1
|
Liang Y, Wang Y, Tan J, Shu J, Xu Y, Wang M, Yang S, Ma L. Homocysteine affects macrophage polarization by altering m6A methylation of scavenger receptors CD209 and CD163L1. Epigenetics 2024; 19:2437272. [PMID: 39627020 PMCID: PMC11622620 DOI: 10.1080/15592294.2024.2437272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by fatty plaque deposits on artery walls. Elevated plasma homocysteine (Hcy) levels are an independent risk factor for atherosclerosis. Research on the mechanism by which Hcy promotes atherosclerosis has gradually turned to epigenetic inheritance, but the correlation between Hcy and m6A (N6-methyladenosine) modification has not been reported. In this study, MeRIP-seq was performed on macrophages and Hcy-treated macrophages. GO and KEGG analyses were used to perform functional analysis of differentially methylated genes. qRT-PCR and western blot were taken to determine the expression of CD209, CD163L1, proinflammatory, and anti-inflammatory factors. Flow cytometry was used to detect the proportion of M2 macrophages. The results showed that after Hcy treatment, the overall m6A methylation of macrophages was down-regulated, and 856 differential methylation peaks were annotated to 781 genes. These included CD209 and CD163L1, whose m6A methylation was inhibited after treatment with Hcy. In addition, mRNA and protein expressions of CD209 and CD163L1 were also inhibited after Hcy treatment. Overexpression of CD209 or CD163L1 prevents the Hcy-induced decrease in the proportion of M2 macrophages. This article identified changes in the modification level of m6A in macrophages by Hcy and revealed the possible mechanism by which Hcy induces macrophage polarization.
Collapse
Affiliation(s)
- Yu Liang
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Yongbo Wang
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Jia Tan
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Jingxuan Shu
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Ya Xu
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Mingyuan Wang
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Shengjun Yang
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Linna Ma
- Department of Medical Laboratory Technique, Kunming Medical University Haiyuan College, Kunming, Yunnan, P.R. China
| |
Collapse
|
2
|
Ding N, Ma S, Chang Q, Xie L, Li G, Hao Y, Xiong J, Yang A, Yang X, Jiang Y, Zhang H. Novel long noncoding lncARF mediated hyperhomocysteinemia-induced atherosclerosis via autophagy inhibition in foam cells. J Adv Res 2024:S2090-1232(24)00373-4. [PMID: 39214417 DOI: 10.1016/j.jare.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Homocysteine (Hcy) is well recognized to be an independent risk factor for atherosclerosis. Long non-coding RNAs (lncRNAs) are emerging regulators of pathophysiological processes including atherosclerosis, while the underlying mechanisms of its involvement in Hcy induced-atherosclerosis remain largely unknown. OBJECTIVES The primary aim of this study is to assess the role of lncARF (autophagy-related factor induced by Hcy) in Hcy induced-atherosclerosis and related mechanism. METHODS RNA sequencing of foam cells treated with Hcy revealed a novel specific long noncoding RNA called lncARF. Locked nucleic acid gapmeRs-mediated lncARF knockdown was used to explore the role of lncARF both in vivo and in vitro. Mass spectrometry, RNA pull-down and RNA immunoprecipitation (RIP) assays were employed to uncover a mechanistic role of lncARF. Mass array assay and chromatin immunoprecipitation (ChIP) were used to detect the transcriptional activation of lncARF mediated by transcription factor. Clinically, receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic value of lncARF in atherosclerotic patients with hyperhomocysteinemia (HHcy). RESULTS We observed that the expression of lncARF was substantially upregulated in atherosclerotic plaques, and knockdown of lncARF decreased the formation of atherosclerotic lesions by promoting autophagy in foam cells. Mechanistically, lncARF physically binds to RRAGD and inhibits its ubiquitination, further activating the PI3K/Akt and MAPK signaling pathways. Moreover, in vitro experiments showed that transcription factor FosB inhibited the binding of DNMT1 at the lncARF promoter, leading to transcriptional activation through DNA hypomethylation. Clinically, lncARF expression was positively correlated with serum Hcy levels, and it could distinguish atherosclerotic patients with HHcy with a high area under the ROC curve, sensitivity and specificity. CONCLUSIONS Our study highlights the mechanisms of lncARF in protecting against the development of atherosclerosis involving the epigenetic modifications and RRAGD/PI3K/Akt and RRAGD/MAPK signaling pathways, which may provide novel diagnostic biomarkers to improve atherosclerosis treatment.
Collapse
Affiliation(s)
- Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Qingning Chang
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Jiantuan Xiong
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoling Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Huiping Zhang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Hospital, Changsha 410008, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
3
|
Ding J, Fayyaz AI, Ding Y, Liang D, Luo M. Role of Specificity Protein 1 (SP1) in Cardiovascular Diseases: Pathological Mechanisms and Therapeutic Potentials. Biomolecules 2024; 14:807. [PMID: 39062521 PMCID: PMC11274404 DOI: 10.3390/biom14070807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
In mammals, specificity protein 1 (SP1) was the first Cys2-His2 zinc finger transcription factor to be isolated within the specificity protein and Krüppel-like factor (Sp/KLF) gene family. SP1 regulates gene expression by binding to Guanine-Cytosine (GC)-rich sequences on promoter regions of target genes, affecting various cellular processes. Additionally, the activity of SP1 is markedly influenced by posttranslational modifications, such as phosphorylation, acetylation, glycosylation, and proteolysis. SP1 is implicated in the regulation of apoptosis, cell hypertrophy, inflammation, oxidative stress, lipid metabolism, plaque stabilization, endothelial dysfunction, fibrosis, calcification, and other pathological processes. These processes impact the onset and progression of numerous cardiovascular disorders, including coronary heart disease, ischemia-reperfusion injury, cardiomyopathy, arrhythmia, and vascular disease. SP1 emerges as a potential target for the prevention and therapeutic intervention of cardiac ailments. In this review, we delve into the biological functions, pathophysiological mechanisms, and potential clinical implications of SP1 in cardiac pathology to offer valuable insights into the regulatory functions of SP1 in heart diseases and unveil novel avenues for the prevention and treatment of cardiovascular conditions.
Collapse
Affiliation(s)
- Jie Ding
- School of Medicine, Tongji University, Shanghai 200092, China; (J.D.); (D.L.)
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Aminah I. Fayyaz
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.I.F.); (Y.D.)
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.I.F.); (Y.D.)
| | - Dandan Liang
- School of Medicine, Tongji University, Shanghai 200092, China; (J.D.); (D.L.)
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Ming Luo
- School of Medicine, Tongji University, Shanghai 200092, China; (J.D.); (D.L.)
| |
Collapse
|
4
|
Xiao K, Xv Z, Liu L, Yang B, Cao H, Wang J, Xv Y, Li Q, Hou Y, Feng F, Wang J, Feng H. Relationship between homocysteine and chronic total coronary occlusion: a cross-sectional study from southwest China. Cardiol Young 2024; 34:740-747. [PMID: 37811581 DOI: 10.1017/s1047951123003414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Chronic total coronary occlusion is among the most complex coronary artery diseases. Elevated homocysteine is a risk factor for coronary artery diseases. However, few studies have assessed the relationship between homocysteine and chronic total coronary occlusion. METHODS 1295 individuals from Southwest China were enrolled in the study. Chronic total coronary occlusion was defined as complete occlusion of coronary artery for more than three months. Homocysteine was divided into quartiles according to its level. Univariate and multivariate logistic regression models, receiver operating characteristic curves, and subgroup analysis were applied to assess the relationship between homocysteine and chronic total coronary occlusion. RESULTS Subjects in the higher homocysteine quartile had a higher rate of chronic total coronary occlusion (P < 0.001). After adjustment, the odds ratio for chronic total coronary occlusion in the highest quartile of homocysteine compared with the lowest was 1.918 (95% confidence interval 1.237-2.972). Homocysteine ≥ 15.2 μmol/L was considered an independent indicator of chronic total coronary occlusion (odds ratio 1.53, 95% confidence interval 1.05-2.23; P = 0.0265). The area under the receiver operating characteristic curve was 0.659 (95% confidence interval, 0.618-0.701; P < 0.001). Stronger associations were observed in elderly and in those with hypertension and diabetes. CONCLUSIONS Elevated homocysteine is significantly associated with chronic total coronary occlusion, particularly in elderly and those with hypertension and diabetes.
