1
|
Dhayni K, Chabry Y, Hénaut L, Avondo C, Boudot C, Ouled-Haddou H, Bigot-Corbel E, Touati G, Caus T, Messaoudi H, Bellien J, Tribouilloy C, Messika-Zeitoun D, Zibara K, Kamel S, Bennis Y. Aortic valve calcification is promoted by interleukin-8 and restricted through antagonizing CXC motif chemokine receptor 2. Cardiovasc Res 2023; 119:2355-2367. [PMID: 37517061 DOI: 10.1093/cvr/cvad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 08/01/2023] Open
Abstract
AIMS Inflammatory cytokines play a critical role in the progression of calcific aortic valve disease (CAVD), for which there is currently no pharmacological treatment. The aim of this study was to test the hypothesis that interleukin-8 (IL-8), known to be involved in arterial calcification, also promotes aortic valve calcification (AVC) and to evaluate whether pharmacologically blocking the IL-8 receptor, CXC motif chemokine receptor 2 (CXCR2), could be effective in preventing AVC progression. METHODS AND RESULTS A cohort of 195 patients (median age 73, 74% men) diagnosed with aortic valve stenosis (severe in 16.9% of cases) were prospectively followed by CT for a median time of 2.6 years. A Cox proportional hazards regression analysis indicated that baseline IL-8 serum concentrations were associated with rapid progression of AVC, defined as an annualized change in the calcification score by CT ≥ 110 AU/year, after adjustment for age, gender, bicuspid anatomy, and baseline disease severity. In vitro, exposure of primary human aortic valvular interstitial cells (hVICs) to 15 pg/mL IL-8 induced a two-fold increase in inorganic phosphate (Pi)-induced calcification. IL-8 promoted NFκB pathway activation, MMP-12 expression, and elastin degradation in hVICs exposed to Pi. These effects were prevented by SCH527123, an antagonist of CXCR2. The expression of CXCR2 was confirmed in hVICs and samples of aortic valves isolated from patients with CAVD, in which the receptor was mainly found in calcified areas, along with MMP-12 and a degraded form of elastin. Finally, in a rat model of chronic kidney disease-associated CAVD, SCH527123 treatment (1 mg/kg/day given orally for 11 weeks) limited the decrease in aortic cusp separation, the increase in maximal velocity of the transaortic jet, and the increase in aortic mean pressure gradient measured by echocardiography, effects that were associated with a reduction in hydroxyapatite deposition and MMP-12 expression in the aortic valves. CONCLUSION Overall, these results highlight, for the first time, a significant role for IL-8 in the progression of CAVD by promoting calcification via a CXCR2- and MMP-12-dependent mechanism that leads to elastin degradation, and identify CXCR2 as a promising therapeutic target for the treatment of CAVD.
Collapse
Affiliation(s)
- Kawthar Dhayni
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Yuthiline Chabry
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
- Department of Cardiac Surgery, CHU Amiens-Picardie, 1 Rd-Point du Pr. Christian Cabrol, 80054 Amiens, France
| | - Lucie Hénaut
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Carine Avondo
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Cedric Boudot
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Hakim Ouled-Haddou
- HEMATIM Laboratory, UPJV UR 4666, Université de Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Edith Bigot-Corbel
- Department of Clinical Biochemistry, CHU de Nantes, Bd Jacques-Monod, 44093 Saint-Herblain, France
| | - Gilles Touati
- Department of Cardiac Surgery, CHU Amiens-Picardie, 1 Rd-Point du Pr. Christian Cabrol, 80054 Amiens, France
| | - Thierry Caus
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
- Department of Cardiac Surgery, CHU Amiens-Picardie, 1 Rd-Point du Pr. Christian Cabrol, 80054 Amiens, France
| | - Hind Messaoudi
- EnVI Laboratory, INSERM UMR 1096, Rouen Normandy University, 22 Boulevard Gambetta, 76183 Rouen, France
| | - Jérémy Bellien
- EnVI Laboratory, INSERM UMR 1096, Rouen Normandy University, 22 Boulevard Gambetta, 76183 Rouen, France
| | - Christophe Tribouilloy
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
- Department of Cardiology, CHU Amiens-Picardie, 1 Rd-Point du Pr. Christian Cabrol, 80054 Amiens, France
| | - David Messika-Zeitoun
- Department of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada
| | - Kazem Zibara
- Department of Biology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Saïd Kamel
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Youssef Bennis
- MP3CV Laboratory, UPJV UR 7517, University of Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
- Department of Pharmacology, CHU Amiens-Picardie, 1 Rd-Point du Professeur Christian Cabrol, 80054 Amiens, France
| |
Collapse
|
2
|
