PARylation and SUMOylation in C/EBPβ at K134 site participates in pathological cardiac hypertrophy. Int J Biol Sci 2022; 18:783-799. [PMID: 35002525 PMCID: PMC8741850 DOI: 10.7150/ijbs.65211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/13/2021] [Indexed: 12/23/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) and SUMO modification (SUMOylation) are novel post-translational modifications (PTMs) mainly induced by PARP1 and SUMO1. Growing evidence has revealed that C/EBPβ plays multiple roles in biological processes and participates in cardiovascular diseases. However, the cross-talk between C/EBPβ PARylation and SUMOylation during cardiovascular diseases is unknown. This study aims to investigate the effects of C/EBPβ PTMs on cardiac hypertrophy and its underlying mechanism. Abdominal aortic constriction (AAC) and phenylephrine (PE) were conducted to induce cardiac hypertrophy. Intramyocardial delivery of recombinant adenovirus (Ad-PARP1) was taken to induce PARP1 overexpression. In this study, we found C/EBPβ participates in PARP1-induced cardiac hypertrophy. C/EBPβ K134 residue could be both PARylated and SUMOylated individually by PARP1 and SUMO1. Moreover, the accumulation of PARylation on C/EBPβ at K134 site exhibits downregulation of C/EBPβ SUMOylation at the same site. Importantly, C/EBPβ K134 site SUMOylation could decrease C/EBPβ protein stability and participates in PARP1-induced cardiac hypertrophy. Taken together, these findings highlight the importance of the cross-talk between C/EBPβ PTMs at K134 site in determining its protein level and function, suggesting that multi-target pharmacological strategies inhibiting PARP1 and activating C/EBPβ SUMOylation would be potential for treating pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Luping Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong, China.,Laboratory of Hematopathology & Drug Discovery, School of Medicine, South China University of Technology, Guangdong, China
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong, China
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine/the Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Sichuan, China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong, China
| | - Jingyan Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong, China
| | - Yanqing Ding
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong, China
| | - Wenqing Zhang
- Laboratory of Hematopathology & Drug Discovery, School of Medicine, South China University of Technology, Guangdong, China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong, China.,School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangdong, China
| |
Collapse
|
7
|
Wang J, Trinh TN, Vu ATV, Kim JC, Hoang ATN, Ohk CJ, Zhang YH, Nguyen CM, Woo SH. Chrysosplenol-C increases contraction by augmentation of sarcoplasmic reticulum Ca 2+ loading and release via protein kinase C in rat ventricular myocytes. Mol Pharmacol 2021; 101:13-23. [PMID: 34764211 DOI: 10.1124/molpharm.121.000365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
Naturally found chrysosplenol-C (4',5,6-trihydroxy-3,3',7-trimethoxyflavone) increases the contractility of cardiac myocytes independent of b-adrenergic signaling. We investigated the cellular mechanism for chrysosplenol-C-induced positive inotropy. Global and local Ca2+ signals, L-type Ca2+ current (ICa), and contraction were measured from adult rat ventricular myocytes using two-dimensional confocal Ca2+ imaging, the whole-cell patch clamp technique, and video-edge detection, respectively. Application of chrysosplenol-C reversibly increased Ca2+ transient magnitude with a maximal increase of ~55% within 2-3-min-exposures (EC50 =~21 mM). This chemical did not alter ICa and slightly increased diastolic Ca2+ level. The frequency and size of resting Ca2+ sparks were increased by chrysosplenol-C. Chrysosplenol-C significantly increased sarcoplasmic reticulum (SR) Ca2+ content but not fractional release. Pretreatment of protein kinase C (PKC) inhibitor, but not Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor, abolished the stimulatory effects of chrysosplenol-C on Ca2+ transients and Ca2+ sparks. Chrysosplenol-C-induced positive inotropy was removed by the inhibition of PKC, but not CaMKII or phospholipase C. Western blotting assessment revealed that PKC-δ protein level in the membrane fractions significantly increase within 2 min after chrysosplenol-C exposure with a delayed (5 min) increase in PKC-α levels in insoluble membrane. These results suggest that chrysosplenol-C enhances contractility via PKC (most likely PKC-δ)-dependent enhancement of SR Ca2+ releases in ventricular myocytes. Significance Statement We show that chrysosplenol-C, a natural flavone showing a positive inotropic effect, increases sarcoplasmic reticulum (SR) Ca2+ releases on depolarizations and Ca2+ sparks with an increase of SR Ca2+ loading, but not L-type Ca2+ current, in ventricular myocytes. Chrysosplenol-C-induced enhancement in contraction is eliminated by protein kinase C (PKC) inhibition, and it is associated with redistributions of PKC to the membrane. These indicate that chrysosplenol-C enhances contraction via PKC-dependent augmentations of SR Ca2+ release and Ca2+ loading during action potentials.