Collapse
Affiliation(s)
- Kaiyong Xiao
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Zhe Xv
- Department of Pediatric Medicine, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Liang Liu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, SX, China
| | - Bin Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, SX, China
| | - Huili Cao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, SX, China
| | - Jianping Wang
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Yuling Xv
- Sterilization Supply Center, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Qingrui Li
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Yulin Hou
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Feifei Feng
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Jie Wang
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, SC, China
| | - Hui Feng
- Medical Laboratory Center, Guangyuan Central Hospital, Guangyuan, SC, China
| |
Collapse
|
5
|
Wang X, Gui N, Ma X, Zeng Y, Mo T, Zhang M. Proliferation, migration and phenotypic transformation of VSMC induced via Hcy related to up-expression of WWP2 and p-STAT3. PLoS One 2024; 19:e0296359. [PMID: 38166045 PMCID: PMC10760878 DOI: 10.1371/journal.pone.0296359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/10/2023] [Indexed: 01/04/2024] Open
Abstract
To provide a theoretical basis for the prevention and treatment of atherosclerosis (AS), the current study aimed to investigate the mechanism underlying the effect of homocysteine (Hcy) on regulating the proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMC) via sirtuin-1 (SIRT1)/signal transducer and activator of transcription 3 (STAT3) through Nedd4-like E3 ubiquitin-protein ligase WWP2 (WWP2). Here, Based on the establishment of ApoE-/- mouse models of high Hcy As and the model of Hcy stimulation of VSMC in vitro to observe the interaction between WWP2 and STAT3 and its effect on the proliferation, migration, and phenotypic transformation of Hcy-induced VSMC, which has not been previously reported. This study revealed that WWP2 could promote the proliferation, migration, and phenotype switch of Hcy-induced VSMC by up-regulating the phosphorylation of SIRT1/STAT3 signaling. Furthermore, Hcy might up-regulate WWP2 expression by inhibiting histone H3K27me3 expression through up-regulated UTX. These data suggest that WWP2 is a novel and important regulator of Hcy-induced VSMC proliferation, migration, and phenotypic transformation.
Collapse
Affiliation(s)
- Xiuyu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, Ningxia, P.R. China
| | - Na Gui
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Xing Ma
- Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, Ningxia, P.R. China
| | - Yue Zeng
- Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, Ningxia, P.R. China
| | - Tingrun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Minghao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, Ningxia, P.R. China
| |
Collapse
|
6
|
Lee AS, Kim Y, Hur HJ, Lee SH, Sung MJ. Chrysanthemum coronarium L. Extract Attenuates Homocysteine-Induced Vascular Inflammation in Vascular Smooth Muscle Cells. J Med Food 2023; 26:869-876. [PMID: 38010869 DOI: 10.1089/jmf.2023.k.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Hyperhomocysteinemia is a main risk factor for phenotypic modulation of vascular smooth muscle cells (VSMCs) and atherosclerosis. Phenotypic switching and proliferation of VSMCs are related to the progression of vascular inflammation. Chrysanthemum coronarium L. is a leafy vegetable with various biological functions, such as antioxidative, anti-inflammatory, and antiproliferative effects. In this study, we aimed to identify the mechanisms underlying the therapeutic and preventive effects of C. coronarium L. extract (CC) in regulating homocysteine (Hcy)-induced vascular inflammation in human aortic VSMCs. CC did not exhibit cytotoxicity and inhibited Hcy-stimulated VSMC proliferation and migration. In addition, CC promoted Hcy-induced expression of VSMC contractile phenotype proteins, including alpha-smooth muscle actin, calponin, and smooth muscle 22α. CC also decreased Hcy-induced accumulation of reactive oxygen species and expression of inflammatory markers nicotinamide adenine dinucleotide phosphate oxidase-4 and soluble epoxide hydrolase. These results showed that CC attenuates Hcy-induced inflammatory responses, highlighting its potential as a therapeutic or preventive target for Hcy-induced vascular inflammation.
Collapse
Affiliation(s)
- Ae Sin Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yiseul Kim
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Haeng Jeon Hur
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sang-Hee Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Mi Jeong Sung
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
7
|
Wang X, Ma X, Zeng Y, Xu L, Zhang M. Hypermethylation of the CTRP9 promoter region promotes Hcy induced VSMC lipid deposition and foam cell formation via negatively regulating ER stress. Sci Rep 2023; 13:19438. [PMID: 37945738 PMCID: PMC10636064 DOI: 10.1038/s41598-023-46981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
To provide a theoretical basis for the prevention and treatment of atherosclerosis (As), the current study aimed to investigate the mechanism underlying the effect of homocysteine (Hcy) on inducing the lipid deposition and foam cell formation of the vascular smooth muscle cell (VSMC) via C1q/Tumor necrosis factor-related protein9 (CTRP9) promoter region Hypermethylation negative regulating endoplasmic reticulum stress (ERs). Therefore, apolipoprotein E deficient (ApoE-/-) mice were randomly divided into the control [ApoE-/- + normal diet (NC)] and high methionine [ApoE-/- + (normal diet supplemented with 1.7% methionine (HMD)] groups (n = 6 mice/group). Following feeding for 15 weeks, the serum levels of Homocysteine (Hcy), total cholesterol (TC), and triglyceride (TG) were measured using an automatic biochemical analyzer. HE and oil red O staining were performed on the aorta roots to observe the pathological changes. Additionally, immunofluorescence staining was performed to detect the protein expression levels of CTRP9, glucose-regulated protein 78 kD (GRP78), phosphorylated protein kinase RNA-like ER kinase (p-PERK), activating transcription factor 6a (ATF6a), phosphorylated inositol-requiring enzyme-1α (p-IRE1α), sterol regulatory element binding proteins-1c (SREBP1c) and sterol regulatory element binding proteins-2 (SREBP2) in VSMC derived from murine aortic roots. In vitro, VSMC was stimulated with 100 μmol/l Hcy. After transfection of plasmids with overexpression and interference of CTRP9, ERs agonist (TM) and inhibitor (4-PBA) were given to stimulate VSMC cells. HE staining and oil red O staining were used to observe the effect of Hcy stimulation on lipid deposition in VSMC. Additionally, The mRNA and protein expression levels of CTRP9, GRP78, PERK, ATF6a, IRE1α, SREBP1c, and SREBP2 in VSMC were detected by RT-qPCR and western blot analysis, respectively. Finally, The methylation modification of the CTRP9 promoter region has been studied. The NCBI database was used to search the promoter region of the CTRP9 gene, and CpG Island was used to predict the methylation site. After Hcy stimulation of VSMC, overexpression of DNMT1, and intervention with 5-Azc, assess the methylation level of the CTRP9 promoter through bisulfite sequencing PCR (BSP). The results showed that the serum levels of Hcy, TC, and TG in the ApoE-/- + HMD group were significantly increased compared with the ApoE-/- + NC group. In addition, HE staining and oil red O staining showed obvious AS plaque formation in the vessel wall, and a large amount of fat deposition in VSMC, thus indicating that the hyperhomocysteinemia As an animal model was successfully established. Furthermore, CTRP9 were downregulated, while GRP78, p-PERK, ATF6a, p-IRE1α, SREBP1c, SREBP2 was upregulated in aortic VSMC in the ApoE-/- + HMD group. Consistent with the in vivo results, Hcy can inhibit the expression of CTRP9 in VSMC and induce ERs and lipid deposition in VSMC. Meanwhile, the increased expression of CTRP9 can reduce ERs and protect the lipid deposition in Hcy induced VSMC. Furthermore, ERs can promote Hcy induced VSMC lipid deposition, inhibition of ERs can reduce Hcy induced VSMC lipid deposition, and CTRP9 may play a protective role in Hcy induced VSMC lipid deposition and foam cell transformation through negative regulation of ERs. In addition, The CTRP9 promoter in the Hcy group showed hypermethylation. At the same time as Hcy intervention, overexpression of DNMT1 increases the methylation level of the CTRP9 promoter, while 5-Azc can reduce the methylation level of the CTRP9 promoter. Finally, Hcy can up-regulate the expression of DNMT1 and down-regulate the expression of CTRP9. After overexpression of DNMT1, the expression of CTRP9 is further decreased. After 5-Azc inhibition of DNMT1, the expression of DNMT1 decreases, while the expression of CTRP9 increases. It is suggested that the molecular mechanism of Hcy inhibiting the expression of CTRP9 is related to the hypermethylation of the CTRP9 promoter induced by Hcy and regulated by DNMT1. 5-Azc can inhibit the expression of DNMT1 and reverse the regulatory effect of DNMT1 on CTRP9. Overall, the results of the present study suggested that Hcy induces DNA hypermethylation in the CTRP9 promoter region by up-regulating DNMT1 expression, and negatively regulates ERs mediated VSMC lipid deposition and foam cell formation. CTRP9 may potentially be a therapeutic target in the treatment of hyperhomocysteinemia and As.
Collapse
Affiliation(s)
- Xiuyu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia, People's Republic of China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Xing Ma
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Yue Zeng
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Lingbo Xu
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Minghao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia, People's Republic of China.
