1
|
Neagu M, Constantin C, Surcel M, Munteanu A, Scheau C, Savulescu‐Fiedler I, Caruntu C. Diabetic neuropathy: A NRF2 disease? J Diabetes 2024; 16:e13524. [PMID: 38158644 PMCID: PMC11418408 DOI: 10.1111/1753-0407.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) has multifarious action with its target genes having redox-regulating functions and being involved in inflammation control, proteostasis, autophagy, and metabolic pathways. Therefore, the genes controlled by NRF2 are involved in the pathogenesis of myriad diseases, such as cardiovascular diseases, metabolic syndrome, neurodegenerative diseases, autoimmune disorders, and cancer. Amidst this large array of diseases, diabetic neuropathy (DN) occurs in half of patients diagnosed with diabetes and appears as an injury inflicted upon peripheral and autonomic nervous systems. As a complex effector factor, NRF2 has entered the spotlight during the search of new biomarkers and/or new therapy targets in DN. Due to the growing attention for NRF2 as a modulating factor in several diseases, including DN, this paper aims to update the recently discovered regulatory pathways of NRF2 in oxidative stress, inflammation and immunity. It presents the animal models that further facilitated the human studies in regard to NRF2 modulation and the possibilities of using NRF2 as DN biomarker and/or as target therapy.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
- Pathology DepartmentColentina Clinical HospitalBucharestRomania
- Doctoral School, Faculty of BiologyUniversity of BucharestBucharestRomania
| | - Carolina Constantin
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
- Pathology DepartmentColentina Clinical HospitalBucharestRomania
| | - Mihaela Surcel
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
| | - Adriana Munteanu
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
| | - Cristian Scheau
- Department of Physiology“Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Ilinca Savulescu‐Fiedler
- Department of Internal Medicine – Coltea Clinical Hospital, ”Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Constantin Caruntu
- Department of Physiology“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Dermatology“Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic DiseasesBucharestRomania
| |
Collapse
|
2
|
Caporali A, Anwar M, Devaux Y, Katare R, Martelli F, Srivastava PK, Pedrazzini T, Emanueli C. Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. Nat Rev Cardiol 2024; 21:556-573. [PMID: 38499868 DOI: 10.1038/s41569-024-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
The adult heart is a complex, multicellular organ that is subjected to a series of regulatory stimuli and circuits and has poor reparative potential. Despite progress in our understanding of disease mechanisms and in the quality of health care, ischaemic heart disease remains the leading cause of death globally, owing to adverse cardiac remodelling, leading to ischaemic cardiomyopathy and heart failure. Therapeutic targets are urgently required for the protection and repair of the ischaemic heart. Moreover, personalized clinical biomarkers are necessary for clinical diagnosis, medical management and to inform the individual response to treatment. Non-coding RNAs (ncRNAs) deeply influence cardiovascular functions and contribute to communication between cells in the cardiac microenvironment and between the heart and other organs. As such, ncRNAs are candidates for translation into clinical practice. However, ncRNA biology has not yet been completely deciphered, given that classes and modes of action have emerged only in the past 5 years. In this Review, we discuss the latest discoveries from basic research on ncRNAs and highlight both the clinical value and the challenges underscoring the translation of these molecules as biomarkers and therapeutic regulators of the processes contributing to the initiation, progression and potentially the prevention or resolution of ischaemic heart disease and heart failure.
Collapse
Affiliation(s)
- Andrea Caporali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxemburg
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
3
|
Khan MM, Kirabo A. Long Noncoding RNA MALAT1: Salt-Sensitive Hypertension. Int J Mol Sci 2024; 25:5507. [PMID: 38791545 PMCID: PMC11122212 DOI: 10.3390/ijms25105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Hypertension stands as the leading global cause of mortality, affecting one billion individuals and serving as a crucial risk indicator for cardiovascular morbidity and mortality. Elevated salt intake triggers inflammation and hypertension by activating antigen-presenting cells (APCs). We found that one of the primary reasons behind this pro-inflammatory response is the epithelial sodium channel (ENaC), responsible for transporting sodium ions into APCs and the activation of NADPH oxidase, leading to increased oxidative stress. Oxidative stress increases lipid peroxidation and the formation of pro-inflammatory isolevuglandins (IsoLG). Long noncoding RNAs (lncRNAs) play a crucial role in regulating gene expression, and MALAT1, broadly expressed across cell types, including blood vessels and inflammatory cells, is also associated with inflammation regulation. In hypertension, the decreased transcriptional activity of nuclear factor erythroid 2-related factor 2 (Nrf2 or Nfe2l2) correlates with heightened oxidative stress in APCs and impaired control of various antioxidant genes. Kelch-like ECH-associated protein 1 (Keap1), an intracellular inhibitor of Nrf2, exhibits elevated levels of hypertension. Sodium, through an increase in Sp1 transcription factor binding at its promoter, upregulates MALAT1 expression. Silencing MALAT1 inhibits sodium-induced Keap1 upregulation, facilitating the nuclear translocation of Nrf2 and subsequent antioxidant gene transcription. Thus, MALAT1, acting via the Keap1-Nrf2 pathway, modulates antioxidant defense in hypertension. This review explores the potential role of the lncRNA MALAT1 in controlling the Keap1-Nrf2-antioxidant defense pathway in salt-induced hypertension. The inhibition of MALAT1 holds therapeutic potential for the progression of salt-induced hypertension and cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Mohd Mabood Khan
