1
|
Earl CC, Javier AJ, Richards AM, Markham LW, Goergen CJ, Welc SS. Functional cardiac consequences of β-adrenergic stress-induced injury in a model of Duchenne muscular dystrophy. Dis Model Mech 2024; 17:dmm050852. [PMID: 39268580 PMCID: PMC11488649 DOI: 10.1242/dmm.050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024] Open
Abstract
Cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD); however, in the mdx mouse model of DMD, the cardiac phenotype differs from that seen in DMD-associated cardiomyopathy. Although some have used pharmacologic stress to stimulate injury and enhance cardiac pathology in the mdx model, many methods lead to high mortality with variable cardiac outcomes, and do not recapitulate the structural and functional cardiac changes seen in human disease. Here, we describe a simple and effective method to enhance the cardiac phenotype model in mdx mice using advanced 2D and 4D high-frequency ultrasound to monitor cardiac dysfunction progression in vivo. mdx and wild-type mice received daily low-dose (2 mg/kg/day) isoproterenol injections for 10 days. Histopathological assessment showed that isoproterenol treatment increased myocyte injury, elevated serum cardiac troponin I levels and enhanced fibrosis in mdx mice. Ultrasound revealed reduced ventricular function, decreased wall thickness, increased volumes and diminished cardiac reserve in mdx compared to wild-type mice. Our findings highlight the utility of challenging mdx mice with low-dose isoproterenol as a valuable model for exploring therapies targeting DMD-associated cardiac pathologies.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Mice, Inbred mdx
- Isoproterenol/pharmacology
- Disease Models, Animal
- Fibrosis
- Stress, Physiological/drug effects
- Receptors, Adrenergic, beta/metabolism
- Myocardium/pathology
- Myocardium/metabolism
- Heart/drug effects
- Heart/physiopathology
- Mice
- Male
- Mice, Inbred C57BL
- Troponin I/metabolism
- Troponin I/blood
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Adrenergic beta-Agonists/pharmacology
Collapse
Affiliation(s)
- Conner C. Earl
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Areli J. Javier
- Musculoskeletal Health Sciences Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alyssa M. Richards
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Larry W. Markham
- Division of Pediatric Cardiology, Riley Children's Hospital at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Steven S. Welc
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Long LZ, Tan L, Xu FQ, Yang WW, Li HZ, Liu JG, Wang K, Zhao ZR, Wang YQ, Wang CJ, Wen YC, Huang MY, Qu H, Fu CG, Chen KJ. Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway. Chin J Integr Med 2024:10.1007/s11655-024-3807-4. [PMID: 39243318 DOI: 10.1007/s11655-024-3807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved. METHODS Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively. RESULTS The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01). CONCLUSIONS Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Collapse
Affiliation(s)
- Lin-Zi Long
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ling Tan
- Department of Traditional Chinese Medicine, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong Province, 518033, China
| | - Feng-Qin Xu
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wen-Wen Yang
- Xiyuan Hospital, National Cardiovascular Clinical Medical Research Center of Traditional Medicine, Beijing, 100091, China
| | - Hong-Zheng Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100091, China
| | - Jian-Gang Liu
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ke Wang
- Cardiovascular Department, the Second Affiliated Hospital, Shanxi University of Chinese Medicine, Taiyuan, 030002, China
| | - Zhi-Ru Zhao
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yue-Qi Wang
- Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100090, China
| | - Chao-Ju Wang
- Cadre 2 Ward, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, 830000, China
| | - Yi-Chao Wen
- Cadre 2 Ward, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, 830000, China
| | - Ming-Yan Huang
- Xiyuan Hospital, National Cardiovascular Clinical Medical Research Center of Traditional Medicine, Beijing, 100091, China
| | - Hua Qu
- Xiyuan Hospital, National Cardiovascular Clinical Medical Research Center of Traditional Medicine, Beijing, 100091, China
| | - Chang-Geng Fu
- Xiyuan Hospital, National Cardiovascular Clinical Medical Research Center of Traditional Medicine, Beijing, 100091, China.
| | - Ke-Ji Chen
- Xiyuan Hospital, National Cardiovascular Clinical Medical Research Center of Traditional Medicine, Beijing, 100091, China
- Academy of Integrative Medicine, Fujian Univrsity of Traditional Chinese Medicine, Fuzhou, 350122, China
| |
Collapse
|
3
|
Fullenkamp DE, Willis AB, Curtin JL, Amaral AP, Dittloff KT, Harris SI, Chychula IA, Holgren CW, Burridge PW, Russell B, Demonbreun AR, McNally EM. Physiological stress improves stem cell modeling of dystrophic cardiomyopathy. Dis Model Mech 2024; 17:dmm050487. [PMID: 38050701 PMCID: PMC10820750 DOI: 10.1242/dmm.050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Heart failure contributes to Duchenne muscular dystrophy (DMD), which arises from mutations that ablate dystrophin, rendering the plasma membrane prone to disruption. Cardiomyocyte membrane breakdown in patients with DMD yields a serum injury profile similar to other types of myocardial injury with the release of creatine kinase and troponin isoforms. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly useful but can be improved. We generated hiPSC-CMs from a patient with DMD and subjected these cells to equibiaxial mechanical strain to mimic in vivo stress. Compared to healthy cells, DMD hiPSC-CMs demonstrated greater susceptibility to equibiaxial strain after 2 h at 10% strain. We generated an aptamer-based profile of proteins released from hiPSC-CMs both at rest and subjected to strain and identified a strong correlation in the mechanical stress-induced proteome from hiPSC-CMs and serum from patients with DMD. We exposed hiPSC-CMs to recombinant annexin A6, a protein resealing agent, and found reduced biomarker release in DMD and control hiPSC-CMs subjected to strain. Thus, the application of mechanical strain to hiPSC-CMs produces a model that reflects an in vivo injury profile, providing a platform to assess pharmacologic intervention.
