1
|
Emerging Therapy for Diabetic Cardiomyopathy: From Molecular Mechanism to Clinical Practice. Biomedicines 2023; 11:biomedicines11030662. [PMID: 36979641 PMCID: PMC10045486 DOI: 10.3390/biomedicines11030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Diabetic cardiomyopathy is characterized by abnormal myocardial structure or performance in the absence of coronary artery disease or significant valvular heart disease in patients with diabetes mellitus. The spectrum of diabetic cardiomyopathy ranges from subtle myocardial changes to myocardial fibrosis and diastolic function and finally to symptomatic heart failure. Except for sodium–glucose transport protein 2 inhibitors and possibly bariatric and metabolic surgery, there is currently no specific treatment for this distinct disease entity in patients with diabetes. The molecular mechanism of diabetic cardiomyopathy includes impaired nutrient-sensing signaling, dysregulated autophagy, impaired mitochondrial energetics, altered fuel utilization, oxidative stress and lipid peroxidation, advanced glycation end-products, inflammation, impaired calcium homeostasis, abnormal endothelial function and nitric oxide production, aberrant epidermal growth factor receptor signaling, the activation of the renin–angiotensin–aldosterone system and sympathetic hyperactivity, and extracellular matrix accumulation and fibrosis. Here, we summarize several important emerging treatments for diabetic cardiomyopathy targeting specific molecular mechanisms, with evidence from preclinical studies and clinical trials.
Collapse
|
2
|
Artasensi A, Angeli A, Lammi C, Bollati C, Gervasoni S, Baron G, Matucci R, Supuran CT, Vistoli G, Fumagalli L. Discovery of a Potent and Highly Selective Dipeptidyl Peptidase IV and Carbonic Anhydrase Inhibitor as "Antidiabesity" Agents Based on Repurposing and Morphing of WB-4101. J Med Chem 2022; 65:13946-13966. [PMID: 36201615 PMCID: PMC9937538 DOI: 10.1021/acs.jmedchem.2c01192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The management of patients with type 2 diabetes mellitus (T2DM) is shifting from cardio-centric to weight-centric or, even better, adipose-centric treatments. Considering the downsides of multidrug therapies and the relevance of dipeptidyl peptidase IV (DPP IV) and carbonic anhydrases (CAs II and V) in T2DM and in the weight loss, we report a new class of multitarget ligands targeting the mentioned enzymes. We started from the known α1-AR inhibitor WB-4101, which was progressively modified through a tailored morphing strategy to optimize the potency of DPP IV and CAs while losing the adrenergic activity. The obtained compound 12 shows a satisfactory DPP IV inhibition with a good selectivity CA profile (DPP IV IC50: 0.0490 μM; CA II Ki 0.2615 μM; CA VA Ki 0.0941 μM; CA VB Ki 0.0428 μM). Furthermore, its DPP IV inhibitory activity in Caco-2 and its acceptable pre-ADME/Tox profile indicate it as a lead compound in this novel class of multitarget ligands.