- Department of Medicine, Preston Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232, USA
| | - Annet Kirabo
- Department of Medicine, Preston Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Grodsky L, Wilson M, Rathinasabapathy T, Komarnytsky S. Triptolide Administration Alters Immune Responses to Mitigate Insulin Resistance in Obese States. Biomolecules 2024; 14:395. [PMID: 38672413 PMCID: PMC11048574 DOI: 10.3390/biom14040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Individuals who are overweight or obese are at increased risk of developing prediabetes and type 2 diabetes, yet the direct molecular mechanisms that connect diabetes to obesity are not clear. Chronic, sustained inflammation is considered a strong risk factor in these interactions, directed in part by the short-lived gene expression programs encoding for cytokines and pro-inflammatory mediators. In this study, we show that triptolide administration in the C57BL/6 diet-induced obese mice at up to 10 μg/kg/day for 10 weeks attenuated the development of insulin resistance and diabetes, but not obesity, in these animals. Significant reductions in adipose tissue inflammation and improved insulin sensitivity were observed in the absence of changes in food intake, body weight, body composition, or energy expenditure. Analysis of the core cluster of biomarkers that drives pro-inflammatory responses in the metabolic tissues suggested TNF-α as a critical point that affected the co-development of inflammation and insulin resistance, but also pointed to the putatively protective roles of increased COX-2 and IL-17A signaling in the mediation of these pathophysiological states. Our results show that reduction of diet-induced inflammation confers partial protection against insulin resistance, but not obesity, and suggest the possibility of achieving overweight phenotypes that are accompanied by minimal insulin resistance if inflammation is controlled.
Collapse
Affiliation(s)
- Lyudmila Grodsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (L.G.); (M.W.); (T.R.)
- Department of Post-Baccalaureate Studies, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
- School of Medicine, University of North Carolina at Chapel Hill, 150 Medical Drive, Chapel Hill, NC 27514, USA
| | - Mickey Wilson
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (L.G.); (M.W.); (T.R.)
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (L.G.); (M.W.); (T.R.)
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (L.G.); (M.W.); (T.R.)
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Raghubeer S. The influence of epigenetics and inflammation on cardiometabolic risks. Semin Cell Dev Biol 2024; 154:175-184. [PMID: 36804178 DOI: 10.1016/j.semcdb.2023.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Cardiometabolic diseases include metabolic syndrome, obesity, type 2 diabetes mellitus, and hypertension. Epigenetic modifications participate in cardiometabolic diseases through several pathways, including inflammation, vascular dysfunction, and insulin resistance. Epigenetic modifications, which encompass alterations to gene expression without mutating the DNA sequence, have gained much attention in recent years, since they have been correlated with cardiometabolic diseases and may be targeted for therapeutic interventions. Epigenetic modifications are greatly influenced by environmental factors, such as diet, physical activity, cigarette smoking, and pollution. Some modifications are heritable, indicating that the biological expression of epigenetic alterations may be observed across generations. Moreover, many patients with cardiometabolic diseases present with chronic inflammation, which can be influenced by environmental and genetic factors. The inflammatory environment worsens the prognosis of cardiometabolic diseases and further induces epigenetic modifications, predisposing patients to the development of other metabolism-associated diseases and complications. A deeper understanding of inflammatory processes and epigenetic modifications in cardiometabolic diseases is necessary to improve our diagnostic capabilities, personalized medicine approaches, and the development of targeted therapeutic interventions. Further understanding may also assist in predicting disease outcomes, especially in children and young adults. This review describes epigenetic modifications and inflammatory processes underlying cardiometabolic diseases, and further discusses advances in the research field with a focus on specific points for interventional therapy.
Collapse
Affiliation(s)
- Shanel Raghubeer
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, South Africa.