Collapse
Affiliation(s)
- Dominic E. Fullenkamp
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexander B. Willis
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jodi L. Curtin
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ansel P. Amaral
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kyle T. Dittloff
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sloane I. Harris
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ivana A. Chychula
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cory W. Holgren
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paul W. Burridge
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Vetter TA, Parthiban P, Stevens JA, Revelo XS, Kohr MJ, Townsend D. Reduced cardiac antioxidant defenses mediate increased susceptibility to workload-induced myocardial injury in males with genetic cardiomyopathy. J Mol Cell Cardiol 2024; 190:24-34. [PMID: 38527667 PMCID: PMC11060907 DOI: 10.1016/j.yjmcc.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Ongoing cardiomyocyte injury is a major mechanism in the progression of heart failure, particularly in dystrophic hearts. Due to the poor regenerative capacity of the adult heart, cardiomyocyte death results in the permanent loss of functional myocardium. Understanding the factors contributing to myocyte injury is essential for the development of effective heart failure therapies. As a model of persistent cardiac injury, we examined mice lacking β-sarcoglycan (β-SG), a key component of the dystrophin glycoprotein complex (DGC). The loss of the sarcoglycan complex markedly compromises sarcolemmal integrity in this β-SG-/- model. Our studies aim to characterize the mechanisms underlying dramatic sex differences in susceptibility to cardiac injury in β-SG-/- mice. Male β-SG-/- hearts display significantly greater myocardial injury and death following isoproterenol-induced cardiac stress than female β-SG-/- hearts. This protection of females was independent of ovarian hormones. Male β-SG-/- hearts displayed increased susceptibility to exogenous oxidative stress and were significantly protected by angiotensin II type 1 receptor (AT1R) antagonism. Increasing general antioxidative defenses or increasing the levels of S-nitrosylation both provided protection to the hearts of β-SG-/- male mice. Here we demonstrate that increased susceptibility to oxidative damage leads to an AT1R-mediated amplification of workload-induced myocardial injury in male β-SG-/- mice. Improving oxidative defenses, specifically by increasing S-nitrosylation, provided protection to the male β-SG-/- heart from workload-induced injury. These studies describe a unique susceptibility of the male heart to injury and may contribute to the sex differences in other forms of cardiac injury.
Collapse
Affiliation(s)
- Tatyana A Vetter
- Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Preethy Parthiban
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Jackie A Stevens
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Xavier S Revelo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America; Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States of America; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
5
|
Earl CC, Javier AJ, Richards AM, Markham LW, Goergen CJ, Welc SS. Functional cardiac consequences of β-adrenergic stress-induced injury in the mdx mouse model of Duchenne muscular dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589650. [PMID: 38659739 PMCID: PMC11042272 DOI: 10.1101/2024.04.15.589650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD), however, in the mdx mouse model of DMD, the cardiac phenotype differs from that seen in DMD-associated cardiomyopathy. Although some have used pharmacologic stress to enhance the cardiac phenotype in the mdx model, many methods lead to high mortality, variable cardiac outcomes, and do not recapitulate the structural and functional cardiac changes seen in human disease. Here, we describe a simple and effective method to enhance the cardiac phenotype model in mdx mice using advanced 2D and 4D high-frequency ultrasound to monitor cardiac dysfunction progression in vivo. For our study, mdx and wild-type (WT) mice received daily low-dose (2 mg/kg/day) isoproterenol injections for 10 days. Histopathologic assessment showed that isoproterenol treatment increased myocyte injury, elevated serum cardiac troponin I levels, and enhanced fibrosis in mdx mice. Ultrasound revealed reduced ventricular function, decreased wall thickness, increased volumes, and diminished cardiac reserve in mdx mice compared to wild-type. Our findings highlight the utility of low-dose isoproterenol in mdx mice as a valuable model for exploring therapies targeting DMD-associated cardiac complications.