Collapse
Affiliation(s)
- Jun Wang
- Parmacy, Chungnam National University, Korea, Republic of
| | - Tran N Trinh
- Chungnam National University, Korea, Republic of
| | | | | | | | - Celine J Ohk
- Physiology, Seoul National University College of Medicine, Korea, Republic of
| | - Yin Hua Zhang
- Physiology, Seoul National University College of Medicine, Korea, Republic of
| | | | - Sun-Hee Woo
- Pharmacy, Chungnam National University, Korea, Republic of
| |
Collapse
|
8
|
Chen YL, Ren Y, Rosa RH, Kuo L, Hein TW. Contributions of Sodium-Hydrogen Exchanger 1 and Mitogen-Activated Protein Kinases to Enhanced Retinal Venular Constriction to Endothelin-1 in Diabetes. Diabetes 2021; 70:2353-2363. [PMID: 34353852 PMCID: PMC8576499 DOI: 10.2337/db20-0889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 07/28/2021] [Indexed: 11/13/2022]
Abstract
Diabetes elevates endothelin-1 (ET-1) in the vitreous and enhances constriction of retinal venules to this peptide. However, mechanisms contributing to ET-1-induced constriction of retinal venules are incompletely understood. We examined roles of sodium-hydrogen exchanger 1 (NHE1), protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and extracellular calcium (Ca2+) in retinal venular constriction to ET-1 and the impact of diabetes on these signaling molecules. Retinal venules were isolated from control pigs and pigs with streptozocin-induced diabetes for in vitro studies. ET-1-induced vasoconstriction was abolished in the absence of extracellular Ca2+ and sensitive to c-Jun N-terminal kinase (JNK) inhibitor SP600125 but unaffected by extracellular signal-regulated kinase (ERK) inhibitor PD98059, p38 kinase inhibitor SB203580, or broad-spectrum PKC inhibitor Gö 6983. Diabetes (after 2 weeks) enhanced venular constriction to ET-1, which was insensitive to PD98059 and Gö 6983 but was prevented by NHE1 inhibitor cariporide, SB203580, and SP600125. In conclusion, extracellular Ca2+ entry and activation of JNK, independent of ERK and PKC, mediate constriction of retinal venules to ET-1. Diabetes activates p38 MAPK and NHE1, which cause enhanced venular constriction to ET-1. Treatments targeting these vascular molecules may lessen retinal complications in early diabetes.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX
| | - Yi Ren
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX
| | - Robert H Rosa
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX
- Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX
| | - Lih Kuo
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX
| | - Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX
| |
Collapse
|
9
|
Sutovska H, Miklovic M, Molcan L. Artificial light at night suppresses the expression of sarco/endoplasmic reticulum Ca 2+ -ATPase in the left ventricle of the heart in normotensive and hypertensive rats. Exp Physiol 2021; 106:1762-1771. [PMID: 34089548 DOI: 10.1113/ep089594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Artificial light at night decreases blood pressure and heart rate in rats. Are these changes in heart rate accompanied by changes in protein expression in the heart's left ventricle? What is the main finding and its importance? Five weeks of artificial light at night affected protein expression in the heart's left ventricle in