| |
Collapse
|
6
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Xu Y, Ma Q, Ren J, Chen L, Guo W, Feng K, Zeng Z, Huang T, Cai Y. Using Machine Learning Methods in Identifying Genes Associated with COVID-19 in Cardiomyocytes and Cardiac Vascular Endothelial Cells. Life (Basel) 2023; 13:life13041011. [PMID: 37109540 PMCID: PMC10146712 DOI: 10.3390/life13041011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Corona Virus Disease 2019 (COVID-19) not only causes respiratory system damage, but also imposes strain on the cardiovascular system. Vascular endothelial cells and cardiomyocytes play an important role in cardiac function. The aberrant expression of genes in vascular endothelial cells and cardiomyocytes can lead to cardiovascular diseases. In this study, we sought to explain the influence of respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the gene expression levels of vascular endothelial cells and cardiomyocytes. We designed an advanced machine learning-based workflow to analyze the gene expression profile data of vascular endothelial cells and cardiomyocytes from patients with COVID-19 and healthy controls. An incremental feature selection method with a decision tree was used in building efficient classifiers and summarizing quantitative classification genes and rules. Some key genes, such as MALAT1, MT-CO1, and CD36, were extracted, which exert important effects on cardiac function, from the gene expression matrix of 104,182 cardiomyocytes, including 12,007 cells from patients with COVID-19 and 92,175 cells from healthy controls, and 22,438 vascular endothelial cells, including 10,812 cells from patients with COVID-19 and 11,626 cells from healthy controls. The findings reported in this study may provide insights into the effect of COVID-19 on cardiac cells and further explain the pathogenesis of COVID-19, and they may facilitate the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Yaochen Xu
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| | - Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Zhenbing Zeng
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Chen H, Jiang R, Huang W, Chen K, Zeng R, Wu H, Yang Q, Guo K, Li J, Wei R, Liao S, Tse HF, Sha W, Zhuo Z. Identification of energy metabolism-related biomarkers for risk prediction of heart failure patients using random forest algorithm. Front Cardiovasc Med 2022; 9:993142. [PMID: 36304554 PMCID: PMC9593065 DOI: 10.3389/fcvm.2022.993142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Energy metabolism plays a crucial role in the improvement of heart dysfunction as well as the development of heart failure (HF). The current study is designed to identify energy metabolism-related diagnostic biomarkers for predicting the risk of HF due to myocardial infarction. Methods Transcriptome sequencing data of HF patients and non-heart failure (NF) people (GSE66360 and GSE59867) were obtained from gene expression omnibus (GEO) database. Energy metabolism-related differentially expressed genes (DEGs) were screened between HF and NF samples. The subtyping consistency analysis was performed to enable the samples to be grouped. The immune infiltration level among subtypes was assessed by single sample gene set enrichment analysis (ssGSEA). Random forest algorithm (RF) and support vector machine (SVM) were applied to identify diagnostic biomarkers, and the receiver operating characteristic curves (ROC) was plotted to validate the accuracy. Predictive nomogram was constructed and validated based on the result of the RF. Drug screening and gene-miRNA network were analyzed to predict the energy metabolism-related drugs and potential molecular mechanism. Results A total of 22 energy metabolism-related DEGs were identified between HF and NF patients. The clustering analysis showed that HF patients could be classified into two subtypes based on the energy metabolism-related genes, and functional analyses demonstrated that the identified DEGs among two clusters were mainly involved in immune response regulating signaling pathway and lipid and atherosclerosis. ssGSEA analysis revealed that there were significant differences in the infiltration levels of immune cells between two subtypes of HF patients. Random-forest and support vector machine algorithm eventually identified ten diagnostic markers (MEF2D, RXRA, PPARA, FOXO1, PPARD, PPP3CB, MAPK14, CREB1, MEF2A, PRMT1) for risk prediction of HF patients, and the proposed nomogram resulted in good predictive performance (GSE66360, AUC = 0.91; GSE59867, AUC = 0.84) and the clinical usefulness in HF patients. More importantly, 10 drugs and 15 miRNA were predicted as drug target and hub miRNA that associated with energy metabolism-related genes, providing further information on clinical HF treatment. Conclusion This study identified ten energy metabolism-related diagnostic markers using random forest algorithm, which may help optimize risk stratification and clinical treatment in HF patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,School of Medicine, South China University of Technology, Guangzhou, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Hao Chen
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,School of Medicine, South China University of Technology, Guangzhou, China
| | - Wentao Huang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kequan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,School of Medicine, South China University of Technology, Guangzhou, China
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Rui Wei
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Songyan Liao
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China,Hung-Fat Tse
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,School of Medicine, South China University of Technology, Guangzhou, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,Weihong Sha
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,Zewei Zhuo
| |
Collapse
|
9
|
Medina-Díaz IM, Ponce-Ruíz N, Rojas-García AE, Zambrano-Zargoza JF, Bernal-Hernández YY, González-Arias CA, Barrón-Vivanco BS, Herrera-Moreno JF. The Relationship between Cancer and Paraoxonase 1. Antioxidants (Basel) 2022; 11:antiox11040697. [PMID: 35453382 PMCID: PMC9028432 DOI: 10.3390/antiox11040697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Extensive research has been carried out to understand and elucidate the mechanisms of paraoxonase 1 (PON1) in the development of diseases including cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. This review focuses on the relationship between PON1 and cancer. The data suggest that PON1, oxidative stress, chronic inflammation, and cancer are closely linked. Certainly, the gene expression of PON1 will remain challenging to study. Therefore, targeting PON1, redox-sensitive pathways, and transcription factors promise prevention and therapy in the development of several diseases, including cancer.