Collapse
Affiliation(s)
- Conner C. Earl
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
- Indiana University School of Medicine, IN, USA
| | - Areli J. Javier
- Musculoskeletal Health Sciences Program, Indiana University School of Medicine, Indianapolis, IN USA
| | - Alyssa M. Richards
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
| | - Larry W. Markham
- Division of Pediatric Cardiology, Riley Children’s Hospital at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
- Indiana University School of Medicine, IN, USA
| | - Steven S. Welc
- Division of Pediatric Cardiology, Riley Children’s Hospital at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis IN, USA
| |
Collapse
|
6
|
Stevens JA, Dobratz TC, Fischer KD, Palmer A, Bourdage K, Wong AJ, Chapoy-Villanueva H, Garry DJ, Liu JC, Kay MW, Kuzmiak-Glancy S, Townsend D. Mechanisms of reduced myocardial energetics of the dystrophic heart. Am J Physiol Heart Circ Physiol 2024; 326:H396-H407. [PMID: 38099842 PMCID: PMC11219055 DOI: 10.1152/ajpheart.00636.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Heart disease is a leading cause of death in patients with Duchenne muscular dystrophy (DMD), characterized by the progressive replacement of contractile tissue with scar tissue. Effective therapies for dystrophic cardiomyopathy will require addressing the disease before the onset of fibrosis, however, the mechanisms of the early disease are poorly understood. To understand the pathophysiology of DMD, we perform a detailed functional assessment of cardiac function of the mdx mouse, a model of DMD. These studies use a combination of functional, metabolomic, and spectroscopic approaches to fully characterize the contractile, energetic, and mitochondrial function of beating hearts. Through these innovative approaches, we demonstrate that the dystrophic heart has reduced cardiac reserve and is energetically limited. We show that this limitation does not result from poor delivery of oxygen. Using spectroscopic approaches, we provide evidence that mitochondria in the dystrophic heart have attenuated mitochondrial membrane potential and deficits in the flow of electrons in complex IV of the electron transport chain. These studies provide evidence that poor myocardial energetics precede the onset of significant cardiac fibrosis and likely results from mitochondrial dysfunction centered around complex IV and reduced membrane potential. The multimodal approach used here implicates specific molecular components in the etiology of reduced energetics. Future studies focused on these targets may provide therapies that improve the energetics of the dystrophic heart leading to improved resiliency against damage and preservation of myocardial contractile tissue.NEW & NOTEWORTHY Dystrophic hearts have poor contractile reserve that is associated with a reduction in myocardial energetics. We demonstrate that oxygen delivery does not contribute to the limited energy production of the dystrophic heart even with increased workloads. Cytochrome optical spectroscopy of the contracting heart reveals alterations in complex IV and evidence of depolarized mitochondrial membranes. We show specific alterations in the electron transport chain of the dystrophic heart that may contribute to poor myocardial energetics.
Collapse
Affiliation(s)
- Jackie A Stevens
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Tyler C Dobratz
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kaleb D Fischer
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Alexandria Palmer
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kira Bourdage
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Anne J Wong
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hector Chapoy-Villanueva
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
- Institute for Obesity Research Tecnologico de Monterrey, Monterrey, Mexico
| | - Daniel J Garry
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
- Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota, United States
- Paul and Sheila Muscular Dystrophy Center, University of Minnesota, Minneapolis, Minnesota, United States
| | - Julia C Liu
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Matthew W Kay
- Department of Biomedical Engineering, School of Engineering and Applied Science, George Washington University, Washington, District of Columbia, United States
| | - Sarah Kuzmiak-Glancy
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, United States
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
- Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota, United States
- Paul and Sheila Muscular Dystrophy Center, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
7
|
Zhang Y, Chen S, Luo L, Greenly S, Shi H, Xu JJ, Yan C. Role of cAMP in Cardiomyocyte Viability: Beneficial or Detrimental? Circ Res 2023; 133:902-923. [PMID: 37850368 PMCID: PMC10807647 DOI: 10.1161/circresaha.123.322652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND 3', 5'-cyclic AMP (cAMP) regulates numerous cardiac functions. Various hormones and neurotransmitters elevate intracellular cAMP (i[cAMP]) in cardiomyocytes through activating GsPCRs (stimulatory-G-protein-coupled-receptors) and membrane-bound ACs (adenylyl cyclases). Increasing evidence has indicated that stimulating different GsPCRs and ACs exhibits distinct, even opposite effects, on cardiomyocyte viability. However, the underlying mechanisms are not fully understood. METHODS We used molecular and pharmacological approaches to investigate how different GsPCR/cAMP signaling differentially regulate cardiomyocyte viability with in vitro, ex vivo, and in vivo models. RESULTS For prodeath GsPCRs, we explored β1AR (beta1-adrenergic receptor) and H2R (histamine-H2-receptor). We found that their prodeath effects were similarly dependent on AC5 activation, ATP release to the extracellular space via PANX1 (pannexin-1) channel, and extracellular ATP (e[ATP])-mediated signaling involving in P2X7R (P2X purinoceptor 7) and CaMKII (Ca2+/calmodulin-dependent protein kinase II). PANX1 phosphorylation at Serine 206 by cAMP-dependent-PKA (protein-kinase-A) promoted PANX1 activation, which was critical in β1AR- or H2R-induced cardiomyocyte death in vitro and in vivo. β1AR or H2R was localized proximately to PANX1, which permits ATP release. For prosurvival GsPCRs, we explored adenosine-A2-receptor (A2R), CGRPR (calcitonin-gene-related-peptide-receptor), and RXFP1 (relaxin-family peptide-receptor 1). Their prosurvival effects were dependent on AC6 activation, cAMP efflux via MRP4 (multidrug resistance protein 4), extracellular cAMP metabolism to adenosine (e[cAMP]-to-e[ADO]), and e[ADO]-mediated signaling. A2R, CGRPR, or RXFP1 was localized proximately to MRP4, which enables cAMP efflux. Interestingly, exogenously increasing e[cAMP] levels by membrane-impermeable cAMP protected against cardiomyocyte death in vitro and in ex vivo and in vivo mouse hearts with ischemia-reperfusion injuries. CONCLUSIONS Our findings indicate that the functional diversity of different GsPCRs in cardiomyocyte viability could be achieved by their ability to form unique signaling complexes (signalosomes) that determine the fate of cAMP: either stimulate ATP release by activating PKA or directly efflux to be e[cAMP].