normotensive and hypertensive rats. Artificial light at night decreased expression of the sarco/endoplasmic reticulum Ca2+ -ATPase, angiotensin II receptor type 1 and endothelin-1. ABSTRACT Artificial light at night (ALAN) affects the circadian rhythm of the heart rate in normotensive Wistar rats (WT) and spontaneously hypertensive rats (SHR) through the autonomic nervous system, which regulates the heart's activity through calcium handling, an important regulator in heart contractility. We analysed the expression of the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA2) and other selected regulatory proteins involved in the regulation of heart contractility, angiotensin II receptor type 1 (AT1 R), endothelin-1 (ET-1) and tyrosine hydroxylase (TH), in the left ventricle of the heart in WT and SHR after 2 and 5 weeks of ALAN with intensity 1-2 lx. Expression of SERCA2 was decreased in WT (control: 0.53 ± 0.07; ALAN: 0.46 ± 0.10) and SHR (control: 0.72 ± 0.18; ALAN: 0.56 ± 0.21) after 5 weeks of ALAN (P = 0.067). Expression of AT1 R was significantly decreased in WT (control: 0.51 ± 0.27; ALAN: 0.34 ± 0.20) and SHR (control: 0.38 ± 0.07; ALAN: 0.23 ± 0.09) after 2 weeks of ALAN (P = 0.028) and in SHR after 5 weeks of ALAN. Expression of ET-1 was decreased in WT (control: 0.51 ± 0.27; ALAN: 0.28 ± 0.12) and SHR (control: 0.54 ± 0.10; ALAN: 0.35 ± 0.23) after 5 weeks of ALAN (P = 0.015). ALAN did not affect the expression of TH in WT or SHR. In conclusion, ALAN suppressed the expression of SERCA2, AT1 R and ET-1, which are important for the regulation of heart contractility, in a strain-dependent pattern in both WT and SHR.
Collapse
Affiliation(s)
- Hana Sutovska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Matus Miklovic
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
10
|
Protein kinase C-mediated calcium signaling as the basis for cardiomyocyte plasticity. Arch Biochem Biophys 2021; 701:108817. [PMID: 33626379 DOI: 10.1016/j.abb.2021.108817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023]
Abstract
Protein kinase C is the superfamily of intracellular effector molecules which control crucial cellular functions. Here, we for the first time did the percentage estimation of all known PKC and PKC-related isozymes at the individual cadiomyocyte level. Broad spectrum of PKC transcripts is expressed in the left ventricular myocytes. In addition to the well-known 'heart-specific' PKCα, cardiomyocytes have the high expression levels of PKCN1, PKCδ, PKCD2, PKCε. In general, we detected all PKC isoforms excluding PKCη. In cardiomyocytes PKC activity tonically regulates voltage-gated Ca2+-currents, intracellular Ca2+ level and nitric oxide (NO) production. Imidazoline receptor of the first type (I1R)-mediated induction of the PKC activity positively modulates Ca2+ release through ryanodine receptor (RyR), increasing the Ca2+ leakage in the cytosol. In cardiomyocytes with the Ca2+-overloaded regions of > 9-10 μm size, the local PKC-induced Ca2+ signaling is transformed to global accompanied by spontaneous Ca2+ waves propagation across the entire cell perimeter. Such switching of Ca2+ signaling in cardiac cells can be important for the development of several cardiovascular pathologies and/or myocardial plasticity at the cardiomyocyte level.