Collapse
Affiliation(s)
- Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
- Correspondence:
| | - Néstor Ponce-Ruíz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | | | - Yael Y. Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Briscia S. Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| |
Collapse
|
10
|
Vlachogiannis NI, Sachse M, Georgiopoulos G, Zormpas E, Bampatsias D, Delialis D, Bonini F, Galyfos G, Sigala F, Stamatelopoulos K, Gatsiou A, Stellos K. Adenosine-to-inosine Alu RNA editing controls the stability of the pro-inflammatory long noncoding RNA NEAT1 in atherosclerotic cardiovascular disease. J Mol Cell Cardiol 2021; 160:111-120. [PMID: 34302813 PMCID: PMC8585018 DOI: 10.1016/j.yjmcc.2021.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators in human disease including atherosclerosis. However, the mechanisms involved in the post-transcriptional regulation of the expression of disease-associated lncRNAs are not fully understood. Gene expression studies revealed that Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) lncRNA expression was increased by >2-fold in peripheral blood mononuclear cells (PBMCs) derived from patients with coronary artery disease (CAD) or in carotid artery atherosclerotic plaques. We observed a linear association between NEAT1 lncRNA expression and prevalence of CAD which was independent of age, sex, cardiovascular traditional risk factors and renal function. NEAT1 expression was induced by TNF-α, while silencing of NEAT1 profoundly attenuated the TNF-α-induced vascular endothelial cell pro-inflammatory response as defined by the expression of CXCL8, CCL2, VCAM1 and ICAM1. Overexpression of the RNA editing enzyme adenosine deaminase acting on RNA-1 (ADAR1), but not of its editing-deficient mutant, upregulated NEAT1 levels. Conversely, silencing of ADAR1 suppressed the basal levels and the TNF-α-induced increase of NEAT1. NEAT1 lncRNA expression was strongly associated with ADAR1 in CAD and peripheral arterial vascular disease. RNA editing mapping studies revealed the presence of several inosines in close proximity to AU-rich elements within the AluSx3+/AluJo- double-stranded RNA complex. Silencing of the stabilizing RNA-binding protein AUF1 reduced NEAT1 levels while silencing of ADAR1 profoundly affected the binding capacity of AUF1 to NEAT1. Together, our findings propose a mechanism by which ADAR1-catalyzed A-to-I RNA editing controls NEAT1 lncRNA stability in ASCVD.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Department of Cardiology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marco Sachse
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Vascular Inflammation and RNA Metabolism Laboratory, Institute for Vascular Signalling, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Zormpas
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Bonini
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Vascular Inflammation and RNA Metabolism Laboratory, Institute for Vascular Signalling, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - George Galyfos
- First Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Fragiska Sigala
- First Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Department of Cardiology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Vascular Inflammation and RNA Metabolism Laboratory, Institute for Vascular Signalling, JW Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Bär C, Chatterjee S, Falcão Pires I, Rodrigues P, Sluijter JPG, Boon RA, Nevado RM, Andrés V, Sansonetti M, de Windt L, Ciccarelli M, Hamdani N, Heymans S, Figuinha Videira R, Tocchetti CG, Giacca M, Zacchigna S, Engelhardt S, Dimmeler S, Madonna R, Thum T. Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2021; 116:1805-1819. [PMID: 32638021 DOI: 10.1093/cvr/cvaa195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vast parts of mammalian genomes are actively transcribed, predominantly giving rise to non-coding RNA (ncRNA) transcripts including microRNAs, long ncRNAs, and circular RNAs among others. Contrary to previous opinions that most of these RNAs are non-functional molecules, they are now recognized as critical regulators of many physiological and pathological processes including those of the cardiovascular system. The discovery of functional ncRNAs has opened up new research avenues aiming at understanding ncRNA-related disease mechanisms as well as exploiting them as novel therapeutics in cardiovascular therapy. In this review, we give an update on the current progress in ncRNA research, particularly focusing on cardiovascular physiological and disease processes, which are under current investigation at the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. This includes a range of topics such as extracellular vesicle-mediated communication, neurohormonal regulation, inflammation, cardiac remodelling, cardio-oncology as well as cardiac development and regeneration, collectively highlighting the wide-spread involvement and importance of ncRNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Christian Bär
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Inês Falcão Pires
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,Partner site Rhein/Main, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marida Sansonetti
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leon de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Italy
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Centre, University Hospital Maastricht, The Netherlands.,Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, The Netherlands
| | - Raquel Figuinha Videira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London, London, UK.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Dosta P, Tamargo I, Ramos V, Kumar S, Kang DW, Borrós S, Jo H. Delivery of Anti-microRNA-712 to Inflamed Endothelial Cells Using Poly(β-amino ester) Nanoparticles Conjugated with VCAM-1 Targeting Peptide. Adv Healthc Mater 2021; 10:e2001894. [PMID: 33448151 PMCID: PMC8277885 DOI: 10.1002/adhm.202001894] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Endothelial cells (ECs) are an important target for therapy in a wide range of diseases, most notably atherosclerosis. Developing efficient nanoparticle (NP) systems that deliver RNA interference (RNAi) drugs specifically to dysfunctional ECs in vivo to modulate their gene expression remains a challenge. To date, several lipid-based NPs are developed and shown to deliver RNAi to ECs, but few of them are optimized to specifically target dysfunctional endothelium. Here, a novel, targeted poly(β-amino ester) (pBAE) NP is demonstrated. This pBAE NP is conjugated with VHPK peptides that target vascular cell adhesion molecule 1 protein, overexpressed on inflamed EC membranes. To test this approach, the novel NPs are used to deliver anti-microRNA-712 (anti-miR-712) specifically to inflamed ECs both in vitro and in vivo, reducing the high expression of pro-atherogenic miR-712. A single administration of anti-miR-712 using the VHPK-conjugated-pBAE NPs in mice significantly reduce miR-712 expression, while preventing the loss of its target gene, tissue inhibitor of metalloproteinase 3 (TIMP3) in inflamed endothelium. miR-712 and TIMP3 expression are unchanged in non-inflamed endothelium. This novel, targeted-delivery platform may be used to deliver RNA therapeutics specifically to dysfunctional endothelium for the treatment of vascular disease.