Collapse
Affiliation(s)
- Yishuai Zhang
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Lingfeng Luo
- Aab Cardiovascular Research Institute, Department of Medicine
- Department of Biochemistry and Biophysics
| | - Sarah Greenly
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Hangchuan Shi
- Department of Clinical and Translational Research
- Department of Public Health Sciences; University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | | | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine
| |
Collapse
|
8
|
Karachunski P, Townsend D. Systemic under treatment of heart disease in patients with Duchenne muscular dystrophy. Neuromuscul Disord 2023; 33:776-781. [PMID: 37775424 DOI: 10.1016/j.nmd.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Duchenne muscular dystrophy is a devastating muscle disease characterized by muscle deterioration and cardiomyopathy. The cardiomyopathy is progressive in nature, marked by the accumulation of myocardial scarring and the loss of contractile function. The presence of cardiac disfunction is nearly universal in individuals with Duchenne muscular dystrophy with dysfunction being evident in patients < 10 years of age. In recognition of importance of prophylactic treatment, clinical guidelines recommend beginning treatment of the heart disease in Duchenne muscular dystrophy patients at 10 years of age, even in the absence of cardiac dysfunction. This manuscript evaluates the current practices of treatment of dystrophic cardiomyopathy. We make use of clinical data compiled by the Muscular Dystrophy Association to assess changes in medical management of cardiac disease in Duchenne muscular dystrophy patients in response to changes in guidelines. We find since the issuance of new guidelines Duchenne muscular dystrophy patients receiving cardiac-directed therapy are beginning it at significantly younger ages. However, we show that 64 % of individuals with Duchenne muscular dystrophy are not receiving the recommended cardiac therapies. The underlying causes of this gap in guideline adherence are complex but correcting this deficiency represent a significant opportunity to improve the clinical management of dystrophic cardiomyopathy.
Collapse
Affiliation(s)
- Peter Karachunski
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA; Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, USA; Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Batti Angulski AB, Cohen H, Kim M, Hahn D, Van Zee N, Lodge TP, Hillmyer MA, Hackel BJ, Bates FS, Metzger JM. Molecular homing and retention of muscle membrane stabilizing copolymers by non-invasive optical imaging in vivo. Mol Ther Methods Clin Dev 2023; 28:162-176. [PMID: 36654800 PMCID: PMC9829555 DOI: 10.1016/j.omtm.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
First-in-class membrane stabilizer Poloxamer 188 (P188) has been shown to confer membrane protection in an extensive range of clinical conditions; however, elements of the systemic distribution and localization of P188 at the organ, tissue, and muscle fiber levels in vivo have not yet been elucidated. Here we used non-invasive fluorescence imaging to directly visualize and track the distribution and localization of P188 in vivo. The results demonstrated that the Alx647 probe did not alter the fundamental properties of P188 to protect biological membranes. Distribution kinetics in mdx mice demonstrated that Alx647 did not interface with muscle membranes and had fast clearance kinetics. In contrast, the distribution kinetics for P188-Alx647 was significantly slower, indicating a dramatic depot and retention effect of P188. Results further demonstrated the significant retention of P188-Alx647 in the skeletal muscle of mdx mice, showing a significant genotype effect with a higher fluorescence signal in the mdx muscles over BL10 mice. High-resolution optical imaging provided direct evidence of P188 surrounding the sarcolemma of skeletal and cardiac muscle cells. Taken together, these findings provide direct evidence of muscle-disease-dependent molecular homing and retention of synthetic copolymers in striated muscles thereby facilitating advanced studies of copolymer-membrane association in health and disease.
Collapse
Affiliation(s)
- Addeli Bez Batti Angulski
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Houda Cohen
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Mihee Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dongwoo Hahn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Nicholas Van Zee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Xu Z, Lu D, Yuan J, Wang L, Wang J, Lei Z, Liu S, Wu J, Wang J, Huang L. Storax Attenuates Cardiac Fibrosis following Acute Myocardial Infarction in Rats via Suppression of AT1R-Ankrd1-P53 Signaling Pathway. Int J Mol Sci 2022; 23:13161. [PMID: 36361958 PMCID: PMC9657855 DOI: 10.3390/ijms232113161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 02/05/2023] Open
Abstract
Myocardial fibrosis following acute myocardial infarction (AMI) seriously affects the prognosis and survival rate of patients. This study explores the role and regulation mechanism of storax, a commonly used traditional Chinese medicine for treatment of cardiovascular diseases, on myocardial fibrosis and cardiac function. The AMI rat model was established by subcutaneous injection of Isoproterenol hydrochloride (ISO). Storax (0.1, 0.2, 0.4 g/kg) was administered by gavage once/d for 7 days. Electrocardiogram, echocardiography, hemodynamic and cardiac enzyme in AMI rats were measured. HE, Masson, immunofluorescence and TUNEL staining were used to observe the degree of pathological damage, fibrosis and cardiomyocyte apoptosis in myocardial tissue, respectively. Expression of AT1R, CARP and their downstream related apoptotic proteins were detected by WB. The results demonstrated that storax could significantly improve cardiac electrophysiology and function, decrease serum cardiac enzyme activity, reduce type I and III collagen contents to improve fibrosis and alleviate myocardial pathological damage and cardiomyocyte apoptosis. It also found that storax can significantly down-regulate expression of AT1R, Ankrd1, P53, P-p53 (ser 15), Bax and cleaved Caspase-3 and up-regulate expression of Mdm2 and Bcl-2. Taken together, these findings indicated that storax effectively protected cardiomyocytes against myocardial fibrosis and cardiac dysfunction by inhibiting the AT1R-Ankrd1-P53 signaling pathway.