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Yinchuan, 750004, Ningxia, People's Republic of China.
| |
Collapse
|
8
|
Luo X, Liu M, Wang S, Chen Y, Bao X, Lv Y, Zhang S, Xu B, Weng X, Bai X, Zeng M, Zhao C, Li J, Jia H, Yu B. Combining metabolomics and OCT to reveal plasma metabolic profiling and biomarkers of plaque erosion and plaque rupture in STEMI patients. Int J Cardiol 2023; 390:131223. [PMID: 37517782 DOI: 10.1016/j.ijcard.2023.131223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Accepted: 02/26/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE Plaque erosion (PE) and plaque rupture (PR) are the main subtypes of ST-segment elevation myocardial infarction (STEMI), the differences of metabolic patterns between PE and PR remain largely unknown. METHODS 132 STEMI patients were divided into training set (PR, n = 36; PE, n = 36) and test set (PR, n = 30; PE, n = 30), the plasma from patients were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry. RESULTS We identified 56 and 28 differences in training and test set, respectively. Among these metabolites, it was found that docosahexaenoic acid (DHA), salicylic acid and proline were recognized in both tests. Receiver Operating Characteristic (ROC) analysis showed that the area under curve of docosahexaenoic acid (DHA) was 0.81 and 0.75 in training and test samples, respectively; proline was 0.67 and 0.74 in training and test samples, respectively; salicylic acid was 0.70 and 0.73 in training and test samples, respectively. CONCLUSIONS DHA, salicylic acid, and proline could be used as non-invasive biomarkers to differentiate PE and PR.
Collapse
Affiliation(s)
- Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Minghao Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Shengfang Wang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiaoyi Bao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Ying Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Shan Zhang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiuzhu Weng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiaoxuan Bai
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Ming Zeng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Chen Zhao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
9
|
Emon IM, Al-Qazazi R, Rauh MJ, Archer SL. The Role of Clonal Hematopoiesis of Indeterminant Potential and DNA (Cytosine-5)-Methyltransferase Dysregulation in Pulmonary Arterial Hypertension and Other Cardiovascular Diseases. Cells 2023; 12:2528. [PMID: 37947606 PMCID: PMC10650407 DOI: 10.3390/cells12212528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression without altering gene sequences in health and disease. DNA methyltransferases (DNMTs) are enzymes responsible for DNA methylation, and their dysregulation is both a pathogenic mechanism of disease and a therapeutic target. DNMTs change gene expression by methylating CpG islands within exonic and intergenic DNA regions, which typically reduces gene transcription. Initially, mutations in the DNMT genes and pathologic DNMT protein expression were found to cause hematologic diseases, like myeloproliferative disease and acute myeloid leukemia, but recently they have been shown to promote cardiovascular diseases, including coronary artery disease and pulmonary hypertension. We reviewed the regulation and functions of DNMTs, with an emphasis on somatic mutations in DNMT3A, a common cause of clonal hematopoiesis of indeterminant potential (CHIP) that may also be involved in the development of pulmonary arterial hypertension (PAH). Accumulation of somatic mutations in DNMT3A and other CHIP genes in hematopoietic cells and cardiovascular tissues creates an inflammatory environment that promotes cardiopulmonary diseases, even in the absence of hematologic disease. This review summarized the current understanding of the roles of DNMTs in maintenance and de novo methylation that contribute to the pathogenesis of cardiovascular diseases, including PAH.
Collapse
Affiliation(s)
- Isaac M. Emon
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| |
Collapse
|
10
|
Zhang Z, Li L, Shi H, Chen B, Li X, Zhang Y, Liu F, Wei W, Zhou Y, Liu K, Xia W, Gu X, Huang J, Tu S, Yin C, Shao A, Jiang L. Role of Circular RNAs in Atherosclerosis through Regulation of Inflammation, Cell Proliferation, Migration, and Apoptosis: Focus on Atherosclerotic Cerebrovascular Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1461. [PMID: 37629751 PMCID: PMC10456328 DOI: 10.3390/medicina59081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Atherosclerosis (AS) is a disease dangerous to human health and the main pathological cause of ischemic cardiovascular diseases. Although its pathogenesis is not fully understood, numerous basic and clinical studies have shown that AS is a chronic inflammatory disease existing in all stages of atherogenesis. It may be a common link or pathway in the pathogenesis of multiple atherogenic factors. Inflammation is associated with AS complications, such as plaque rupture and ischemic cerebral infarction. In addition to inflammation, apoptosis plays an important role in AS. Apoptosis is a type of programmed cell death, and different apoptotic cells have different or even opposite roles in the process of AS. Unlike linear RNA, circular RNA (circRNA) a covalently closed circular non-coding RNA, is stable and can sponge miRNA, which can affect the stages of AS by regulating downstream pathways. Ultimately, circRNAs play very important roles in AS by regulating inflammation, apoptosis, and some other mechanisms. The study of circular RNAs can provide new ideas for the prediction, prevention, and treatment of AS.
Collapse
Affiliation(s)
- Zheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Huanqing Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Biao Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Xiaoqin Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Yuyao Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Fei Liu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Wan Wei
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Yongji Zhou
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Keqin Liu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Wenqing Xia
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Xin Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China;
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, China;
| | - Congguo Yin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou 310009, China
| | - Lin Jiang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| |
Collapse
|
11
|
Zhang Z, Guo Q, Zhao Z, Nie M, Shi Q, Li E, Liu K, Yu H, Rao L, Li M. DNMT3B activates FGFR3-mediated endoplasmic reticulum stress by regulating PTPN2 promoter methylation to promote the development of atherosclerosis. FASEB J 2023; 37:e23085. [PMID: 37462502 DOI: 10.1096/fj.202300665r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Endoplasmic reticulum (ER) stress is closely associated with atherosclerosis (AS). Nevertheless, the regulatory mechanism of ER stress in endothelial cells during AS progression is unclear. Here, the role and regulatory mechanism of DNA (cytosine-5-)- methyltransferase 3 beta (DNMT3B) in ER stress during AS progression were investigated. ApoE-/- mice were fed with high fat diet to construct AS model in vivo. HE and Masson staining were performed to analyze histopathological changes and collagen deposition. HUVECs stimulated by ox-LDL were used as AS cellular model. Cell apoptosis was examined using flow cytometry. DCFH-DA staining was performed to examine ROS level. The levels of pro-inflammatory cytokines were assessed using ELISA. In addition, MSP was employed to detect PTPN2 promoter methylation level. Our results revealed that DNMT3B and FGFR3 were significantly upregulated in AS patient tissues, whereas PTPN2 was downregulated. PTPN2 overexpression attenuate ox-LDL-induced ER stress, inflammation and apoptosis in HUVECs and ameliorated AS symptoms in vivo. PTPN2 could suppress FGFR3 expression in ox-LDL-treated HUVECs, and FGFR3 knockdown inhibited ER stress to attenuate ox-LDL-induced endothelial cell apoptosis. DNMT3B could negatively regulate PTPN2 expression and positively FGFR2 expression in ox-LDL-treated HUVECs; DNMT3B activated FGFR2 expression by increasing PTPN2 promoter methylation level. DNMT3B downregulation repressed ox-LDL-induced ER stress, inflammation and cell apoptosis in endothelial cells, which was reversed by PTPN2 silencing. DNMT3B activated FGFR3-mediated ER stress by increasing PTPN2 promoter methylation level and suppressed its expression, thereby boosting ER stress to facilitate AS progression.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Quan Guo
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Zhenzhou Zhao
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Ming Nie
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Qingbo Shi
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - En Li
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Kaiyuan Liu
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Haosen Yu
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Lixin Rao
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Muwei Li
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| |
Collapse
|
12
|
Wu C, Duan X, Wang X, Wang L. Advances in the role of epigenetics in homocysteine-related diseases. Epigenomics 2023; 15:769-795. [PMID: 37718931 DOI: 10.2217/epi-2023-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Homocysteine has a wide range of biological effects. However, the specific molecular mechanism of its pathogenicity is still unclear. The diseases induced by hyperhomocysteinemia (HHcy) are called homocysteine-related diseases. Clinical treatment of HHcy is mainly through folic acid and B-complex vitamins, which are not effective in reducing the associated end point events. Epigenetics is the alteration of heritable genes caused by DNA methylation, histone modification, noncoding RNAs and chromatin remodeling without altering the DNA sequence. In recent years the role of epigenetics in homocysteine-associated diseases has been gradually discovered. This article summarizes the latest evidence on the role of epigenetics in HHcy, providing new directions for its prevention and treatment.