Collapse
Affiliation(s)
- Pere Dosta
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
- Grup d'Enginyera de Materials (GEMAT) Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Ian Tamargo
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Victor Ramos
- Grup d'Enginyera de Materials (GEMAT) Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Dong Won Kang
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Salvador Borrós
- Grup d'Enginyera de Materials (GEMAT) Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| |
Collapse
|
13
|
Zhang Z, Ding S, Yang X, Ge J. Analysis of Immune Associated Co-Expression Networks Reveals Immune-Related Long Non-Coding RNAs during MI in the Presence and Absence of HDC. Int J Mol Sci 2021; 22:7401. [PMID: 34299019 PMCID: PMC8303379 DOI: 10.3390/ijms22147401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Myocardial infarction (MI) is one of the most common cardiovascular diseases. Although previous studies have shown that histidine decarboxylase (HDC), a histamine-synthesizing enzyme, is involved in the stress response and heart remodeling after MI, the mechanism underlying it remains unclear. In this study, using Hdc-deficient mice (Hdc-/- mice), we established an acute myocardial infarction mouse model to explore the potential roles of Hdc/histamine in cardiac immune responses. Comprehensive analysis was performed on the transcriptomes of infarcted hearts. Differentially expressed gene (DEG) analysis identified 2126 DEGs in Hdc-deficient groups and 1013 in histamine-treated groups. Immune related pathways were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Then we used the ssGSEA algorithm to evaluate 22 kinds of infiltrated immunocytes, which indicated that myeloid cells and T memory/follicular helper cells were tightly regulated by Hdc/histamine post MI. The relationships of lncRNAs and the Gene Ontology (GO) functions of protein-coding RNAs and immunocytes were dissected in networks to unveil immune-associated lncRNAs and their roles in immune modulation after MI. Finally, we screened out and verified four lncRNAs, which were closely implicated in tuning the immune responses after MI, including ENSMUST00000191157, ENSMUST00000180693 (PTPRE-AS1), and ENSMUST-00000182785. Our study highlighted the HDC-regulated myeloid cells as a driving force contributing to the government of transmission from innate immunocytes to adaptive immunocytes in the progression of the injury response after MI. We identified the potential role of the Hdc/histamine-lncRNAs network in regulating cardiac immune responses, which may provide novel promising therapeutic targets for further promoting the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (Z.Z.); (S.D.)
| | - Suling Ding
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (Z.Z.); (S.D.)
| | - Xiangdong Yang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (Z.Z.); (S.D.)
| | - Junbo Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (Z.Z.); (S.D.)
- NHC Key Laboratory of Viral Heart Diseases, Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| |
Collapse
|
14
|
Wang Y, Deng H, Xu Z, Xu P, Huo T, Xu Z, Guo M. The changes in miR-221 and miR-222 before and after interventional therapy of coronary heart disease and analysis of their correlation with inflammatory factors and prognosis. Am J Transl Res 2021; 13:3731-3737. [PMID: 34017558 PMCID: PMC8129388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To explore the changes in miR-221 and miR-222 before and after interventional therapy of coronary heart disease and their relationship with inflammatory factors and prognosis. METHODS A total of 122 subjects with coronary heart disease who underwent interventional therapy in our hospital from January 2017 to January 2019 were chosen as the observation group, and 122 healthy people during the same period were chosen as the control group. We retrospectively analyzed the levels of serum miR-221, miR-222, C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). Pearson correlation analysis was used to reveal the relationship between serum levels of miR-221, miR-222 and CRP, TNF-α and IL-6, N-terminal B-type brain natriuretic peptide precursor (NT-proBNP) and left ventricular ejection fraction (LVEF%) in the observation group. The levels of serum miR-221, miR-222, TNF-α, CRP and IL-6 before and after treatment were compared in the observation group. After a follow-up of 6 months, the observation group was divided into a poor-prognosis group (26 cases) and a good-prognosis group (96 cases) according to whether there was an adverse cardiovascular event or not. The levels of serum miR-221 and miR-222 before and after intervention treatment were compared between the two groups. And the clinical values of miR-221 and miR-222 levels before and after intervention treatment in the observation group were analyzed by the ROC curve. RESULTS The levels of serum miR-221, miR-222, CRP, TNF-α, and IL-6 in the observation group were markedly higher than those of the control group. And levels of serum miR-221, miR-222 were negatively correlated with LVEF% while positively correlated with CRP, TNF-α, IL-6 and NT-proBNP (P<0.05). After treatment, the levels of miR-221, miR-222, CRP, TNF-α, and IL-6 in the observation group were significantly reduced (all P<0.05). Compared with the good prognosis group, the levels of miR-221 and miR-222 before and after treatment were markedly higher in the poor prognosis group (all P<0.05). Both before and after treatment, the levels of miR-221 and miR-222 have certain clinical value in evaluating the prognosis (all AUC>0.800). CONCLUSION The levels of miR-221 and miR-222 in patients with coronary heart disease significantly increased and they were closely correlated with the inflammatory factors, NT-proBNP and LVEF%. The levels of miR-221 and miR-222 before and after treatment have certain clinical value in evaluating the prognosis of patients.