Collapse
Affiliation(s)
- Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liying Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ziqin Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Si Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
11
|
The immunomodulatory effects of antihypertensive therapy: A review. Biomed Pharmacother 2022; 153:113287. [PMID: 35728352 DOI: 10.1016/j.biopha.2022.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hypertension remains the leading preventable risk factor for stroke and coronary artery disease, significantly contributing to all-cause global mortality and predisposing patients to renal and heart failure, as well as peripheral vascular disease. Due to the widespread usage of antihypertensive drugs, global mean blood pressure has remained unchanged or even slightly decreased over the past four decades. However, considering the broad spectrum of mechanisms involved in the action of antihypertensive drugs and the prevalence of their target receptors on immune cells, possible immunomodulatory effects which may exert beneficial effects of lowering blood pressure but also potentially alter immune function should be considered. In this review, we attempt to assess the consequences to immune system function of administering the five most commonly prescribed groups of antihypertensive drugs and to explain the mechanisms behind those interactions. Finally, we show potential gaps in our understanding of the effects of antihypertensive drugs on patient health. With regard to the widespread use of these drugs in the adult population worldwide, the discussed results may be of vital importance to evidence-based decision-making in daily clinical practice.
Collapse
|
12
|
Lindsay A, Trewin AJ, Sadler KJ, Laird C, Della Gatta PA, Russell AP. Sensitivity to behavioral stress impacts disease pathogenesis in dystrophin-deficient mice. FASEB J 2021; 35:e22034. [PMID: 34780665 DOI: 10.1096/fj.202101163rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Mutation to the gene encoding dystrophin can cause Duchenne muscular dystrophy (DMD) and increase the sensitivity to stress in vertebrate species, including the mdx mouse model of DMD. Behavioral stressors can exacerbate some dystrophinopathy phenotypes of mdx skeletal muscle and cause hypotension-induced death. However, we have discovered that a subpopulation of mdx mice present with a wildtype-like response to mild (forced downhill treadmill exercise) and moderate (scruff restraint) behavioral stressors. These "stress-resistant" mdx mice are more physically active, capable of super-activating the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone pathways following behavioral stress and they express greater levels of mineralocorticoid and glucocorticoid receptors in striated muscle relative to "stress-sensitive" mdx mice. Stress-resistant mdx mice also presented with a less severe striated muscle histopathology and greater exercise and skeletal muscle oxidative capacity at rest. Most interestingly, female mdx mice were more physically active following behavioral stressors compared to male mdx mice; a response abolished after ovariectomy and rescued with estradiol. We demonstrate that the response to behavioral stress greatly impacts disease severity in mdx mice suggesting the management of stress in patients with DMD be considered as a therapeutic approach to ameliorate disease progression.
Collapse
Affiliation(s)
- Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kate J Sadler
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Claire Laird
- Researcher Development, Deakin Research, Deakin University, Geelong, Victoria, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
13
|
Wang FZ, Wei WB, Li X, Huo JY, Jiang WY, Wang HY, Qian P, Li ZZ, Zhou YB. The cardioprotective effect of the sodium-glucose cotransporter 2 inhibitor dapagliflozin in rats with isoproterenol-induced cardiomyopathy. Am J Transl Res 2021; 13:10950-10961. [PMID: 34650776 PMCID: PMC8506988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitor (SGLT2i) has been reported to improve glycemic control. This study was designed to investigate the effects of SGLT2i dapagliflozin (dapa) on cardiomyopathy induced by isoproterenol (ISO) and its potential mechanisms. Fifty male Sprague Dawley rats were randomly assigned to the control (n=10) and the ISO (2.5 mg/kg/day)-treated groups (n=40). After 2 weeks, the 28 surviving rats with obvious left ventricular dysfunction in the ISO group were randomized into three medication groups, including the angiotensin receptor neprilysin inhibitor (ARNI) sacubitril/valsartan group (S/V, n=9), the dapa group (n=9), and the ISO group (n=10) for 4 weeks. Next, electrical programmed stimulation was performed in all the groups to evaluate their susceptibility to ventricular arrhythmias (VAs). Compared to the ISO rats, the dapa administration not only effectively reduced the cumulative risk of death, the myocardial fibrosis, the plasma angiotensin II levels and its functional receptor AT1R protein expressions in the heart, and the proinflammatory cytokine levels in the cardiac tissue of the ISO-treated rats, but it also improved their cardiac function and inhibited oxidative stress. These effects were similar to S/V. However, dapa showed a greater efficacy than S/V in reducing the left ventricular end-diastolic volumes, lowing the heart rates and VAs, and decreasing the body weights and plasma glucose levels. The mechanisms by which dapa exerts protective effects on cardiomyopathy may be related to its indirect antioxidant capacity and direct hypoglycemic action.
Collapse
Affiliation(s)
- Fang-Zheng Wang
- Department of Physiology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Wen-Bo Wei
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical UniversityNanjing 210021, Jiangsu, China
| | - Xin Li
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical UniversityNanjing 210021, Jiangsu, China
| | - Jun-Yu Huo
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Wan-Ying Jiang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Hong-Yu Wang
- Department of Physiology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Pei Qian
- Department of Physiology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Zhen-Zhen Li
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical UniversityNanjing 210021, Jiangsu, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| |
Collapse
|
14
|
Sullivan RT, Lam NT, Haberman M, Beatka MJ, Afzal MZ, Lawlor MW, Strande JL. Cardioprotective effect of nicorandil on isoproterenol induced cardiomyopathy in the Mdx mouse model. BMC Cardiovasc Disord 2021; 21:302. [PMID: 34130633 PMCID: PMC8207777 DOI: 10.1186/s12872-021-02112-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/07/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) associated cardiomyopathy is a major cause of morbidity and mortality. In an in vitro DMD cardiomyocyte model, nicorandil reversed stress-induced cell injury through multiple pathways implicated in DMD. We aimed to test the efficacy of nicorandil on the progression of cardiomyopathy in mdx mice following a 10-day treatment protocol. METHODS A subset of mdx mice was subjected to low-dose isoproterenol injections over 5 days to induce a cardiac phenotype and treated with vehicle or nicorandil for 10 days. Baseline and day 10 echocardiograms were obtained to assess cardiac function. At 10 days, cardiac tissue was harvested for further analysis, which included histologic analysis and assessment of oxidative stress. Paired student's t test was used for in group comparison, and ANOVA was used for multiple group comparisons. RESULTS Compared to vehicle treated mice, isoproterenol decreased ejection fraction and fractional shortening on echocardiogram. Nicorandil prevented isoproterenol induced cardiac dysfunction. Isoproterenol increased cardiac fibrosis, which nicorandil prevented. Isoproterenol increased gene expression of NADPH oxidase, which decreased to baseline with nicorandil treatment. Superoxide dismutase 2 protein expression increased in those treated with nicorandil, and xanthine oxidase activity decreased in mice treated with nicorandil during isoproterenol stress compared to all other groups. CONCLUSIONS In conclusion, nicorandil is cardioprotective in mdx mice and warrants continued investigation as a therapy for DMD associated cardiomyopathy.