Collapse
Affiliation(s)
- Chengyan Wu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xulei Duan
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xuehui Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Libo Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
13
|
Xiao K, Chen Y, Xiao L, Sun H, He Z, Huang G, Chen L, Xv L, Peng L, Li J, Xv Y, Wang J. The relationship between hyperhomocysteinemia and total coronary artery occlusion: a cross-sectional study from Southwest China. Coron Artery Dis 2023; 34:138-145. [PMID: 36633332 DOI: 10.1097/mca.0000000000001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Increasing evidence points to hyperhomocysteinemia as an independent risk factor for coronary artery disease in addition to traditional cardiovascular risks, but few have studied the association between hyperhomocysteinemia and total coronary artery occlusion (TCAO). To understand the risk factors for TCAO, we investigated the potential relationship between hyperhomocysteinemia and TCAO, and the interactions between cardiovascular risk factors and hyperhomocysteinemia. METHODS A total of 890 adult patients from Southwest China participated in this cross-sectional study between February 2018 and February 2021. TCAO was defined as complete occlusion of more than one of the 15 coronary segments. Hyperhomocysteinemia was defined as serum homocysteine levels ≥15 μmol/L. Multivariable logistic regression models were used to determine the relationship between hyperhomocysteinemia and TCAO. The relationship between homocysteine as a continuous variable and TCAO was also analyzed. Subgroup analyses by sex, age, weight, smoking, hypertension, diabetes, and dyslipidemia were done, and interactions between subgroup variables and hyperhomocysteinemia were performed. RESULTS Individuals with hyperhomocysteinemia showed an increased risk for TCAO. The adjusted odds ratio for TCAO in individuals with hyperhomocysteinemia was 1.74 (95% confidence interval, 1.28-2.36). When analyzed as a continuous variable, homocysteine was associated with an increased risk for TCAO. Subgroup analysis showed that the association between hyperhomocysteinemia and TCAO was statistically significant in men, elderly, overweight, smokers, and non-diabetic people. Interaction analysis showed no significant interactions between hyperhomocysteinemia and group variables. CONCLUSIONS In Southwest China, hyperhomocysteinemia was significantly associated with TCAO. This association was particularly significant in men, elderly, overweight, smokers, and non-diabetic people.
Collapse
Affiliation(s)
- Kaiyong Xiao
- Department of Cardiology, Guangyuan Central Hospital, Lizhou District, Guangyuan, Sichuan
| | - Yuxiong Chen
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Dongcheng District, Beijing
| | - Lian Xiao
- Department of Cardiology, Guangyuan Central Hospital, Lizhou District, Guangyuan, Sichuan
| | - Hua Sun
- Department of Cardiology, Guangyuan Central Hospital, Lizhou District, Guangyuan, Sichuan
| | - Zhongwei He
- Department of Cardiology, Guangyuan Central Hospital, Lizhou District, Guangyuan, Sichuan
| | - Guan Huang
- Medical Laboratory Center, Guangyuan Central Hospital
| | - Lvhong Chen
- Department of Cardiology, Guangyuan Central Hospital, Lizhou District, Guangyuan, Sichuan
| | - Lei Xv
- Department of Cardiology, Guangyuan Central Hospital, Lizhou District, Guangyuan, Sichuan
| | - Ling Peng
- Department of Geriatrics, Guangyuan Central Hospital
| | - Juan Li
- Department of Cardiology, Guangyuan Central Hospital, Lizhou District, Guangyuan, Sichuan
| | - Yuling Xv
- Sterilization Supply Center, Guangyuan Central Hospital, Lizhou District, Guangyuan, Sichuan, P.R. China
| | - Jianping Wang
- Department of Cardiology, Guangyuan Central Hospital, Lizhou District, Guangyuan, Sichuan
| |
Collapse
|
14
|
Xie L, Ding N, Sheng S, Zhang H, Yin H, Gao L, Zhang H, Ma S, Yang A, Li G, Jiao Y, Shi Q, Jiang Y, Zhang H. Cooperation between NSPc1 and DNA methylation represses HOXA11 expression and promotes apoptosis of trophoblast cells during preeclampsia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1-13. [PMID: 36815373 PMCID: PMC10157525 DOI: 10.3724/abbs.2023012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence has shown that the apoptosis of trophoblast cells plays an important role in the pathogenesis of preeclampsia, and an intricate interplay between DNA methylation and polycomb group (PcG) protein-mediated gene silencing has been highlighted recently. Here, we provide evidence that the expression of nervous system polycomb 1 (NSPc1), a BMI1 homologous polycomb protein, is significantly elevated in trophoblast cells during preeclampsia, which accelerates trophoblast cell apoptosis. Since NSPc1 acts predominantly as a transcriptional inactivator that specifically represses HOXA11 expression in trophoblast cells during preeclampsia, we further show that NSPc1 is required for DNMT3a recruitment and maintenance of the DNA methylation in the HOXA11 promoter in trophoblast cells during preeclampsia. In addition, we find that the interplay of DNMT3a and NSPc1 represses the expression of HOXA11 and promotes trophoblast cell apoptosis. Taken together, these results indicate that the cooperation between NSPc1 and DNMT3a reduces HOXA11 expression in preeclampsia pathophysiology, which provides novel therapeutic approaches for targeted inhibition of trophoblast cell apoptosis during preeclampsia pathogenesis.
Collapse
Affiliation(s)
- Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Siqi Sheng
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Honghong Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - He Yin
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Clinical MedicineNingxia Medical UniversityYinchuan750004China
| | - Lina Gao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Clinical MedicineNingxia Medical UniversityYinchuan750004China
| | - Hui Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Yun Jiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Infectious DiseasesGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Qing Shi
- Department of GynecologyGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Huiping Zhang
- Department of Medical GeneticsMaternal and Child Health of Hunan ProvinceChangsha410008China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- General Hospital of Ningxia Medical UniversityYinchuan750004China
| |
Collapse
|
15
|
Wu H, Li Z, Yang Y, Zhang L, Yuan Y, Wang Y, Li G, Yang X. Rap1A accelerates homocysteine-induced ANA-1 cells inflammation via synergy of FoxO1 and DNMT3a. Cell Signal 2023; 106:110627. [PMID: 36791985 DOI: 10.1016/j.cellsig.2023.110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Abnormal elevation of homocysteine (Hcy) level accelerates atherosclerosis through promote macrophage inflammation, while the precise mechanisms remain to be well elucidated. Previous study revealed that Rap1A is involved in the development of atherosclerosis, but little is known regarding the regulation of macrophage inflammation induced by Hcy and its potential mechanisms. In the present study, we demonstrated that Hcy upregulates Rap1A expression and knockdown of Rap1A inhibited pro-inflammatory cytokines IL-6 and TNF-α levels in ANA-1 cells. Mechanistically, DNMT3a-mediated DNA hypomethylation of Rap1A promoter accelerates Hcy-induced ANA-1 cells inflammation. Furthermore, FoxO1 transcriptionally activate Rap1A by direct binding to its promoter. More importantly, Hcy could enhance FoxO1 interaction with DNMT3a and synergistically promote the expression of Rap1A resulting in accelerate ANA-1 cells inflammation. These data indicate that Rap1A is a novel and important regulator in Hcy-induced ANA-1 cells inflammation.
Collapse
Affiliation(s)
- Hui Wu
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan 75004, China
| | - Zhen Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
| | - Yali Yang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lin Zhang
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Yin Yuan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yanjia Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Guizhong Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoling Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
16
|
Jiang JF, Zhou ZY, Liu YZ, Wu L, Nie BB, Huang L, Zhang C. Role of Sp1 in atherosclerosis. Mol Biol Rep 2022; 49:9893-9902. [PMID: 35715606 DOI: 10.1007/s11033-022-07516-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Specificity protein (Sp) is a famous family of transcription factors including Sp1, Sp2 and Sp3. Sp1 is the first one of Sp family proteins to be characterized and cloned in mammalian. It has been proposed that Sp1 acts as a modulator of the expression of target gene through interacting with a series of proteins, especially with transcriptional factors, and thereby contributes to the regulation of diverse biological processes. Notably, growing evidence indicates that Sp1 is involved in the main events in the development of atherosclerosis (AS), such as inflammation, lipid metabolism, plaque stability, vascular smooth muscle cells (VSMCs) proliferation and endothelial dysfunction. This review is designed to provide useful clues to further understanding roles of Sp1 in the pathogenesis of AS, and may be helpful for the design of novel efficacious therapeutics agents targeting Sp1.
Collapse
Affiliation(s)
- Jie-Feng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Zheng-Yang Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Yi-Zhang Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Li Wu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Bin-Bin Nie
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China.