Kessler JR, Bluemn TS, DeCero SA, Dutta P, Thatcher K, Mahnke DK, Knas MC, Kazik HB, Menon V, Lincoln J. Exploring molecular profiles of calcification in aortic vascular smooth muscle cells and aortic valvular interstitial cells. J Mol Cell Cardiol 2023; 183:1-13. [PMID: 37579636 PMCID: PMC10592135 DOI: 10.1016/j.yjmcc.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Cardiovascular calcification can occur in vascular and valvular structures and is commonly associated with calcium deposition and tissue mineralization leading to stiffness and dysfunction. Patients with chronic kidney disease and associated hyperphosphatemia have an elevated risk for coronary artery calcification (CAC) and calcific aortic valve disease (CAVD). However, there is mounting evidence to suggest that the susceptibility and pathobiology of calcification in these two cardiovascular structures may be different, yet clinically they are similarly treated. To better understand diversity in molecular and cellular processes that underlie hyperphosphatemia-induced calcification in vascular and valvular structures, we exposed aortic vascular smooth muscle cells (AVSMCs) and aortic valve interstitial cells (AVICs) to high (2.5 mM) phosphate (Ph) conditions in vitro, and examined cell-specific responses. To further identify hyperphosphatemic-specific responses, parallel studies were performed using osteogenic media (OM) as an alternative calcific stimulus. Consistent with clinical observations made by others, we show that AVSMCs are more susceptible to calcification than AVICs. In addition, bulk RNA-sequencing reveals that AVSMCs and AVICs activate robust ossification-programs in response to high phosphate or OM treatments, however, the signaling pathways, cellular processes and osteogenic-associated markers involved are cell- and treatment-specific. For example, compared to VSMCs, VIC-mediated calcification involves biological processes related to osteo-chondro differentiation and down regulation of 'actin cytoskeleton'-related genes, that are not observed in VSMCs. Furthermore, hyperphosphatemic-induced calcification in AVICs and AVSMCs is independent of P13K signaling, which plays a role in OM-treated cells. Together, this study provides a wealth of information suggesting that the pathogenesis of cardiovascular calcifications is significantly more diverse than previously appreciated.
Collapse
Affiliation(s)
- Julie R Kessler
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Theresa S Bluemn
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Samuel A DeCero
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Punashi Dutta
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Kaitlyn Thatcher
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Donna K Mahnke
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Makenna C Knas
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Hail B Kazik
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Vinal Menon
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Joy Lincoln
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA; The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Zhang S, Fan L, Wang Y, Xu J, Shen Q, Xie J, Zeng Z, Zhou T. Dihydromyricetin ameliorates osteogenic differentiation of human aortic valve interstitial cells by targeting c-KIT/interleukin-6 signaling pathway. Front Pharmacol 2022; 13:932092. [PMID: 36003494 PMCID: PMC9393384 DOI: 10.3389/fphar.2022.932092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Aims: Calcific aortic valve disease (CAVD) is a chronic cardiovascular disease with high morbidity that lacks effective pharmacotherapeutics. As a natural flavonoid extracted from Ampelopsis grossedentata, dihydromyricetin (DHM) has been shown to be effective in protecting against atherosclerosis; yet, the therapeutic role of DHM in CAVD remains poorly understood. Herein, we aimed to clarify the therapeutic implications of DHM in CAVD and the underlying molecular mechanisms in human valvular interstitial cells (hVICs). Methods and Results: The protein levels of two known osteogenesis-specific genes (alkaline phosphatase, ALP; runt-related transcription factor 2, Runx2) and calcified nodule formation in hVICs were detected by Western blot and Alizarin Red staining, respectively. The results showed that DHM markedly ameliorated osteogenic induction medium (OM)–induced osteogenic differentiation of hVICs, as evidenced by downregulation of ALP and Runx2 expression and decreased calcium deposition. The SwissTargetPrediction database was used to identify the potential AVC-associated direct protein target of DHM. Protein–protein interaction (PPI) analysis revealed that c-KIT, a tyrosine-protein kinase, can act as a credible protein target of DHM, as evidenced by molecular docking. Mechanistically, DHM-mediated inhibition of c-KIT phosphorylation drove interleukin-6 (IL-6) downregulation in CAVD, thereby ameliorating OM-induced osteogenic differentiation of hVICs and aortic valve calcification progression. Conclusion: DHM ameliorates osteogenic differentiation of hVICs by blocking the phosphorylation of c-KIT, thus reducing IL-6 expression in CAVD. DHM could be a viable therapeutic supplement to impede CAVD.