Collapse
Affiliation(s)
- Yunpeng Wang
- The First Department of Cardiology, The Second People’s Hospital of LiaochengLiaocheng, Shandong Province, China
| | - Haiwen Deng
- Department of Cardiology, The Second People’s Hospital of DongyingDongying, Shandong Province, China
| | - Zhongshan Xu
- Department of Cardiology, The Second People’s Hospital of DongyingDongying, Shandong Province, China
| | - Pengfei Xu
- Department of Pharmacy, Yidu Central HospitalWeifang, Shandong Province, China
| | - Tiechuan Huo
- Department of Cardiology, Quyang County Hospital of Traditional Chinese MedicineQuyang, Hebei Province, China
- Department of Endocrinology, Quyang County Hospital of Traditional Chinese MedicineQuyang, Hebei Province, China
| | - Zitao Xu
- Department of Cardiology, China Water Resource and Hydropower No. 13th Engineering Bureau HospitalDezhou, Shandong Province, China
- Department of Intensive Care Unit, China Water Resource and Hydropower No. 13th Engineering Bureau HospitalDezhou, Shandong Province, China
| | - Mingwa Guo
- Department of Cardiology, The Second People’s Hospital of DongyingDongying, Shandong Province, China
| |
Collapse
|
15
|
Radhakrishnan R, Kowluru RA. Long Noncoding RNA MALAT1 and Regulation of the Antioxidant Defense System in Diabetic Retinopathy. Diabetes 2021; 70:227-239. [PMID: 33051272 PMCID: PMC7881848 DOI: 10.2337/db20-0375] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
The retina experiences increased oxidative stress in diabetes, and the transcriptional activity of Nrf2, which is critical in regulating many antioxidant genes, is decreased. The nuclear movement/transcriptional activity of Nrf2 is mediated by its intracellular inhibitor Keap1, and retinal Keap1 levels are increased in diabetes. Gene expression is also regulated by long noncoding RNAs (LncRNAs). Our aim was to investigate the role of LncRNA MALAT1 in the regulation of Keap1-Nrf2-antioxidant defense in diabetic retinopathy. LncRNA MALAT1 expression (quantitative real-time PCR, immunofluorescence, and RNA sequencing), its interactions with Keap1 (FACS), Keap1-Nrf2 interactions, and transcription of the antioxidant response genes (immunofluorescence and nuclear RNA sequencing) were investigated in retinal endothelial cells exposed to high glucose. Glucose increased LncRNA MALAT1 levels by increasing Sp1 transcription factor binding at its promoter. Downregulation of LncRNA MALAT1 by its siRNA prevented glucose-induced increase in Keap1 and facilitated Nrf2 nuclear translocation and antioxidant gene transcription. Retinal microvessels from streptozotocin-induced diabetic mice and human donors with diabetic retinopathy also presented similar increases in LncRNA MALAT1 and its interactions with Keap1 and decreases in Nrf2-mediated antioxidant defense genes. Thus, LncRNA MALAT1, via Keap1-Nrf2, regulates antioxidant defense in diabetic retinopathy. Inhibition of LncRNA MALAT1 has potential to protect the retina from oxidative damage and to prevent or slow down diabetic retinopathy.