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
17
|
Liu C, Hua N, Zhang Y, Wang C. Predictive Significance of High-Sensitivity C-Reactive Protein Combined with Homocysteine for Coronary Heart Disease in Patients with Anxiety Disorders. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7657347. [PMID: 36051484 PMCID: PMC9427321 DOI: 10.1155/2022/7657347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Background Currently, there are few studies on biomarkers for predicting coronary heart disease (CHD) with anxiety disorders. Objective To explore risk factors and investigate the predictive value of common clinical peripheral blood indicators, such as high-sensitivity C-reactive protein (hs-CRP) and homocysteine (Hcy) for CHD patients with anxiety disorders. Methods One hundred fifty-three hospitalized patients with chest pain as the main symptom and a Hamilton Anxiety Scale score > 14 were recruited from October 2020 to September 2021 in the hospital. Then, they were divided into an anxiety disorder with CHD group (observation group, n = 64) and a simple anxiety disorder group (control group, n = 89), according to coronary angiography (CAG) findings. Patients' demographic and clinical messages were collected and compared. Diabetes mellitus and hypertension, body mass index (BMI), and peripheral blood interleukin-6 (IL-6), high-sensitivity C-reactive protein (hs-CRP), homocysteine (Hcy), fibrinogen, D-dimer, cortisol, and norepinephrine expression levels were compared. Binary logistic regression analysis screened independent risk factors of CHD patients with anxiety disorders. The effectiveness of independent risk factors in predicting CHD with anxiety disorders was analyzed using receiver operating characteristic (ROC) curves. Results IL-6, hs-CRP, and Hcy levels of anxiety disorder in the CHD group were significantly higher than those in the simple anxiety disorder group. Binary multiple logistic regression analysis indicated that IL-6, hs-CRP, and Hcy were independent risk factors for CHD in patients with anxiety disorders. hs-CRP and Hcy levels were positively correlated with the Gensini score. ROC curve analysis indicated that the detection of hs-CRP or Hcy alone or the combined detection of the 2 had clinical predictive value for CHD in patients with anxiety disorders, and the area under the curve (AUC) of the combined detection of the 2 was significantly larger than that of any single factor alone (vs. hs-CRP, P = 0.045; vs. Hcy, P = 0.045). Conclusion IL-6, hs-CRP, and Hcy are related to CHD with anxiety disorders. Serum levels of the combined detection of hs-CRP and Hcy have a high clinical predictive value for CHD in patients with anxiety disorders.
Collapse
Affiliation(s)
- Changhe Liu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Na Hua
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Yanli Zhang
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Cuirong Wang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|
18
|
Song L, Feng Y, Tian F, Liu X, Jin S, Wang C, Tang W, Duan J, Guo N, Shen X, Hu J, Zou H, Gu W, Liu K, Pang L. Integrated Microarray for Identifying the Hub mRNAs and Constructed MiRNA-mRNA Network in Coronary In-stent Restenosis. Physiol Genomics 2022; 54:371-379. [PMID: 35968900 DOI: 10.1152/physiolgenomics.00089.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As a major complication after percutaneous coronary intervention (PCI) in patients who suffer from coronary artery disease, in-stent restenosis (ISR) poses a significant challenge for clinical management. A miRNA-mRNA regulatory network of ISR can be constructed to better reveal the occurrence of ISR. The relevant dataset from the Gene Expression Omnibus (GEO) database was downloaded, and 284 differentially expressed miRNAs (DE-miRNAs) and 849 differentially expressed mRNAs (DE-mRNAs) were identified. As predicted by online tools, 65 final functional genes (FmRNAs) were overlapping DE-mRNAs and DE-miRNAs target genes. In the biological process (BP) terms of Gene Ontology (GO) functional analysis, the FmRNAs were mainly enriched in cellular response to peptide, epithelial cell proliferation and response to peptide hormone. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the FmRNAs were mainly enriched in breast cancer, endocrine resistance and cushing syndrome. Jun Proto-Oncogene, AP-1 Transcription Factor Subunit (JUN), Insulin Like Growth Factor 1 Receptor (IGF1R), Member RAS Oncogene Family (RAB14), Specificity Protein 1 (SP1), Protein Tyrosine Phosphatase Non-Receptor Type1(PTPN1), DDB1 And CUL4 Associated Factor 10 (DCAF10), Retinoblastoma-Binding Protein 5 (RBBP5) and Eukaryotic Initiation Factor 4A-I (EIF4A1) were hub genes in the protein-protein interaction network (PPI network). The miRNA-mRNA network containing DE-miRNA and hub genes was built. Hsa-miR-139-5p-JUN, hsa-miR-324-5p-SP1 axis pairs were found in the miRNA-mRNA network, which could promote ISR development. The above results indicate that the miRNA-mRNA network constructed in ISR has a regulatory role in the development of ISR, and may provide new approaches for clinical treatment and experimental development.
Collapse
Affiliation(s)
- Linghong Song
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University);Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yufei Feng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Feng Tian
- Department of neurology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China, Department of neurology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China, Shihezi, China
| | - Xiaoang Liu
- Shihezi University School of Pharmacy, Shihezi , China
| | - Shan Jin
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine,Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chengyan Wang
- Shihezi University School of Medicine, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University) / Department of Pathology and Key Laborator, Shihezi, China, China
| | - Wuyue Tang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Juncang Duan
- grid.452555.6Department of Cardiology, Jinhua Municipal Central Hospital, Jinhua, China
| | - Na Guo
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory, Shihezi, China
| | - Xihua Shen
- grid.411680.aNHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Jianming Hu
- grid.411680.aNHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Hong Zou
- grid.411680.aNHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Australia
| | - Kejian Liu
- grid.411680.aDepartment of Cardiology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Lijuan Pang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| |
Collapse
|
19
|
HHcy Induces Pyroptosis and Atherosclerosis via the Lipid Raft-Mediated NOX-ROS-NLRP3 Inflammasome Pathway in apoE -/- Mice. Cells 2022; 11:cells11152438. [PMID: 35954287 PMCID: PMC9368640 DOI: 10.3390/cells11152438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Lipid rafts play important roles in signal transduction, particularly in responses to inflammatory processes. The current study aimed to identify whether lipid raft-mediated inflammation contributes to hyperhomocysteinemia (HHcy)-accelerated atherosclerosis (AS), and to investigate the underlying mechanisms. THP-1-derived macrophages were used for in vitro experiments. ApoE−/− mice were fed a high-fat diet for 12 weeks to establish an AS model, and a high-fat plus high-methionine diet was used to induce HHcy. We found that homocysteine (Hcy) increased the expression of p22phox and p67phox and promoted their recruitment into lipid rafts (indicating the assembly of the NOX complex), thereby increasing ROS generation and NOX activity, NLRP3 inflammasome activation, and pyroptosis. Mechanistically, Hcy activated the NOX-ROS-NLRP3 inflammasome pathway and induced pyroptosis by increasing the expression of acid sphingomyelinase (ASM) to promote the formation of lipid raft clustering. Importantly, lipid raft-mediated pyroptosis was confirmed in HHcy mice, and HHcy-promoted macrophage recruitment in atherosclerotic lesions and HHcy-aggravated AS were blocked by the lipid raft disruptor methyl-β-cyclodextrin. The study findings indicate that Hcy promotes lipid raft clustering via the upregulation of ASM, which mediates the assembly of the NOX complex, causing an increase in ROS generation, NLRP3 inflammasome activation, and pyroptosis, and contributes to HHcy-induced AS.
Collapse
|
20
|
Yu P, Zhou J, Ge C, Fang M, Zhang Y, Wang H. Differential expression of placental 11β-HSD2 induced by high maternal glucocorticoid exposure mediates sex differences in placental and fetal development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154396. [PMID: 35259391 DOI: 10.1016/j.scitotenv.2022.154396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
A variety of adverse environmental factors during pregnancy cause maternal chronic stress. Caffeine is a common stressor, and its consumption during pregnancy is widespread. Our previous study showed that prenatal caffeine exposure (PCE) increased maternal blood glucocorticoid levels and caused abnormal development of offspring. However, the placental mechanism for fetal development inhibition caused by PCE-induced high maternal glucocorticoid has not been reported. This study investigated the effects of PCE-induced high maternal glucocorticoid level on placental and fetal development by regulating placental 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) expression and its underlying mechanism. First, human placenta and umbilical cord blood samples were collected from women without prenatal use of synthetic glucocorticoids. We found that placental 11β-HSD2 expression was significantly correlated with umbilical cord blood cortisol level and birth weight in male newborns but not in females. Furthermore, we established a rat model of high maternal glucocorticoids induced by PCE (caffeine, 60 mg/kg·d, ig), and found that the expression of 11β-HSD2 in male PCE placenta was decreased and negatively correlated with the maternal/fetal/placental corticosterone levels. Meanwhile, we found abnormal placental structure and nutrient transporter expression. In vitro, BeWo cells were used and confirm that 11β-HSD2 mediated inhibition of placental nutrient transporter expression induced by high levels of glucocorticoid. Finally, combined with the animal and cell experiments, we further confirmed that high maternal glucocorticoid could activate the GR-C/EBPα-Egr1 signaling pathway, leading to decreased expression of 11β-HSD2 in males. However, there was no significant inhibition of placental 11β-HSD2 expression, placental and fetal development in females. In summary, we confirmed that high maternal glucocorticoids could regulate placental 11β-HSD2 expression in a sex-specific manner, leading to differences in placental and fetal development. This study provides the theoretical and experimental basis for analyzing the inhibition of fetoplacental development and its sex difference caused by maternal stress.