Collapse
Affiliation(s)
- Shaoshao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leilei Fan
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianhua Xie, ; Zhipeng Zeng, ; Tingwen Zhou,
| | - Zhipeng Zeng
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianhua Xie, ; Zhipeng Zeng, ; Tingwen Zhou,
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianhua Xie, ; Zhipeng Zeng, ; Tingwen Zhou,
| |
Collapse
|
4
|
Effects of Sacubitril/Valsartan on the Expression of CaMKII/Cav1.2 in Atrial Fibrillation Stimulation Rabbit Model. BIOMED RESEARCH INTERNATIONAL 2022. [DOI: 10.1155/2022/5832543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background and Objective. Atrial fibrillation (AF) is linked to high morbidity and death rates throughout the world due to limited therapeutic options and thus presents a major challenge to the developed and developing countries. In this study, we aim to investigate the influence of sacubitril/valsartan (sac/val) treatment on the calmodulin-dependent protein kinase II (CaMKII)/Cav1.2 expression in AF models. Methods. Overall, 18 rabbits were randomly divided into control, pacing (600 beats/min), and pacing+sac/val groups. The rabbits in the pacing+sac/val cohort received oral sac/val (10 mg/kg twice daily) across the 21-day investigation period. After three weeks, the atrial effective refractory period (AERP) and AF induction rate were compared. HL-1 cultures were exposed to fast pacing (24 h) with and without LBQ657 (active sacubitril form)/valsartan. Western blots were used for detecting Cav1.2 and CaMKII expression within atrial muscles of the rabbits and HL-1 cultures of AF model. Results. In comparison to the sham cohort, the AF induction rate was markedly increased together with AERP reduction within pacing cohort. Such changes were markedly rescued through sac/val treatment in pacing+sac/val cohort. The proteomic expression profiles of CaMKII and Cav1.2 showed that the CaMKII expression was markedly upregulated, while Cav1.2 expression was downregulated in the pacing cohort. Importantly, these effects were absent in pacing+sac/val cohort. Conclusion. Results of this study show that sac/val treatment regulates the expression of CaMKII/Cav1.2 and could alter this pathway in atrial rapid electrical stimulation models. Therefore, this investigation could contribute to a novel strategy in AF therapeutics in clinical settings.
Collapse
|
5
|
Yuan C, Ni L, Yang X, Zhang C, Wu X. Calcium-Sensing Receptor Participates in High Glucose-Induced EndMT in Primary Human Aortic Endothelial Cells. Front Physiol 2021; 11:629542. [PMID: 33519531 PMCID: PMC7844313 DOI: 10.3389/fphys.2020.629542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
Objective Previous studies have shown that high glucose (HG) induces endothelial cell (EC) damage via endothelial-to-mesenchymal transition (EndMT). Although the underlying mechanisms are still unclear, recent studies have demonstrated the role of calcium-sensing receptor (CaSR) in mediating EC damage. Therefore, the aim of our study was to investigate whether CaSR mediates HG-induced EndMT and to determine the underlying mechanism. Methods Bioinformatics analysis of microarray profiles (GSE30780) and protein-protein interaction (PPI) analyses were performed to select the hub genes. As for in vitro research, the human aortic ECs (HAECs) were exposed to HG to induce EndMT. The expression of CaSR and β-catenin was determined, as well as their effects on EndMT (endothelial marker CD31, mesenchymal marker FSP1, and α-SMA). Results The bioinformatics analysis indicated CaSR was significantly increased in HG-treated HAECs and was one of the hub genes. The in vitro results showed that HG significantly inhibited the expression of CD31 and increased FSP1 and α-SMA in a concentration- and time-dependent manner. Moreover, CaSR was increased in HAECs after HG treatment. The CaSR antagonist attenuated HG-induced expression of EndMT-related markers. Furthermore, HG treatment increased the nuclear translocation of β-catenin in HAECs. In contrast, blocking the nuclear translocation of β-catenin by DKK1 could attenuate HG-induced EndMT (increased the protein expression of CD31 by 30% and decreased the protein expression of FSP1 by 15% and α-SMA by 25%). CaSR siRNA further inhibited the HG-induced nuclear translocation of β-catenin in HAECs. Conclusion Our research demonstrated that HG-induced EndMT in HAECs might be mediated by CaSR and the downstream nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Cheng Yuan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xianqin Yang