Collapse
Affiliation(s)
- Angelica Artasensi
- Department
of Pharmaceutical Sciences “DISFARM”, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milan, Italy
| | - Andrea Angeli
- Department
of Pharmaceutical Sciences “NEUROFARBA”, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Carmen Lammi
- Department
of Pharmaceutical Sciences “DISFARM”, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milan, Italy
| | - Carlotta Bollati
- Department
of Pharmaceutical Sciences “DISFARM”, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milan, Italy
| | - Silvia Gervasoni
- Department
of Pharmaceutical Sciences “DISFARM”, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milan, Italy,Department
of Physics, Citt. Universitaria, University
of Cagliari, I-09042 Cagliari, Monserrato, Italy
| | - Giovanna Baron
- Department
of Pharmaceutical Sciences “DISFARM”, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milan, Italy
| | - Rosanna Matucci
- Department
of Pharmacology and Toxicology “NEUROFARBA”, University of Florence, Viale Pieraccini 6, 50134 Florence, Italy
| | - Claudiu T. Supuran
- Department
of Pharmaceutical Sciences “NEUROFARBA”, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Giulio Vistoli
- Department
of Pharmaceutical Sciences “DISFARM”, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milan, Italy
| | - Laura Fumagalli
- Department
of Pharmaceutical Sciences “DISFARM”, Università degli Studi di Milano, via Mangiagalli 25, I-20133 Milan, Italy,. Phone: +39-02-50319303
| |
Collapse
|
3
|
Aspatwar A, Tolvanen MEE, Barker H, Syrjänen L, Valanne S, Purmonen S, Waheed A, Sly WS, Parkkila S. Carbonic Anhydrases in Metazoan Model Organisms: Molecules, Mechanisms, and Physiology. Physiol Rev 2022; 102:1327-1383. [PMID: 35166161 DOI: 10.1152/physrev.00018.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, β, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and β-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs but also contribute to a plethora of previously undescribed functions.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Leo Syrjänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Susanna Valanne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Purmonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
4
|
Setterberg IE, Le C, Frisk M, Li J, Louch WE. The Physiology and Pathophysiology of T-Tubules in the Heart. Front Physiol 2021; 12:718404. [PMID: 34566684 PMCID: PMC8458775 DOI: 10.3389/fphys.2021.718404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
In cardiomyocytes, invaginations of the sarcolemmal membrane called t-tubules are critically important for triggering contraction by excitation-contraction (EC) coupling. These structures form functional junctions with the sarcoplasmic reticulum (SR), and thereby enable close contact between L-type Ca2+ channels (LTCCs) and Ryanodine Receptors (RyRs). This arrangement in turn ensures efficient triggering of Ca2+ release, and contraction. While new data indicate that t-tubules are capable of exhibiting compensatory remodeling, they are also widely reported to be structurally and functionally compromised during disease, resulting in disrupted Ca2+ homeostasis, impaired systolic and/or diastolic function, and arrhythmogenesis. This review summarizes these findings, while highlighting an emerging appreciation of the distinct roles of t-tubules in the pathophysiology of heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF). In this context, we review current understanding of the processes underlying t-tubule growth, maintenance, and degradation, underscoring the involvement of a variety of regulatory proteins, including junctophilin-2 (JPH2), amphiphysin-2 (BIN1), caveolin-3 (Cav3), and newer candidate proteins. Upstream regulation of t-tubule structure/function by cardiac workload and specifically ventricular wall stress is also discussed, alongside perspectives for novel strategies which may therapeutically target these mechanisms.
Collapse
Affiliation(s)