Collapse
Affiliation(s)
- Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Jin Zhou
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
21
|
Ischemic Postconditioning Protects against Aged Myocardial Ischemia/Reperfusion Injury by Transcriptional and Epigenetic Regulation of miR-181a-2-3p. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9635674. [PMID: 35656020 PMCID: PMC9155916 DOI: 10.1155/2022/9635674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Ischemic postconditioning (IPostC) has been proposed as a strategy to mitigate the risk of ischemia/reperfusion (I/R) injury, and autophagy is involved in I/R-induced aged myocardial injury, while the underlying mechanism of IPostC-regulated autophagy is unknown. Here, we implemented miRNA sequencing analysis in aged cardiomyocytes to identify a novel miR-181a-2-3p after HPostC, which inhibits autophagy by targeting AMBRA1 in aged myocardium to protect I/R-induced aged myocardial injury. Mechanistically, we identified that IPostC can induce DNA hypomethylation and H3K14 hyperacetylation of miR-181a-2-3p promoter due to the decreased binding of DNMT3b and HDAC2 at its promoter, which contributes to enhancing the expression of miR-181a-2-3p. More importantly, cooperation of DNMT3b and HDAC2 inhibits the binding of c-Myc at the miR-181a-2-3p promoter in aged cardiomyocytes. In summary, IPostC attenuates I/R-induced aged myocardial injury through upregulating miR-181a-2-3p expression, which is an attribute to transcriptional and epigenetic regulation of its promoter. Our data indicate that miR-181a-2-3p may be a potential therapeutic target against I/R injury in aged myocardium.
Collapse
|
22
|
Zhu L, Jia L, Liu N, Wu R, Guan G, Hui R, Xing Y, Zhang Y, Wang J. DNA Methyltransferase 3b Accelerates the Process of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5249367. [PMID: 35422896 PMCID: PMC9005271 DOI: 10.1155/2022/5249367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022]
Abstract
Background DNA methylation plays a key role in establishing cell type-specific gene expression profiles and patterns in atherosclerosis. The underlying mechanism remains unclear. Previous studies have shown that DNA methyltransferase 3b (DNMT3b) may play an important role in atherosclerosis. This study aimed to establish the regulatory role of DNMT3b in the development of atherosclerosis. Methods We constructed a viral vector carrying Dnmt3b shRNA to transduce ApoE-/- mice. Meanwhile, healthy human peripheral blood Treg cells were treated with inhibitor of DNMT3b (AZA and EGCG) or transduced with DNMT3b shRNA. Results It showed that Dnmt3b silencing attenuated atherosclerosis, including decreased lesion size and macrophage content and increased collagen and smooth muscle cells content in ApoE-/- mice. To further investigate the possible mechanisms, combined with previous studies by our group, we showed that Foxp3-TSDR methylation level was significantly reduced Foxp3 expression and peripheral blood Treg levels were significantly increased by Dnmt3b shRNA vector transduction in animals committed to western diet for 12 and 18 weeks. Consistently, inhibition of DNMT3b (AZA and EGCG) decreased the expression levels of DNMT3b, which can increase the expression levels of FOXP3, and increase the levels of TGF-β and IL-10 and decrease the levels of IL-β and IFN-γ. After transduction with DNMT3b shRNA, the effect was more obvious. Conclusions DNMT3b accelerated atherosclerosis, and may be associated with FOXP3 hypermethylation status in regulatory T cells.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
- Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Lei Jia
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Na Liu
- Department of Pediatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
| | - Runmiao Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
| | - Gongchang Guan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
| | - Rutai Hui
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yujie Xing
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
| |
Collapse
|
23
|
Xu L, Zhang H, Wang Y, Yang A, Dong X, Gu L, Liu D, Ding N, Jiang Y. FABP4 activates the JAK2/STAT2 pathway via Rap1a in the homocysteine-induced macrophage inflammatory response in ApoE -/- mice atherosclerosis. J Transl Med 2022; 102:25-37. [PMID: 34725437 PMCID: PMC8695379 DOI: 10.1038/s41374-021-00679-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease, and inflammation plays a critical role in its formation and progression. Elevated serum homocysteine (Hcy) is an independent risk factor for atherosclerosis. Previous studies have shown that fatty acid binding protein 4 (FABP4) plays an important role in macrophage inflammation and lipid metabolism in atherosclerosis induced by Hcy. However, the underlying molecular mechanism of FABP4 in Hcy-induced macrophage inflammation remains unknown. In this study, we found that FABP4 activated the Janus kinase 2/signal transducer and activator of transcription 2 (JAK2/STAT2) pathway in macrophage inflammation induced by Hcy. Of note, we further observed that ras-related protein Rap-1a (Rap1a) induced the Tyr416 phosphorylation and membrane translocation of non-receptor tyrosine kinase (c-Src) to activate the JAK2/STAT2 pathway. In addition, the suppressor of cytokine signaling 1 (SOCS1)-a transcriptional target of signal transducer and activator of transcription (STATs) inhibited the JAK2/STAT2 pathway and Rap1a expression via a negative feedback loop. In summary, these results demonstrated that FABP4 promotes c-Src phosphorylation and membrane translocation via Rap1a to activate the JAK2/STAT2 pathway, contributing to Hcy-accelerated macrophage inflammation in ApoE-/- mice.
Collapse
Affiliation(s)
- Lingbo Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Huiping Zhang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
- Prenatal Diagnosis Center of Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Yanhua Wang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Anning Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaoyan Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Lingyu Gu
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Dayue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Ning Ding
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Yideng Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
24
|
Xu B, Wang N, Xu X, Cai Y. Unraveling the molecular mechanisms of hyperlipidemia using integrated lncRNA and mRNA microarray data. Exp Ther Med 2021; 23:160. [PMID: 35069841 PMCID: PMC8753963 DOI: 10.3892/etm.2021.11083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have key roles in various diseases; however, their functions in hyperlipidemia (HLP) have remained elusive. In the present study, microarray technology was utilized to analyze the differential expression of lncRNAs and mRNAs in liver tissues of apolipoprotein E-/- mice as a model of HLP compared with control mice. A total of 104 and 96 differentially expressed lncRNAs and mRNAs, respectively, were identified. Differentially expressed genes were significantly enriched in biological processes such as nitric oxide biosynthesis, innate immune response and inflammatory response. Finally, two pairs of target genes and 38 transcription factors with regulatory functions in HLP were predicted based on the lncRNA and mRNA co-expression network. The lncRNA expression profile was significantly altered in liver tissues of the mouse model of HLP and may provide novel targets for research into treatments.
Collapse
Affiliation(s)
- Bianling Xu
- Institute of Chinese Medicine Literature, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Nan Wang
- Laboratory of Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450007, P.R. China
| | - Xuegong Xu
- Laboratory of Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450007, P.R. China
| | - Yongmin Cai
- Zhang Zhongjing Inheritance and Innovation Center, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
25
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
26
|
Xie L, Ma S, Ding N, Wang Y, Lu G, Xu L, Wang Q, Liu K, Jie Y, Zhang H, Yang A, Gao Y, Zhang H, Jiang Y. Homocysteine induces podocyte apoptosis by regulating miR-1929-5p expression through c-Myc, DNMT1 and EZH2. Mol Oncol 2021; 15:3203-3221. [PMID: 34057794 PMCID: PMC8564658 DOI: 10.1002/1878-0261.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 11/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a common and complex disease in kidneys which has been associated with an increased risk of renal cell carcinoma. Elevated homocysteine (Hcy) levels are known to influence the development and progression of CKD by regulating podocyte injury and apoptosis. To investigate the molecular mechanisms triggered in podocytes by Hcy, we used cbs+/- mice and observed that higher Hcy levels increased the apoptosis rate of podocytes with accompanying glomerular damage. Hcy-induced podocyte injury and apoptosis in cbs+/- mice was regulated by inhibition of microRNA (miR)-1929-5p expression. Overexpression of miR-1929-5p in podocytes inhibited apoptosis by upregulating Bcl-2. Furthermore, the expression of miR-1929-5p was regulated by epigenetic modifications of its promoter. Hcy upregulated DNA methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 (EZH2) levels, resulting in increased DNA methylation and H3K27me3 levels on the miR-1929-5p promoter. Additionally, we observed that c-Myc recruited DNMT1 and EZH2 to the miR-1929-5p promoter and suppressed the expression of miR-1929-5p. In summary, we demonstrated that Hcy promotes podocyte apoptosis through the regulation of the epigenetic modifiers DNMT1 and EZH2, which are recruited by c-Myc to the promoter of miR-1929-5p to silence miR-1929-5p expression.