Collapse
|
11
|
Ca 2+ Release via IP 3 Receptors Shapes the Cardiac Ca 2+ Transient for Hypertrophic Signaling. Biophys J 2020; 119:1178-1192. [PMID: 32871099 DOI: 10.1016/j.bpj.2020.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Calcium (Ca2+) plays a central role in mediating both contractile function and hypertrophic signaling in ventricular cardiomyocytes. L-type Ca2+ channels trigger release of Ca2+ from ryanodine receptors for cellular contraction, whereas signaling downstream of G-protein-coupled receptors stimulates Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3Rs), engaging hypertrophic signaling pathways. Modulation of the amplitude, duration, and duty cycle of the cytosolic Ca2+ contraction signal and spatial localization have all been proposed to encode this hypertrophic signal. Given current knowledge of IP3Rs, we develop a model describing the effect of functional interaction (cross talk) between ryanodine receptor and IP3R channels on the Ca2+ transient and examine the sensitivity of the Ca2+ transient shape to properties of IP3R activation. A key result of our study is that IP3R activation increases Ca2+ transient duration for a broad range of IP3R properties, but the effect of IP3R activation on Ca2+ transient amplitude is dependent on IP3 concentration. Furthermore we demonstrate that IP3-mediated Ca2+ release in the cytosol increases the duty cycle of the Ca2+ transient, the fraction of the cycle for which [Ca2+] is elevated, across a broad range of parameter values and IP3 concentrations. When coupled to a model of downstream transcription factor (NFAT) activation, we demonstrate that there is a high correspondence between the Ca2+ transient duty cycle and the proportion of activated NFAT in the nucleus. These findings suggest increased cytosolic Ca2+ duty cycle as a plausible mechanism for IP3-dependent hypertrophic signaling via Ca2+-sensitive transcription factors such as NFAT in ventricular cardiomyocytes.
Collapse
|
12
|
Kaiser E, Tian Q, Wagner M, Barth M, Xian W, Schröder L, Ruppenthal S, Kaestner L, Boehm U, Wartenberg P, Lu H, McMillin SM, Bone DBJ, Wess J, Lipp P. DREADD technology reveals major impact of Gq signalling on cardiac electrophysiology. Cardiovasc Res 2020; 115:1052-1066. [PMID: 30321287 DOI: 10.1093/cvr/cvy251] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/02/2018] [Accepted: 10/11/2018] [Indexed: 02/04/2023] Open
Abstract
AIMS Signalling via Gq-coupled receptors is of profound importance in many cardiac diseases such as hypertrophy and arrhythmia. Nevertheless, owing to their widespread expression and the inability to selectively stimulate such receptors in vivo, their relevance for cardiac function is not well understood. We here use DREADD technology to understand the role of Gq-coupled signalling in vivo in cardiac function. METHODS AND RESULTS We generated a novel transgenic mouse line that expresses a Gq-coupled DREADD (Dq) in striated muscle under the control of the muscle creatine kinase promotor. In vivo injection of the DREADD agonist clozapine-N-oxide (CNO) resulted in a dose-dependent, rapid mortality of the animals. In vivo electrocardiogram data revealed severe cardiac arrhythmias including lack of P waves, atrioventricular block, and ventricular tachycardia. Following Dq activation, electrophysiological malfunction of the heart could be recapitulated in the isolated heart ex vivo. Individual ventricular and atrial myocytes displayed a positive inotropic response and arrhythmogenic events in the absence of altered action potentials. Ventricular tissue sections revealed a strong co-localization of Dq with the principal cardiac connexin CX43. Western blot analysis with phosphor-specific antibodies revealed strong phosphorylation of a PKC-dependent CX43 phosphorylation site following CNO application in vivo. CONCLUSION Activation of Gq-coupled signalling has a major impact on impulse generation, impulse propagation, and coordinated impulse delivery in the heart. Thus, Gq-coupled signalling does not only modulate the myocytes' Ca2+ handling but also directly alters the heart's electrophysiological properties such as intercellular communication. This study greatly advances our understanding of the plethora of modulatory influences of Gq signalling on the heart in vivo.