- Ingunn E Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Moss FJ, Boron WF. Carbonic anhydrases enhance activity of endogenous Na-H exchangers and not the electrogenic Na/HCO 3 cotransporter NBCe1-A, expressed in Xenopus oocytes. J Physiol 2020; 598:5821-5856. [PMID: 32969493 PMCID: PMC7747792 DOI: 10.1113/jp280143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS According to the HCO 3 - metabolon hypothesis, direct association of cytosolic carbonic anhydrases (CAs) with the electrogenic Na/HCO3 cotransporter NBCe1-A speeds transport by regenerating/consuming HCO 3 - . The present work addresses published discrepancies as to whether cytosolic CAs stimulate NBCe1-A, heterologously expressed in Xenopus oocytes. We confirm the essential elements of the previous experimental observations, taken as support for the HCO 3 - metabolon hypothesis. However, using our own experimental protocols or those of others, we find that NBCe1-A function is unaffected by cytosolic CAs. Previous conclusions that cytosolic CAs do stimulate NBCe1-A can be explained by an unanticipated stimulatory effect of the CAs on an endogenous Na-H exchanger. Theoretical analyses show that, although CAs could stimulate non- HCO 3 - transporters (e.g. Na-H exchangers) by accelerating CO2 / HCO 3 - -mediated buffering of acid-base equivalents, they could not appreciably affect transport rates of NBCe1 or other transporters carrying HCO 3 - , CO 3 = , or NaCO 3 - ion pairs. ABSTRACT The HCO 3 - metabolon hypothesis predicts that cytosolic carbonic anhydrase (CA) binds to NBCe1-A, promotes HCO 3 - replenishment/consumption, and enhances transport. Using a short step-duration current-voltage (I-V) protocol with Xenopus oocytes expressing eGFP-tagged NBCe1-A, our group reported that neither injecting human CA II (hCA II) nor fusing hCA II to the NBCe1-A carboxy terminus affects background-subtracted NBCe1 slope conductance (GNBC ), which is a direct measure of NBCe1-A activity. Others - using bovine CA (bCA), untagged NBCe1-A, and protocols keeping holding potential (Vh ) far from NBCe1-A's reversal potential (Erev ) for prolonged periods - found that bCA increases total membrane current (ΔIm ), which apparently supports the metabolon hypothesis. We systematically investigated differences in the two protocols. In oocytes expressing untagged NBCe1-A, injected with bCA and clamped to -40 mV, CO2 / HCO 3 - exposures markedly decrease Erev , producing large transient outward currents persisting for >10 min and rapid increases in [Na+ ]i . Although the CA inhibitor ethoxzolamide (EZA) reduces both ΔIm and d[Na+ ]i /dt, it does not reduce GNBC . In oocytes not expressing NBCe1-A, CO2 / HCO 3 - triggers rapid increases in [Na+ ]i that both hCA II and bCA enhance in concentration-dependent manners. These d[Na+ ]i /dt increases are inhibited by EZA and blocked by EIPA, a Na-H exchanger (NHE) inhibitor. In oocytes expressing untagged NBCe1-A and injected with bCA, EIPA abolishes the EZA-dependent decreases in ΔIm and d[Na+ ]i /dt. Thus, CAs/EZA produce their ΔIm and d[Na+ ]i /dt effects not through NBCe1-A, but endogenous NHEs. Theoretical considerations argue against a CA stimulation of HCO 3 - transport, supporting the conclusion that an NBCe1-A- HCO 3 - metabolon does not exist in oocytes.
Collapse
Affiliation(s)
- Fraser J. Moss
- Department of Physiology and Biophysics, Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Walter F. Boron
- Department of Physiology and Biophysics, Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine and Department of Biochemistry Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Becker HM, Deitmer JW. Transport Metabolons and Acid/Base Balance in Tumor Cells. Cancers (Basel) 2020; 12:cancers12040899. [PMID: 32272695 PMCID: PMC7226098 DOI: 10.3390/cancers12040899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Solid tumors are metabolically highly active tissues, which produce large amounts of acid. The acid/base balance in tumor cells is regulated by the concerted interplay between a variety of membrane transporters and carbonic anhydrases (CAs), which cooperate to produce an alkaline intracellular, and an acidic extracellular, environment, in which cancer cells can outcompete their adjacent host cells. Many acid/base transporters form a structural and functional complex with CAs, coined "transport metabolon". Transport metabolons with bicarbonate transporters require the binding of CA to the transporter and CA enzymatic activity. In cancer cells, these bicarbonate transport metabolons have been attributed a role in pH regulation and cell migration. Another type of transport metabolon is formed between CAs and monocarboxylate transporters, which mediate proton-coupled lactate transport across the cell membrane. In this complex, CAs function as "proton antenna" for the transporter, which mediate the rapid exchange of protons between the transporter and the surroundings. These transport metabolons do not require CA catalytic activity, and support the rapid efflux of lactate and protons from hypoxic cancer cells to allow sustained glycolytic activity and cell proliferation. Due to their prominent role in tumor acid/base regulation and metabolism, transport metabolons might be promising drug targets for new approaches in cancer therapy.
Collapse
Affiliation(s)
- Holger M. Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|