Collapse
Affiliation(s)
- Lin Xie
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Shengchao Ma
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Ning Ding
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Yanhua Wang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Guanjun Lu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Department of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Lingbo Xu
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Qingqing Wang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Kun Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Department of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Yuzheng Jie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Department of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Hui Zhang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Anning Yang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Yujing Gao
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Prenatal Diagnosis Center of General HospitalNingxia Medical UniversityYinchuanChina
| | - Yideng Jiang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| |
Collapse
|
27
|
Jin P, Gao D, Cong G, Yan R, Jia S. Role of PCSK9 in Homocysteine-Accelerated Lipid Accumulation in Macrophages and Atherosclerosis in ApoE -/- Mice. Front Cardiovasc Med 2021; 8:746989. [PMID: 34660746 PMCID: PMC8517151 DOI: 10.3389/fcvm.2021.746989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Homocysteine (Hcy) has been established as an independent risk factor for atherosclerosis, and the involvement of hyperhomocysteinemia (HHcy) in atherosclerotic lesions is complex. Proprotein convertase subtilisin kexin 9 (PCSK9) has vital importance in lipid metabolism, and its inhibitors have intense lipid-lowering and anti-atherosclerotic effects. However, the underlying effect of PCSK9 on HHcy-accelerated dyslipidemia of macrophages is still uncertain. The purpose of this study was to investigate the potential role of PCSK9 in Hcy-induced lipid accumulation and atherosclerotic lesions. Methods:In vitro, gene and protein expressions were assessed by real-time quantitative PCR and western blot in THP-1 macrophages with Hcy incubation. Lipid accumulation and cholesterol efflux were evaluated with Hcy treatment. SBC-115076 was used to examine the role of PCSK9 in ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1)-dependent cholesterol efflux. In vivo, lesion area, lipid deposition and collagen contents were determined in aortas of ApoE−/− mice under a methionine diet. SBC-115076 was subcutaneously injected to explore the potential effects of PCSK9 inhibition on alleviating the severity of HHcy-related atherosclerotic lesions. Results: In THP-1 macrophages, Hcy dose- and time-dependently promoted PCSK9 gene and protein levels without regulating the translation of Low-density lipoprotein receptor (LDLR). SBC-115076 used to inhibit PCSK9 largely alleviated lipid accumulation and reversed the cholesterol efflux to apolipoprotein-I(apoA-I) and high-density lipoprotein (HDL) mediated by ABCA1 and ABCG1. In ApoE−/− mice, methionine diet induced HHcy caused larger lesion area and more lipid accumulation in aortic roots. SBC-115076 reduced atherosclerotic severity by reducing the lesion area and lipid accumulation and increasing expressions of ABCA1 and ABCG1 in macrophages from atherosclerotic plaque. In addition, SBC-115076 decreased plasma Hcy level and lipid profiles significantly. Conclusion: PCSK9 promoted lipid accumulation via inhibiting cholesterol efflux mediated by ABCA1 and ABCG1 from macrophages and accelerated atherosclerotic lesions under HHcy treatment. Inhibiting PCSK9 may have anti-atherogenic properties in HHcy-accelerated atherosclerosis.
Collapse
Affiliation(s)
- Ping Jin
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangzhi Cong
- Heart Center and Cardiovascular Institute, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ru Yan
- Heart Center and Cardiovascular Institute, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shaobin Jia
- Heart Center and Cardiovascular Institute, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
28
|
Xiong J, Ma F, Ding N, Xu L, Ma S, Yang A, Hao Y, Zhang H, Jiang Y. miR-195-3p alleviates homocysteine-mediated atherosclerosis by targeting IL-31 through its epigenetics modifications. Aging Cell 2021; 20:e13485. [PMID: 34592792 PMCID: PMC8520716 DOI: 10.1111/acel.13485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a serious age-related disease, which has a tremendous impact on health care globally. Macrophage inflammation is crucial for the initiation and progression of atherosclerosis, and microRNAs (miRNAs) recently have emerged as potent modulators of inflammation, while the underlying mechanisms of its involvement in homocysteine (Hcy)-mediated macrophage inflammation of atherosclerosis remain largely unknown. Here, we demonstrated that elevated Hcy inhibits the expression of miR-195-3p, which in turn enhances IL-31 expression and thereby causes the secretion of macrophages pro-inflammatory factors IL-1β, IL-6 and TNF-α and accelerate atherosclerosis. Furthermore, we identified that Hcy can induce DNA hypermethylation and H3K9 deacetylation of miR-195-3p promoter due to the increased the binding of DNMT3a and HDAC11 at its promoter. More importantly, Sp1 interacts with DNMT3a suppressed the binding of HDAC11 at miR-195-3p promoter and promoted its transcription. In summary, our results revealed a novel mechanism that transcriptional and epigenetic regulation of miR-195-3p inhibits macrophage inflammation through targeting IL-31, which provides a candidate diagnostic marker and novel therapeutic target in cardiovascular diseases induced by Hcy.
Collapse
Affiliation(s)
- Jiantuan Xiong
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Fang Ma
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Ning Ding
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Lingbo Xu
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Shengchao Ma
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Anning Yang
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Yinju Hao
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
- Prenatal Diagnosis Center, General Hospital of Ningxia Medical University Yinchuan China
| | - Yideng Jiang
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| |
Collapse
|
29
|
DNA Methylation in Atherosclerosis: A New Perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6623657. [PMID: 34257689 PMCID: PMC8249120 DOI: 10.1155/2021/6623657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/08/2021] [Indexed: 01/14/2023]
Abstract
Atherosclerotic cardiovascular diseases, in which atherosclerosis (AS) is the main pathologic basis, are currently the primary diseases leading to human deaths. Emerging evidence showed that DNA methylation, which could affect the transcription and expression of critical regulatory genes, has key roles in AS. Aberrant DNA methylation including aberrant hypomethylation and hypermethylation plays key roles in endothelial-cell dysfunction, macrophage inflammation, abnormal proliferation of vascular smooth muscle cells, plaque rupture, and thrombosis in AS. Chinese herbal medicines, including single compounds and formulations, showed light on the treatment of AS through regulating the aberrant DNA methylation in AS. Targeting the aberrant DNA methylation may be one of the most important treatment strategies in the cure and prevention of AS. In this review, we focus on the relationship between DNA methylation and AS, as well as the beneficial effects of Chinese herbal medicines on DNA methylation in AS.
Collapse
|
30
|
Xu L, Zhang H, Wang Y, Guo W, Gu L, Yang A, Ma S, Yang Y, Wu K, Jiang Y. H3K14 hyperacetylation‑mediated c‑Myc binding to the miR‑30a‑5p gene promoter under hypoxia postconditioning protects senescent cardiomyocytes from hypoxia/reoxygenation injury. Mol Med Rep 2021; 23:468. [PMID: 33880587 PMCID: PMC8097758 DOI: 10.3892/mmr.2021.12107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Our previous study reported that microRNA (miR)‑30a‑5p upregulation under hypoxia postconditioning (HPostC) exert a protective effect on aged H9C2 cells against hypoxia/reoxygenation injury via DNA methyltransferase 3B‑induced DNA hypomethylation at the miR‑30a‑5p gene promoter. This suggests that miR‑30a‑5p may be a potential preventative and therapeutic target for ischemic heart disease in aged myocardium. The present study aimed to investigate the underlying mechanisms of miR‑30a‑5p transcription in aged myocardium in ischemic heart disease. Cardiomyocytes were treated with 8 mg/ml D‑galactose for 9 days, and then exposed to hypoxic conditions. Cell viability was determined using a cell viability assay. Expression levels of histone deacetylase 2 (HDAC2), LC3B‑II/I, beclin‑1 and p62 were detected via reverse transcription‑quantitative PCR and western blotting. Chromatin immunoprecipitation‑PCR and luciferase reporter assays were performed to evaluate the effect of c‑Myc binding and activity on the miR‑30a‑5p promoter in senescent cardiomyocytes following HPostC. It was found that HPostC enhanced the acetylation levels of H3K14 at the miR‑30a‑5p gene promoter in senescent cardiomyocytes, which attributed to the decreased expression of HDAC2. In addition, c‑Myc could positively regulate miR‑30a‑5p transcription to inhibit senescent cardiomyocyte autophagy. Mechanically, it was observed that increased H3K14 acetylation level exposed to romidepsin facilitated c‑Myc binding to the miR‑30a‑5p gene promoter region, which led to the increased transcription of miR‑30a‑5p. Taken together, these results demonstrated that HDAC2‑mediated H3K14 hyperacetylation promoted c‑Myc binding to the miR‑30a‑5p gene promoter, which contributed to HPostC senescent cardioprotection.