Collapse
Affiliation(s)
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI
| |
Collapse
|
16
|
Yurtseven E, Ural D, Baysal K, Tokgözoğlu L. An Update on the Role of PCSK9 in Atherosclerosis. J Atheroscler Thromb 2020; 27:909-918. [PMID: 32713931 PMCID: PMC7508721 DOI: 10.5551/jat.55400] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is initiated by functional changes in the endothelium accompanied by accumulation, oxidation, and glycation of LDL-cholesterol in the inner layer of the arterial wall and continues with the expression of adhesion molecules and release of chemoattractants. PCSK9 is a proprotein convertase that increases circulating LDL levels by directing hepatic LDL receptors into lysosomes for degradation. The effects of PCSK9 on hepatic LDL receptors and contribution to atherosclerosis via the induction of hyperlipidemia are well defined. Monoclonal PCSK9 antibodies that block the effects of PCSK9 on LDL receptors demonstrated beneficial results in cardiovascular outcome trials. In recent years, extrahepatic functions of PCSK9, particularly its direct effects on atherosclerotic plaques have received increasing attention. Experimental trials have revealed that PCSK9 plays a significant role in every step of atherosclerotic plaque formation. It contributes to foam cell formation by increasing the uptake of LDL by macrophages via scavenger receptors and inhibiting cholesterol efflux from macrophages. It induces the expression of inflammatory cytokines, adhesion molecules, and chemoattractants, thereby increasing monocyte recruitment, inflammatory cell adhesion, and inflammation at the atherosclerotic vascular wall. Moreover, low shear stress is associated with increased PCSK9 expression. PCSK9 may induce endothelial cell apoptosis and autophagy and stimulate the differentiation of smooth muscle cells from the contractile phenotype to synthetic phenotype. Increasing evidence indicates that PCSK9 is a molecular target in the development of novel approaches toward the prevention and treatment of atherosclerosis. This review focuses on the molecular roles of PCSK9 in atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Ece Yurtseven
- Department of Cardiology, Koc University School of Medicine, Istanbul, Turkey
| | - Dilek Ural
- Department of Cardiology, Koc University School of Medicine, Istanbul, Turkey
| | - Kemal Baysal
- Department of Biochemistry and Research Center for Translational Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
17
|
Steffens S, Van Linthout S, Sluijter JPG, Tocchetti CG, Thum T, Madonna R. Stimulating pro-reparative immune responses to prevent adverse cardiac remodelling: consensus document from the joint 2019 meeting of the ESC Working Groups of cellular biology of the heart and myocardial function. Cardiovasc Res 2020; 116:1850-1862. [DOI: 10.1093/cvr/cvaa137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract
Cardiac injury may have multiple causes, including ischaemic, non-ischaemic, autoimmune, and infectious triggers. Independent of the underlying pathophysiology, cardiac tissue damage induces an inflammatory response to initiate repair processes. Immune cells are recruited to the heart to remove dead cardiomyocytes, which is essential for cardiac healing. Insufficient clearance of dying cardiomyocytes after myocardial infarction (MI) has been shown to promote unfavourable cardiac remodelling, which may result in heart failure (HF). Although immune cells are integral key players of cardiac healing, an unbalanced or unresolved immune reaction aggravates tissue damage that triggers maladaptive remodelling and HF. Neutrophils and macrophages are involved in both, inflammatory as well as reparative processes. Stimulating the resolution of cardiac inflammation seems to be an attractive therapeutic strategy to prevent adverse remodelling. Along with numerous experimental studies, the promising outcomes from recent clinical trials testing canakinumab or colchicine in patients with MI are boosting the interest in novel therapies targeting inflammation in cardiovascular disease patients. The aim of this review is to discuss recent experimental studies that provide new insights into the signalling pathways and local regulators within the cardiac microenvironment promoting the resolution of inflammation and tissue regeneration. We will cover ischaemia- and non-ischaemic-induced as well as infection-related cardiac remodelling and address potential targets to prevent adverse cardiac remodelling.
Collapse
Affiliation(s)
- Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Via Paradisa, Pisa 56124, Italy
| |
Collapse
|
18
|
Zhou DM, Ran F, Ni HZ, Sun LL, Xiao L, Li XQ, Li WD. Metformin inhibits high glucose-induced smooth muscle cell proliferation and migration. Aging (Albany NY) 2020; 12:5352-5361. [PMID: 32208365 PMCID: PMC7138554 DOI: 10.18632/aging.102955] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
We investigated the protective effects and mechanism of action of metformin on high glucose-induced smooth muscle cell proliferation and migration. Vascular smooth muscle cells (VSMCs) were subjected to a series of concentrations (0-10 mM) of metformin. CCK-8, wound healing, and transwell assays were performed. Correlations between metformin concentration and high-mobility group box 1 (HMGB1) and miR-142-3p levels were assessed. In addition, miR-142-3p mimic and siRNA were used to investigate VSMC migration in the presence or absence of metformin. In the high-glucose condition, metformin decreased cell growth and inhibited cell migration. HMGB1 gene expression correlated negatively with metformin concentration, whereas miR-142-3p expression correlated positively with metformin concentration. In addition, mimic-induced miR-142-3p elevation resulted in decreased HMGB1 and LC3II levels and elevated p62 levels in the high-glucose condition, whereas miR-142-3p knockdown had the reverse effects, and metformin abolished those effects. Metformin inhibits high glucose–induced VSMC hyperproliferation and increased migration by inducing miR-142-3p-mediated inhibition of HMGB1 expression via the HMGB1-autophagy related pathway.