- Department of Emergency, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Changjiang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Mansour A, Darwiche W, Yaker L, Da Nascimento S, Gomila C, Rossi C, Jung V, Sonnet P, Kamel S, Guerrera IC, Boullier A, Ausseil J. GFOGER Peptide Modifies the Protein Content of Extracellular Vesicles and Inhibits Vascular Calcification. Front Cell Dev Biol 2020; 8:589761. [PMID: 33330469 PMCID: PMC7734313 DOI: 10.3389/fcell.2020.589761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Vascular calcification (VC) is an active process during which vascular smooth muscle cells (VSMCs) undergo an osteogenic switch and release extracellular vesicles (EVs). In turn, the EVs serve as calcification foci via interaction with type 1 collagen (COL1). We recently showed that a specific, six-amino-acid repeat (GFOGER) in the sequence of COL1 was involved in the latter's interaction with integrins expressed on EVs. Our main objective was to test the GFOGER ability to inhibit VC. APPROACH We synthesized the GFOGER peptide and tested its ability to inhibit the inorganic phosphate (Pi)-induced calcification of VSMCs and aortic rings. Using mass spectrometry, we studied GFOGER's effect on the protein composition of EVs released from Pi-treated VSMCs. RESULTS Calcification of mouse VSMCs (MOVAS-1 cells), primary human VSMCs, and rat aortic rings was lower in the presence of GFOGER than with Pi alone (with relative decreases of 66, 58, and 91%, respectively; p < 0.001 for all) (no effect was observed with the scramble peptide GOERFG). A comparative proteomic analysis of EVs released from MOVAS-1 cells in the presence or absence of Pi highlighted significant differences in EVs' protein content. Interestingly, the expression of some of the EVs' proteins involved in the calcification process (such as osteogenic markers, TANK-binding kinase 1, and casein kinase II) was diminished in the presence of GFOGER peptide (data are available via ProteomeXchange with identifier PXD018169∗). The decrease of osteogenic marker expression observed in the presence of GFOGER was confirmed by q-RT-PCR analysis. CONCLUSION GFOGER peptide reduces vascular calcification by modifying the protein content of the subsequently released EVs, in particular by decreasing osteogenicswitching in VSMCs.
Collapse
Affiliation(s)
- Ali Mansour
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
| | - Walaa Darwiche
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
| | - Linda Yaker
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
| | - Sophie Da Nascimento
- AGIR, UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| | - Cathy Gomila
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
| | - Claire Rossi
- Alliance Sorbonne Université, Université de Technologie de Compiègne, UMR7025 CNRS Enzyme and Cell Engineering Laboratory, Compiègne, France
| | - Vincent Jung
- Plateforme protéomique Necker, Faculté de Médecine Paris Descartes, Université de Paris – Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Pascal Sonnet
- AGIR, UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| | - Saïd Kamel
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Biochimie, Centre Hospitalier Universitaire d’ Amiens, Amiens, France
| | - Ida Chiara Guerrera
- Plateforme protéomique Necker, Faculté de Médecine Paris Descartes, Université de Paris – Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Agnès Boullier
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Biochimie, Centre Hospitalier Universitaire d’ Amiens, Amiens, France
| | - Jérôme Ausseil
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR1043 – CNRS UMR5282 – Université Toulouse III, Toulouse, France
- CHU Toulouse – Institut Fédératif de Biologie, Laboratoire de Biochimie, Toulouse, France
| |
Collapse
|
7
|
Lee CT, Ng HY, Kuo WH, Tain YL, Leung FF, Lee YT. The role of TRPM7 in vascular calcification: Comparison between phosphate and uremic toxin. Life Sci 2020; 260:118280. [PMID: 32800835 DOI: 10.1016/j.lfs.2020.118280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022]
Abstract