Collapse
Affiliation(s)
- Rachel T Sullivan
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Ngoc T Lam
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Margaret Haberman
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Margaret J Beatka
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Muhammad Z Afzal
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Jennifer L Strande
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| |
Collapse
|
15
|
Rodriguez-Gonzalez M, Lubian-Gutierrez M, Cascales-Poyatos HM, Perez-Reviriego AA, Castellano-Martinez A. Role of the Renin-Angiotensin-Aldosterone System in Dystrophin-Deficient Cardiomyopathy. Int J Mol Sci 2020; 22:ijms22010356. [PMID: 33396334 PMCID: PMC7796305 DOI: 10.3390/ijms22010356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
Dystrophin-deficient cardiomyopathy (DDC) is currently the leading cause of death in patients with dystrophinopathies. Targeting myocardial fibrosis (MF) has become a major therapeutic goal in order to prevent the occurrence of DDC. We aimed to review and summarize the current evidence about the role of the renin-angiotensin-aldosterone system (RAAS) in the development and perpetuation of MF in DCC. We conducted a comprehensive search of peer-reviewed English literature on PubMed about this subject. We found increasing preclinical evidence from studies in animal models during the last 20 years pointing out a central role of RAAS in the development of MF in DDC. Local tissue RAAS acts directly mainly through its main fibrotic component angiotensin II (ANG2) and its transducer receptor (AT1R) and downstream TGF-b pathway. Additionally, it modulates the actions of most of the remaining pro-fibrotic factors involved in DDC. Despite limited clinical evidence, RAAS blockade constitutes the most studied, available and promising therapeutic strategy against MF and DDC. Conclusion: Based on the evidence reviewed, it would be recommendable to start RAAS blockade therapy through angiotensin converter enzyme inhibitors (ACEI) or AT1R blockers (ARBs) alone or in combination with mineralocorticoid receptor antagonists (MRa) at the youngest age after the diagnosis of dystrophinopathies, in order to delay the occurrence or slow the progression of MF, even before the detection of any cardiovascular alteration.
Collapse
Affiliation(s)
- Moises Rodriguez-Gonzalez
- Pediatric Cardiology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
- Correspondence: ; Tel.: +34-956002700
| | - Manuel Lubian-Gutierrez
- Pediatric Neurology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
- Pediatric Division of Doctor Cayetano Roldan Primary Care Center, 11100 San Fernando, Spain
| | | | | | - Ana Castellano-Martinez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
- Pediatric Nephrology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain
| |
Collapse
|
16
|
Jelinkova S, Vilotic A, Pribyl J, Aimond F, Salykin A, Acimovic I, Pesl M, Caluori G, Klimovic S, Urban T, Dobrovolna H, Soska V, Skladal P, Lacampagne A, Dvorak P, Meli AC, Rotrekl V. DMD Pluripotent Stem Cell Derived Cardiac Cells Recapitulate in vitro Human Cardiac Pathophysiology. Front Bioeng Biotechnol 2020; 8:535. [PMID: 32656189 PMCID: PMC7325914 DOI: 10.3389/fbioe.2020.00535] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by the lack of functional dystrophin. DMD is associated with progressive dilated cardiomyopathy, eventually leading to heart failure as the main cause of death in DMD patients. Although several molecular mechanisms leading to the DMD cardiomyocyte (DMD-CM) death were described, mostly in mouse model, no suitable human CM model was until recently available together with proper clarification of the DMD-CM phenotype and delay in cardiac symptoms manifestation. We obtained several independent dystrophin-deficient human pluripotent stem cell (hPSC) lines from DMD patients and CRISPR/Cas9-generated DMD gene mutation. We differentiated DMD-hPSC into cardiac cells (CC) creating a human DMD-CC disease model. We observed that mutation-carrying cells were less prone to differentiate into CCs. DMD-CCs demonstrated an enhanced cell death rate in time. Furthermore, ion channel expression was altered in terms of potassium (Kir2.1 overexpression) and calcium handling (dihydropyridine receptor overexpression). DMD-CCs exhibited increased time of calcium transient rising compared to aged-matched control, suggesting mishandling of calcium release. We observed mechanical impairment (hypocontractility), bradycardia, increased heart rate variability, and blunted β-adrenergic response connected with remodeling of β-adrenergic receptors expression in DMD-CCs. Overall, these results indicated that our DMD-CC models are functionally affected by dystrophin-deficiency associated and recapitulate functional defects and cardiac wasting observed in the disease. It offers an accurate tool to study human cardiomyopathy progression and test therapies in vitro.