Collapse
Affiliation(s)
- Lingbo Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Huiping Zhang
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yanhua Wang
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Wei Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Lingyu Gu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Anning Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shengchao Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yong Yang
- Department of Nuclear Medicine, The People's Hospital in Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Kai Wu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yideng Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
31
|
Xie L, Ding N, Zhang H, Liu K, Xiong J, Ma S, Yang A, Zhang H, Jiang Y. SNF5 promotes IL-1β expression via H3K4me1 in atherosclerosis induced by homocysteine. Int J Biochem Cell Biol 2021; 135:105974. [PMID: 33831591 DOI: 10.1016/j.biocel.2021.105974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Homocysteine (Hcy) is a strong and independent risk factor of atherosclerosis. It can accelerate atherosclerosis through increased production of inflammatory factors, especially interleukin-1 β (IL-1β), while the precise mechanisms remain to be well elucidated. In this study, we investigated the role of the tumor suppressor gene SNF5 related to switch/sucrose non-fermentable complex (SWI/SNF) in the occurrence and development of atherosclerosis induced by Hcy. Using Hyperhomocysteinemia (HHcy) atherosclerotic model with apolipoprotein E knockout (ApoE-/-) mice fed with high-methionine diet, we showed that Hcy aggravates inflammation in macrophages during the atherosclerotic plaque formation. Further analysis showed that SNF5 promotes IL-1β expression and secretion. In addition, due to the existence of H3K4 methylation signals in the vicinity of IL-1β, we found that Hcy significantly promotes the expression of H3K4me1, and lysine-specific histone demethylase 1A (KDM1A) acts as a transcriptional repressor to regulate the expression of H3K4me1 by demethylating H3K4me1. In summary, our results demonstrated that Hcy up-regulates the expression of SNF5 through KDM1A, resulting in an increased level of H3K4me1 modification and IL-1β in macrophages, which in turn promotes the formation of atherosclerosis. Our study will provide more evidence for further revealing the specific mechanism of Hcy-induced inflammation and the diagnosis, prevention, and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Lin Xie
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Ning Ding
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Honghong Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Kun Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China; Department of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiantuan Xiong
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Shengchao Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Anning Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China; Prenatal Diagnosis Center of General Hospital, Ningxia Medical University, Yinchuan, 750004, China.
| | - Yideng Jiang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
32
|
Stucky A, Gao L, Sun L, Li SC, Chen X, Park TH, Cai J, Kabeer MH, Zhang X, Sinha UK, Zhong JF. Evidence for AJUBA-catenin-CDH4-linked differentiation resistance of mesenchymal stem cells implies tumorigenesis and progression of head and neck squamous cell carcinoma: a single-cell transcriptome approach. BLOOD AND GENOMICS 2021; 5:29-39. [PMID: 34368804 PMCID: PMC8346230 DOI: 10.46701/bg.2021012021106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing number of reports indicate that mesenchymal stem cells (MSCs) play an essential role in promoting tumorigenesis and progression of head and neck squamous cell carcinoma (HNSCC). However, the molecular mechanisms underlying this process remain unclear. Using the MSC model system, this study analyzes the molecular pathway by which differentiation resistant MSCs promote HNSCC. MSCs were cultured in osteogenic differentiation media and harvested on days 12 and 19. Cells were stained for cell differentiation analysis using Alizarin Red. The osteogenesis-resistant MSCs (OR-MSCs) and MSC-differentiation-derived osteoblasts (D-OSTBs) were identified and subjected to the single-cell transcriptome analysis. Gene-specific analyses of these two sub-populations were performed for the patterns of differential expression. A total of 1 780 differentially expressed genes were determined to distinguish OR-MSCs significantly from D-OSTB. Notably, AJUBA, β-catenin, and CDH4 expression levels were upregulated considerably within the OR-MSCs compared to D-OSTBs. To confirm their clinical relevance, a survey of a clinical cohort revealed a high correlation among the expression levels of AJUBA, β-catenin and CDH4. The results shed new light that OR-MSCs participate in the development of HNSCC via a pathway mediated by AJUBA, β-catenin, CDH4, and CTNNB1, thereby implying that MSC-based therapy is a promising therapeutic approach in the management of HNSCC.
Collapse
Affiliation(s)
- Andres Stucky
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li Gao
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lan Sun
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shengwen Calvin Li
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Research Institute, Children's Hospital of Orange County (CHOC), Orange, CA 92868, USA
- Department of Neurology, University of California - Irvine School of Medicine, Orange, CA 92868, USA
| | - Xuelian Chen
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tiffany H. Park
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jin Cai
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, Children's Hospital of Orange County, Orange, CA 92868, USA
- Department of Surgery, University of California - Irvine School of Medicine, Orange, CA 92868, USA
| | - Xi Zhang
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Uttam K. Sinha
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jiang F. Zhong
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
33
|
Wang D, Liu B, Xiong T, Yu W, She Q. Investigation of the underlying genes and mechanism of familial hypercholesterolemia through bioinformatics analysis. BMC Cardiovasc Disord 2020; 20:419. [PMID: 32938406 PMCID: PMC7493348 DOI: 10.1186/s12872-020-01701-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background Familial hypercholesterolemia (FH) is one of the commonest inherited metabolic disorders. Abnormally high level of low-density lipoprotein cholesterol (LDL-C) in blood leads to premature atherosclerosis onset and a high risk of cardiovascular disease (CVD). However, the specific mechanisms of the progression process are still unclear. Our study aimed to investigate the potential differently expressed genes (DEGs) and mechanism of FH using various bioinformatic tools. Methods GSE13985 and GSE6054 were downloaded from the Gene Expression Omnibus (GEO) database for bioinformatic analysis in this study. First, limma package of R was used to identify DEGs between blood samples of patients with FH and those from healthy individuals. Then, the functional annotation of DEGs was carried out by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology (GO) analysis. Based on Search Tool for the Retrieval of Interacting Genes (STRING) tool, we constructed the Protein-Protein Interactions (PPIs) network among DEGs and mined the core genes as well. Results A total of 102 communal DEGs (49 up-regulated and 53 down-regulated) are identified in FH samples compared with control samples. The functional changes of DEGs are mainly associated with the focal adhere and glucagon signaling pathway. Ten genes (ITGAL, TLN1, POLR2A, CD69, GZMA, VASP, HNRNPUL1, SF1, SRRM2, ITGAV) were identified as core genes. Bioinformatic analysis showed that the core genes are mainly enriched in numerous processes related to cell adhesion, integrin-mediated signaling pathway and cell-matrix adhesion. In the transcription factor (TF) target regulating network, 219 nodes were detected, including 214 DEGs and 5 TFs (SP1, EGR3, CREB, SEF1, HOX13). In conclusion, the DEGs and hub genes identified in this study may help us understand the potential etiology of the occurrence and development of AS. Conclusion Up-regulated ITGAL, TLN1, POLR2A, VASP, HNRNPUL1, SF1, SRRM2, and down-regulated CD69, GZMA and ITGAV performed important promotional effects for the formation of atherosclerotic plaques those suffering from FH. Moreover, SP1, EGR3, CREB, SEF1 and HOX13 were the potential transcription factors for DEGs and could serve as underlying targets for AS rupture prevention. These findings provide a theoretical basis for us to understand the potential etiology of the occurrence and development of AS in FH patients and we may be able to find potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Dinghui Wang
- Department of Cardiovascular, The Second Affiliated Hospital of Chongqing Medical University, No.1 Medical College Road, Shiyou Road Street, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Bin Liu
- Department of Cardiovascular, The Second Affiliated Hospital of Chongqing Medical University, No.1 Medical College Road, Shiyou Road Street, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Tianhua Xiong
- Department of Cardiovascular, The Second Affiliated Hospital of Chongqing Medical University, No.1 Medical College Road, Shiyou Road Street, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Wenlong Yu
- Department of Cardiovascular, The Second Affiliated Hospital of Chongqing Medical University, No.1 Medical College Road, Shiyou Road Street, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Qiang She
- Department of Cardiovascular, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, P.R. China.
| |
Collapse
|