Collapse
Affiliation(s)
- Dong-Ming Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Jiangsu, China
| | - Feng Ran
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Jiangsu, China
| | - Hai-Zhen Ni
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu, China.,Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Li-Li Sun
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu, China
| | - Lun Xiao
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Jiangsu, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Jiangsu, China
| | - Wen-Dong Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Jiangsu, China
| |
Collapse
|
19
|
Guo J, Xiang Q, Xin Y, Huang Y, Zou G, Liu T. miR-544 promotes maturity and antioxidation of stem cell-derived endothelial like cells by regulating the YY1/TET2 signalling axis. Cell Commun Signal 2020; 18:35. [PMID: 32127022 PMCID: PMC7055126 DOI: 10.1186/s12964-019-0504-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation and oxidative stress induced by oxidized low density lipoprotein are the main causes of vascular endothelial injury and atherosclerosis. Endothelial cells are important for the formation and repair of blood vessels. However, the detailed mechanism underlying the regulation of maturity and antioxidation of stem cell-derived endothelial like cells remains unclear. Besides, YY1 and TET2 play a key role on epigenetic modifications of proliferation and differentiation of stem cells. However, the regulatory mechanism of epigenetic modification induced by YY1 and TET2 on stem cells to iECICs is also not clear. Aim Here, we want to investigate detailed mechanism underlying the regulation of maturity and antioxidation of stem cell-derived iECICs by by YY1 and TET2. Methods The qPCR, Western blot, immunohistochemical staining and flow cytometric analysis were used to analyze the expression level of each gene. Luciferase reporter assay was used to detect the binding sites between microRNA and target genes. The hMeDIP-sequence, ChIP-PCR and dot blot were used to detect the 5-hydroxymethylcytosine modification of genomic DNA. ATP, ROS, SOD assay were used to evaluate of oxidative stress in cells. The iECICs transplantation group The ApoE−/− mice were intravenous injected of iECICs to evaluation of therapeutic effect in vivo. Results Our studies have found that as the differentiation of human amniotic epithelial cells (HuAECs) is directed towards iECICs in vitro, the expression levels of vascular endothelial cell markers and miR-544 increase significantly and the expression level of YinYang 1 (YY1) decreases significantly. The luciferase reporter assay suggests that Yy1 is one of the targets of miR-544. Hydroxymethylated DNA immunoprecipitation sequencing showed that compared with HuAECs, iECICs had 174 protein-coding DNA sequences with extensive hydroxymethylation modifications. Overexpression of miR-544 inhibits the activity of the YY1/PRC2 complex and promotes the transcription and expression of the ten-eleven translocation 2 (TET2) gene, thereby activating the key factors of the serotonergic synapse pathway, CACNA1F, and CYP2D6. In addition, it promotes ability of maturity, antioxidation and vascular formation in vitro. Meanwhile, transplantation for miR-544-iECICs can significantly relieve oxidative stress injury on ApoE−/− atherosclerotic mice in vivo. Conclusions miR-544 regulates the maturity and antioxidation of iECICs derived from HuAECs by regulating the YY1/TET2/serotonergic synapse signalling axis. Video abstract
Collapse
Affiliation(s)
- Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA
| | - Qiuling Xiang
- Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yaojie Xin
- Department of Otolaryngology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongyi Huang
- Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA
| | - Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Te Liu
- Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA. .,Shanghai Geriatric Institute of Chinese Medicine, University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China.
| |
Collapse
|
20
|
Xu P, Xu H, Cheng HS, Chan HH, Wang RYL. MicroRNA 876-5p modulates EV-A71 replication through downregulation of host antiviral factors. Virol J 2020; 17:21. [PMID: 32024541 PMCID: PMC7003331 DOI: 10.1186/s12985-020-1284-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Human enterovirus 71 (EV-A71) is a non-enveloped virus that has a single stranded positive sense RNA genome. In a previous study, we showed that miR-876-5p upregulation was observed in the serum of patients with severe EV-A71 infection. Micro-876-5p (miR-876-5p) is a circulating miRNA that can be identified to modulate EV-A71 infections through both in vitro and in vivo studies. However, the regulatory mechanisms that involve miR-876-5p in the EV-A71 infection cycle remain unclear. METHODS We demonstrated that miR-876-5p facilitated EV-A71 replication and expression by overexpression and knocking-down of miR-876-5p through the transfection of miR-876-5p plasmid and miR-876-5p inhibitor. Although miR-876-5p suppressed CREB5 expression, luciferase reporter assay confirmed this. We also evaluated the role of miR-876-5p in the EV-A71 infection cycle by CREB5 mediated by transfection with an anti-miR-876-5P inhibitor or in combination with an si-CREB5 plasmid. RESULTS MicroR-876-5p was upregulated in EV-A71-infected neuroblastoma cells. Overexpression of miR-876-5p or knockdown of cyclic-AMP responsive element binding protein 5 (CREB5) promoted EV-A71 replication. The downregulation of miR-876-5p inhibited the accumulation of viral RNA and the production of viral proteins. Interestingly, CREB5 overexpression also suppressed EV-A71 replication. Our in vitro studies reveal that miR-876-5p directly targets CREB5. Finally, downregulation of CREB5 protein abated the inhibitory effect of anti-miR-876-5p and induced inhibitory effect of EV-A71 replication. CONCLUSIONS Our results suggest that intracellular miR-876-5p promotes EV-A71 replication indirectly by targeting the host CREB5 protein.
Collapse
Affiliation(s)
- Peng Xu
- Xiangyang No.1 People's Hospital and Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Hwa Xu
- College of Resources and Environment Qingdao Agricultural Unviersity, Qingdao, China
| | - Hsu Sheng Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Han-Hsiang Chan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Robert Y L Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan. .,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children's Hospital, Linkou, 33305, Taiwan.
| |
Collapse
|