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia
| | - Aleksandra Vilotic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jan Pribyl
- CEITEC, Masaryk University, Brno, Czechia
| | - Franck Aimond
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Anton Salykin
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ivana Acimovic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia.,First Department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Guido Caluori
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia.,First Department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Simon Klimovic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomas Urban
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Hana Dobrovolna
- Department of Clinical Biochemistry, St. Anne's University Hospital of Brno, Brno, Czechia
| | - Vladimir Soska
- Department of Clinical Biochemistry, St. Anne's University Hospital of Brno, Brno, Czechia.,Second Clinic of Internal Medicine, Masaryk University of Brno, Brno, Czechia
| | - Petr Skladal
- First Department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia
| | - Albano C Meli
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
17
|
Meyers TA, Heitzman JA, Townsend D. DMD carrier model with mosaic dystrophin expression in the heart reveals complex vulnerability to myocardial injury. Hum Mol Genet 2020; 29:944-954. [PMID: 31976522 PMCID: PMC7158376 DOI: 10.1093/hmg/ddaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/26/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease that causes progressive muscle wasting and cardiomyopathy. This X-linked disease results from mutations of the DMD allele on the X-chromosome resulting in the loss of expression of the protein dystrophin. Dystrophin loss causes cellular dysfunction that drives the loss of healthy skeletal muscle and cardiomyocytes. As gene therapy strategies strive toward dystrophin restoration through micro-dystrophin delivery or exon skipping, preclinical models have shown that incomplete restoration in the heart results in heterogeneous dystrophin expression throughout the myocardium. This outcome prompts the question of how much dystrophin restoration is sufficient to rescue the heart from DMD-related pathology. Female DMD carrier hearts can shed light on this question, due to their mosaic cardiac dystrophin expression resulting from random X-inactivation. In this work, a dystrophinopathy carrier mouse model was derived by breeding male or female dystrophin-null mdx mice with a wild type mate. We report that these carrier hearts are significantly susceptible to injury induced by one or multiple high doses of isoproterenol, despite expressing ~57% dystrophin. Importantly, only carrier mice with dystrophic mothers showed mortality after isoproterenol. These findings indicate that dystrophin restoration in approximately half of the heart still allows for marked vulnerability to injury. Additionally, the discovery of divergent stress-induced mortality based on parental origin in mice with equivalent dystrophin expression underscores the need for better understanding of the epigenetic, developmental, and even environmental factors that may modulate vulnerability in the dystrophic heart.
Collapse
Affiliation(s)
- Tatyana A Meyers
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Jackie A Heitzman
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Niu L, Jia Y, Wu M, Liu H, Feng Y, Hu Y, Zhang X, Gao D, Xu F, Huang G. Matrix stiffness controls cardiac fibroblast activation through regulating YAP via AT 1 R. J Cell Physiol 2020; 235:8345-8357. [PMID: 32239716 DOI: 10.1002/jcp.29678] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
Cardiac fibrosis is a common pathway leading to heart failure and involves continued activation of cardiac fibroblasts (CFs) into myofibroblasts during myocardium damage, causing excessive deposition of the extracellular matrix (ECM) and thus increases matrix stiffness. Increasing evidence has shown that stiffened matrix plays an important role in promoting CF activation and cardiac fibrosis, and several signaling factors mediating CF mechanotransduction have been identified. However, the key molecules that perceive matrix stiffness to regulate CF activation remain to be further explored. Here, we detected significantly increased expression and nuclear localization of Yes-associated protein (YAP) in native fibrotic cardiac tissues. By using mechanically regulated in vitro cell culture models, we found that a stiff matrix-induced high expression and nuclear localization of YAP in CFs, accompanied by enhanced cell activation. We also demonstrated that YAP knockdown decreased fibrogenic response of CFs and that YAP overexpression promoted CF activation, indicating that YAP plays an important role in mediating matrix stiffness-induced CF activation. Further mechanistic studies revealed that the YAP pathway is an important signaling branch downstream of angiotensin II type 1 receptor in CF mechanotransduction. The findings help elucidate the mechanism of fibrotic mechanotransduction and may contribute to the development of new approaches for treating fibrotic diseases.
Collapse
Affiliation(s)
- Lele Niu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Mian Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Han Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yanjing Feng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.,Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Razzoli M, Lindsay A, Law ML, Chamberlain CM, Southern WM, Berg M, Osborn J, Engeland WC, Metzger JM, Ervasti JM, Bartolomucci A. Social stress is lethal in the mdx model of Duchenne muscular dystrophy. EBioMedicine 2020; 55:102700. [PMID: 32192914 PMCID: PMC7251247 DOI: 10.1016/j.ebiom.2020.102700] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is caused by the loss of dystrophin. Severe and ultimately lethal, DMD progresses relatively slowly in that patients become wheelchair bound only around age twelve with a survival expectancy reaching the third decade of life. Methods The mildly-affected mdx mouse model of DMD, and transgenic DysΔMTB-mdx and Fiona-mdx mice expressing dystrophin or utrophin, respectively, were exposed to either mild (scruffing) or severe (subordination stress) stress paradigms and profiled for their behavioral and physiological responses. A subgroup of mdx mice exposed to subordination stress were pretreated with the beta-blocker metoprolol. Findings Subordination stress caused lethality in ∼30% of mdx mice within 24 h and ∼70% lethality within 48 h, which was not rescued by metoprolol. Lethality was associated with heart damage, waddling gait and hypo-locomotion, as well as marked up-regulation of the hypothalamus-pituitary-adrenocortical axis. A novel cardiovascular phenotype emerged in mdx mice, in that scruffing caused a transient drop in arterial pressure, while subordination stress caused severe and sustained hypotension with concurrent tachycardia. Transgenic expression of dystrophin or utrophin in skeletal muscle protected mdx mice from scruffing and social stress-induced responses including mortality. Interpretation We have identified a robust new stress phenotype in the otherwise mildly affected mdx mouse that suggests relatively benign handling may impact the outcome of behavioural experiments, but which should also expedite the knowledge-based therapy development for DMD. Funding Greg Marzolf Jr. Foundation, Summer's Wish Fund, NIAMS, Muscular Dystrophy Association, University of Minnesota and John and Cheri Gunvalson Trust.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Angus Lindsay
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Michelle L Law
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Christopher M Chamberlain
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - William M Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Madeleine Berg
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - John Osborn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - William C Engeland
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States.