AIMS Vascular calcification is a common complication in patients with chronic kidney disease and associated with increased morbidity and mortality. The role of TRPM7 in vascular smooth muscle cell (VSMC) transformation during vascular calcification is not clear. We aim to investigate the effects of phosphate and indoxyl sulphate on the expression of TRPM7 and calcification-related molecules in VSMC. MAIN METHODS Human aortic smooth muscle cells (HASMC) were treated with phosphate (3.3 mM) or indoxyl sulphate (500 μM and 1000 μM). 2-APB, a channel blocker of TRPM7 was added simultaneously in blocking experiment. Cells were then examined grossly and alizarin red solution was employed for calcification assessment. Lastly, cells were harvested for gene expression and protein abundance analysis. KEY FINDINGS Phosphate treatment induced significant increase in BMP2, RUNX2, BMP7, vitamin D receptor (VDR), calcium sensing receptor (CaSR) and TRPM7, but 1-alpha hydroxylase, klotho, DKK1 and sclerostin were not changed. The addition of 2-APB prevented increase of BMP2, RUNX2, BMP7, VDR, CaSR and TRPM7. Indoxyl sulphate treatment was associated with decrease in TRPM7 and DKK1, but increase in RUNX2, BMP2 and VDR were noted. There were no significant alterations in BMP7, CaSR, klotho,1-alpha hydroxylase and sclerostin. Co-treatment with 2-APB reversed the increase in VDR. SIGNIFICANCE Both phosphate and indoxyl sulphate induced calcification in VSMC but it was more prominent in phosphate. TRPM7 was upregulated by phosphate but downregulated in indoxyl sulphate treatment. Vascular calcification was reduced by blocking TRPM7 with 2-APB and there was partial anti-calcification effect in indoxyl sulphate.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Hung Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Foong-Fah Leung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Ting Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Li LYF, Lou Q, Liu GZ, Lv JC, Yun FX, Li TK, Yang W, Zhao HY, Zhang L, Bai N, Zhan CC, Yu J, Zang YX, Li WM. Sacubitril/valsartan attenuates atrial electrical and structural remodelling in a rabbit model of atrial fibrillation. Eur J Pharmacol 2020; 881:173120. [PMID: 32325147 DOI: 10.1016/j.ejphar.2020.173120] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/09/2023]
Abstract
Atrial structural and electrical remodelling play important roles in atrial fibrillation (AF). Sacubitril/valsartan attenuates cardiac remodelling in heart failure. However, the effect of sacubitril/valsartan on AF is unclear. The aim of this study was to evaluate the effect of sacubitril/valsartan on atrial electrical and structural remodelling in AF and investigate the underlying mechanism of action. Thirty-three rabbits were randomized into sham, RAP, and sac/val groups. HL-1 cells were subjected to control treatment or rapid pacing with or without LBQ657 and valsartan. Echocardiography, atrial electrophysiology, and histological examination were performed. The concentration of Ca2+ and expression levels of calcineurin, NFAT, p-NFAT, Cav1.2, collagen Ⅰ and Ⅲ, ANP, BNP, CNP, NT-proBNP, and ST2 in HL-1 cells, and IcaL in left atrial cells, were determined. We observed that compared to that in the sham group, the atrium and right ventricle were enlarged, myocardial fibrosis was markedly higher, AF inducibility was significantly elevated, and atrial effective refractory periods were shortened in the RAP group. These effects were significantly reversed by sacubitril/valsartan. Compared to that in the sham group, collagen Ⅰ and Ⅲ, NT-proBNP, ST2, calcineurin, and NFAT were significantly up-regulated, while p-NFAT and Cav1.2 were down-regulated in the RAP group, and sacubitril/valsartan inhibited these changes. Ca2+ concentration increased and ICaL density decreased in in vivo and in vitro AF models, reversed by sacubitril/valsartan. Sacubitril/valsartan attenuates atrial electrical remodelling and ameliorates structure remodelling in AF. This study paves the way for the possibility of clinical use of sacubitril/valsartan in AF patients.
Collapse
Affiliation(s)
- Lu-Yi-Fei Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qi Lou
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Guang-Zhong Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jia-Chen Lv
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feng-Xiang Yun
- Department of Internal Critic Care, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tian-Kai Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wen Yang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hong-Yan Zhao
- Department of Cardiology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Nan Bai
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Cheng-Chuang Zhan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jia Yu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yan-Xiang Zang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wei-Min Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|