Collapse
Affiliation(s)
- Elisabeth Kaiser
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Qinghai Tian
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Michael Wagner
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Monika Barth
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Wenying Xian
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Laura Schröder
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Sandra Ruppenthal
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Lars Kaestner
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Ulrich Boehm
- Center for Molecular Signaling (PZMS), Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, Saarland University, Homburg, Germany
| | - Philipp Wartenberg
- Center for Molecular Signaling (PZMS), Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, Saarland University, Homburg, Germany
| | - Huiyan Lu
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sara M McMillin
- Molecular Signaling Section, Lab. of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Derek B J Bone
- Molecular Signaling Section, Lab. of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Lab. of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Peter Lipp
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
13
|
Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL. Calcium Signaling in Cardiomyocyte Function. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035428. [PMID: 31308143 DOI: 10.1101/cshperspect.a035428] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhythmic increases in intracellular Ca2+ concentration underlie the contractile function of the heart. These heart muscle-wide changes in intracellular Ca2+ are induced and coordinated by electrical depolarization of the cardiomyocyte sarcolemma by the action potential. Originating at the sinoatrial node, conduction of this electrical signal throughout the heart ensures synchronization of individual myocytes into an effective cardiac pump. Ca2+ signaling pathways also regulate gene expression and cardiomyocyte growth during development and in pathology. These fundamental roles of Ca2+ in the heart are illustrated by the prevalence of altered Ca2+ homeostasis in cardiovascular diseases. Indeed, heart failure (an inability of the heart to support hemodynamic needs), rhythmic disturbances, and inappropriate cardiac growth all share an involvement of altered Ca2+ handling. The prevalence of these pathologies, contributing to a third of all deaths in the developed world as well as to substantial morbidity makes understanding the mechanisms of Ca2+ handling and dysregulation in cardiomyocytes of great importance.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Xin Jin
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Karin Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| |
Collapse
|
14
|
Leary PJ, Jenny NS, Bluemke DA, Kawut SM, Kronmal RA, Lima JA, Maron BA, Ralph DD, Rayner SG, Ryan JJ, Steinberg ZL, Hinckley Stukovsky KD, Tedford RJ. Endothelin-1, cardiac morphology, and heart failure: the MESA angiogenesis study. J Heart Lung Transplant 2020; 39:45-52. [PMID: 31515065 PMCID: PMC6942224 DOI: 10.1016/j.healun.2019.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/10/2019] [Accepted: 07/31/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Circulating levels of endothelin-1 (ET1) are elevated in heart failure and predict poor prognosis. However, it is not clear whether ET1 elevation is an adaptive response, maladaptive response, or an epiphenomenon of heart failure. In this study, we evaluated the relationships between ET1, cardiac morphology, and incident heart failure or cardiovascular death in participants with no evidence of clinical cardiovascular disease at the time ET1 was measured. METHODS AND RESULTS ET1 was measured in 1,361 participants in the Multi-Ethnic Study of Atherosclerosis Angiogenesis Sub-Study. As suggested by linear regression, participants with lower circulating ET1 levels tended to be older, non-white, more likely to have smoked heavily, and less likely to report intentional exercise. Participants with higher ET1 levels had smaller left ventricular end-diastolic volumes (8.9 ml smaller per log increase in ET1, 95% confidence interval 17.1-0.7, p = 0.03) with an increased left ventricular ejection fraction (2.8% per log increase in ET1, 95% confidence interval 0.5%-5.2%, p = 0.02). As suggested by Cox Proportional Hazards estimates, participants with higher ET1 levels had a lower risk for the composite outcome of heart failure or cardiovascular death in models that were unadjusted or had limited adjustment (p = 0.03 and p = 0.05, respectively). Lower risk for heart failure with higher ET1 levels could not be clearly shown in a model including health behaviors. CONCLUSIONS These results suggest, but do not confirm, that elevated levels of circulating ET1 are associated with a more favorable cardiac phenotype. The relationship between ET1 and outcomes was not fully independent of one or more covariates.
Collapse
Affiliation(s)
- Peter J Leary
- University of Washington, Department of Medicine, Seattle, Washington.