| |
Collapse
|
20
|
Meyers TA, Townsend D. Cardiac Pathophysiology and the Future of Cardiac Therapies in Duchenne Muscular Dystrophy. Int J Mol Sci 2019; 20:E4098. [PMID: 31443395 PMCID: PMC6747383 DOI: 10.3390/ijms20174098] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disease featuring skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. Historically, respiratory failure has been the leading cause of mortality in DMD, but recent improvements in symptomatic respiratory management have extended the life expectancy of DMD patients. With increased longevity, the clinical relevance of heart disease in DMD is growing, as virtually all DMD patients over 18 year of age display signs of cardiomyopathy. This review will focus on the pathophysiological basis of DMD in the heart and discuss the therapeutic approaches currently in use and those in development to treat dystrophic cardiomyopathy. The first section will describe the aspects of the DMD that result in the loss of cardiac tissue and accumulation of fibrosis. The second section will discuss cardiac small molecule therapies currently used to treat heart disease in DMD, with a focus on the evidence supporting the use of each drug in dystrophic patients. The final section will outline the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, or repair. There are several new and promising therapeutic approaches that may protect the dystrophic heart, but their limitations suggest that future management of dystrophic cardiomyopathy may benefit from combining gene-targeted therapies with small molecule therapies. Understanding the mechanistic basis of dystrophic heart disease and the effects of current and emerging therapies will be critical for their success in the treatment of patients with DMD.
Collapse
Affiliation(s)
- Tatyana A Meyers
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Zheng RH, Bai XJ, Zhang WW, Wang J, Bai F, Yan CP, James EA, Bose HS, Wang NP, Zhao ZQ. Liraglutide attenuates cardiac remodeling and improves heart function after abdominal aortic constriction through blocking angiotensin II type 1 receptor in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2745-2757. [PMID: 31496651 PMCID: PMC6690048 DOI: 10.2147/dddt.s213910] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/19/2019] [Indexed: 12/27/2022]
Abstract
Objective Angiotensin II (Ang II) is known to contribute to the pathogenesis of heart failure by eliciting cardiac remodeling and dysfunction. The glucagon-like peptide-1 (GLP-1) has been shown to exert cardioprotective effects in animals and patients. This study investigates whether GLP-1 receptor agonist liraglutide inhibits abdominal aortic constriction (AAC)-induced cardiac fibrosis and dysfunction through blocking Ang II type 1 receptor (AT1R) signaling. Methods Sprague-Dawley rats were subjected to sham operation and abdominal aortic banding procedure for 16 weeks. In treated rats, liraglutide (0.3 mg/kg) was subcutaneously injected twice daily or telmisartan (10 mg/kg/day), the AT1R blocker, was administered by gastric gavage. Results Relative to the animals with AAC, liraglutide reduced protein level of the AT1R and upregulated the AT2R, as evidenced by reduced ratio of AT1R/AT2R (0.59±0.04 vs. 0.91±0.06, p<0.05). Furthermore, the expression of angiotensin converting enzyme 2 was upregulated, tissue levels of malondialdehyde and B-type natriuretic peptide were reduced, and superoxide dismutase activity was increased. Along with a reduction in HW/BW ratio, cardiomyocyte hypertrophy was inhibited. In coincidence with these changes, liraglutide significantly decreased the populations of macrophages and myofibroblasts in the myocardium, which were accompanied by reduced protein levels of transforming growth factor beta1, Smad2/3/4, and upregulated smad7. The synthesis of collagen I and III was inhibited and collagen-rich fibrosis was attenuated. Consistent with these findings, cardiac systolic function was preserved, as shown by increased left ventricular systolic pressure (110±5 vs. 99±2 mmHg, p<0.05), ejection fraction (83%±2% vs. 69%±4%, p<0.05) and fraction shortening (49%±2% vs. 35%±3%, p<0.05). Treatment with telmisartan provided a comparable level of protection as compared with liraglutide in all the parameters measured. Conclusion Taken together, liraglutide ameliorates cardiac fibrosis and dysfunction, potentially via suppressing the AT1R-mediated events. These data indicate that liraglutide might be selected as an add-on drug to prevent the progression of heart failure.
Collapse
Affiliation(s)
- Rong-Hua Zheng
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.,Department of Medicine, Linfen Vocational and Technical College, Linfen, Shanxi, People's Republic of China
| | - Xiao-Jie Bai
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Wei-Wei Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jing Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Feng Bai
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Cai-Ping Yan
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Erskine A James
- Department of Internal Medicine, Navicent Health, Macon, GA, USA
| | - Himangshu S Bose
- Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Ning-Ping Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.,Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Zhi-Qing Zhao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.,Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| |
Collapse
|