| | - Nancy S Jenny
- University of Vermont, Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | | - Steven M Kawut
- Departments of Medicine and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard A Kronmal
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Joao A Lima
- Departments of Medicine and Radiology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Bradley A Maron
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts; Department of Cardiology, Brigham and Women's Hospital, Boston, Massachusetts; Division of Cardiology, Harvard Medical School, Boston, Massachusetts
| | - David D Ralph
- University of Washington, Department of Medicine, Seattle, Washington
| | - Samuel G Rayner
- University of Washington, Department of Medicine, Seattle, Washington
| | - John J Ryan
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | | | | | - Ryan J Tedford
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
15
|
Cardiac myosin binding protein-C phosphorylation regulates the super-relaxed state of myosin. Proc Natl Acad Sci U S A 2019; 116:11731-11736. [PMID: 31142654 DOI: 10.1073/pnas.1821660116] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) accelerates cardiac contractility. However, the mechanisms by which cMyBP-C phosphorylation increases contractile kinetics have not been fully elucidated. In this study, we tested the hypothesis that phosphorylation of cMyBP-C releases myosin heads from the inhibited super-relaxed state (SRX), thereby determining the fraction of myosin available for contraction. Mice with various alanine (A) or aspartic acid (D) substitutions of the three main phosphorylatable serines of cMyBP-C (serines 273, 282, and 302) were used to address the association between cMyBP-C phosphorylation and SRX. Single-nucleotide turnover in skinned ventricular preparations demonstrated that phosphomimetic cMyBP-C destabilized SRX, whereas phospho-ablated cMyBP-C had a stabilizing effect on SRX. Strikingly, phosphorylation at serine 282 site was found to play a critical role in regulating the SRX. Treatment of WT preparations with protein kinase A (PKA) reduced the SRX, whereas, in nonphosphorylatable cMyBP-C preparations, PKA had no detectable effect. Mice with stable SRX exhibited reduced force production. Phosphomimetic cMyBP-C with reduced SRX exhibited increased rates of tension redevelopment and reduced binding to myosin. We also used recombinant myosin subfragment-2 to disrupt the endogenous interaction between cMyBP-C and myosin and observed a significant reduction in the population of SRX myosin. This peptide also increased force generation and rate of tension redevelopment in skinned fibers. Taken together, this study demonstrates that the phosphorylation-dependent interaction between cMyBP-C and myosin is a determinant of the fraction of myosin available for contraction. Furthermore, the binding between cMyBP-C and myosin may be targeted to improve contractile function.
Collapse
|
16
|
Yotti R, Seidman CE, Seidman JG. Advances in the Genetic Basis and Pathogenesis of Sarcomere Cardiomyopathies. Annu Rev Genomics Hum Genet 2019; 20:129-153. [PMID: 30978303 DOI: 10.1146/annurev-genom-083118-015306] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are common heart muscle disorders that are caused by pathogenic variants in sarcomere protein genes. HCM is characterized by unexplained cardiac hypertrophy (increased chamber wall thickness) that is accompanied by enhanced cardiac contractility and impaired relaxation. DCM is defined as increased ventricular chamber volume with contractile impairment. In this review, we discuss recent analyses that provide new insights into the molecular mechanisms that cause these conditions. HCM studies have uncovered the critical importance of conformational changes that occur during relaxation and enable energy conservation, which are frequently disturbed by HCM mutations. DCM studies have demonstrated the considerable prevalence of truncating variants in titin and have discerned that these variants reduce contractile function by impairing sarcomerogenesis. These new pathophysiologic mechanisms open exciting opportunities to identify new pharmacological targets and develop future cardioprotective strategies.
Collapse
Affiliation(s)
- Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; .,Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; , .,Cardiovascular Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
17
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
18
|
Yin L, Fang Y, Song T, Lv D, Wang Z, Zhu L, Zhao Z, Yin X. FBXL10 regulates cardiac dysfunction in diabetic cardiomyopathy via the PKC β2 pathway. J Cell Mol Med 2019; 23:2558-2567. [PMID: 30701683 PMCID: PMC6433654 DOI: 10.1111/jcmm.14146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a condition associated with significant structural changes including cardiac tissue necrosis, localized fibrosis, and cardiomyocyte hypertrophy. This study sought to assess whether and how FBXL10 can attenuate DCM using a rat streptozotocin (STZ)‐induced DCM model system. In the current study, we found that FBXL10 expression was significantly decreased in diabetic rat hearts. FBXL10 protected cells from high glucose (HG)‐induced inflammation, oxidative stress, and apoptosis in vitro. In addition, FBXL10 significantly activated PKC β2 signaling pathway in H9c2 cells and rat model. The cardiomyocyte‐specific overexpression of FBXL10 at 12 weeks after the initial STZ administration attenuated oxidative stress and inflammation, thereby reducing cardiomyocyte death and preserving cardiac function in these animals. Moreover, FBXL10 protected against DCM via activation of the PKC β2 pathway. In conclusion, FBXL has the therapeutic potential for the treatment of DCM.
Collapse
Affiliation(s)
- Leilei Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingying Fang
- Department of Digestive, Heilongjiang Institute of traditional Chinese Medicine, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Lv
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zheng Wang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Zhu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihui Zhao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinhua Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Blanch i Salvador J, Egger M. Obstruction of ventricular Ca 2+ -dependent arrhythmogenicity by inositol 1,4,5-trisphosphate-triggered sarcoplasmic reticulum Ca 2+ release. J Physiol 2018; 596:4323-4340. [PMID: 30004117 PMCID: PMC6138286 DOI: 10.1113/jp276319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Augmented inositol 1,4,5-trisphosphate (IP3 ) receptor (IP3 R2) expression has been linked to a variety of cardiac pathologies. Although cardiac IP3 R2 function has been in the focus of research for some time, a detailed understanding of its potential role in ventricular myocyte excitation-contraction coupling under pathophysiological conditions remains elusive. The present study focuses on mechanisms of IP3 R2-mediated sarcoplasmic reticulum (SR)-Ca2+ release in ventricular excitation-contraction coupling under IP3 R2-overexpressing conditions by studying intracellular Ca2+ events. We report that, upon IP3 R2 overexpression in ventricular myocytes, IP3 -induced Ca2+ release (IP3 ICR) modulates the SR-Ca2+ content via "eventless" SR-Ca2+ release, affecting the global SR-Ca2+ leak. Thus, IP3 R2 activation could act as a SR-Ca2+ gateway mechanism to escape ominous SR-Ca2+ overload. Our approach unmasks a so far unrecognized mechanism by which "eventless" IP3 ICR plays a protective role against ventricular Ca2+ -dependent arrhythmogenicity. ABSTRACT Augmented inositol 1,4,5-trisphosphate (IP3 ) receptor (IP3 R2) function has been linked to a variety of cardiac pathologies including cardiac arrhythmias. The functional role of IP3 -induced Ca2+ release (IP3 ICR) within ventricular excitation-contraction coupling (ECC) remains elusive. As part of pathophysiological cellular remodelling, IP3 R2s are overexpressed and have been repeatedly linked to enhanced Ca2+ -dependent arrhythmogenicity. In this study we test the hypothesis that an opposite scenario might be plausible in which IP3 ICR is part of an ECC protecting mechanism, resulting in a Ca2+ -dependent anti-arrhythmogenic response on the cellular scale. IP3 R2 activation was triggered via endothelin-1 or IP3 -salt application in single ventricular myocytes from a cardiac-specific IP3 R type 2 overexpressing mouse model. Upon IP3 R2 overexpression, IP3 R activation reduced Ca2+ -wave occurrence (46 vs. 21.72%; P < 0.001) while its block increased SR-Ca2+ content (∼29.4% 2-aminoethoxydiphenyl borate, ∼16.4% xestospongin C; P < 0.001), suggesting an active role of IP3 ICR in SR-Ca2+ content regulation and anti-arrhythmogenic function. Pharmacological separation of ryanodine receptor RyR2 and IP3 R2 functions and two-dimensional Ca2+ event analysis failed to identify local IP3 ICR events (Ca2+ puffs). SR-Ca2+ leak measurements revealed that under pathophysiological conditions, "eventless" SR-Ca2+ efflux via enhanced IP3 ICR maintains the SR-Ca2+ content below Ca2+ spark threshold, preventing aberrant SR-Ca2+ release and resulting in a protective mechanism against SR-Ca2+ overload and arrhythmias. Our results support a so far unrecognized modulatory mechanism in ventricular myocytes working in an anti-arrhythmogenic fashion.
Collapse
Affiliation(s)
| | - Marcel Egger
- Department of PhysiologyUniversity of BernBuehlplatz 5CH‐3012BernSwitzerland
| |
Collapse
|