1
|
Sayers JR, Martinez-Navarro H, Sun X, de Villiers C, Sigal S, Weinberger M, Rodriguez CC, Riebel LL, Berg LA, Camps J, Herring N, Rodriguez B, Sauka-Spengler T, Riley PR. Cardiac conduction system regeneration prevents arrhythmias after myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2025; 4:163-179. [PMID: 39753976 PMCID: PMC11825367 DOI: 10.1038/s44161-024-00586-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 11/13/2024] [Indexed: 02/16/2025]
Abstract
Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages. Tissue-cleared whole-organ imaging identified disorganized bundling of conduction fibers after MI and global His-Purkinje disruption. Single-cell RNA sequencing (scRNA-seq) revealed specific molecular changes to regenerate the conduction network versus aberrant electrical alterations during fibrotic repair. This manifested functionally as a transition from normal rhythm to pathological conduction delay beyond the regenerative window. Modeling in the infarcted human heart implicated the non-regenerative phenotype as causative for heart block, as observed in patients. These findings elucidate the mechanisms underpinning conduction system regeneration and reveal how MI-induced damage elicits clinical arrhythmogenesis.
Collapse
Affiliation(s)
- Judy R Sayers
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Hector Martinez-Navarro
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Xin Sun
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Carla de Villiers
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sarah Sigal
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Michael Weinberger
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Claudio Cortes Rodriguez
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Leto Luana Riebel
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Lucas Arantes Berg
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Julia Camps
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Tatjana Sauka-Spengler
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paul R Riley
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Gonzalez DM, Dariolli R, Moyett J, Song S, Shewale B, Bliley J, Clarke D, Ma'ayan A, Rentschler S, Feinberg A, Sobie E, Dubois NC. Transient Notch Activation Converts Pluripotent Stem Cell-Derived Cardiomyocytes Towards a Purkinje Fiber Fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614353. [PMID: 39386729 PMCID: PMC11463678 DOI: 10.1101/2024.09.22.614353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cardiac Purkinje fibers form the most distal part of the ventricular conduction system. They coordinate contraction and play a key role in ventricular arrhythmias. While many cardiac cell types can be generated from human pluripotent stem cells, methods to generate Purkinje fiber cells remain limited, hampering our understanding of Purkinje fiber biology and conduction system defects. To identify signaling pathways involved in Purkinje fiber formation, we analyzed single cell data from murine embryonic hearts and compared Purkinje fiber cells to trabecular cardiomyocytes. This identified several genes, processes, and signaling pathways putatively involved in cardiac conduction, including Notch signaling. We next tested whether Notch activation could convert human pluripotent stem cell-derived cardiomyocytes to Purkinje fiber cells. Following Notch activation, cardiomyocytes adopted an elongated morphology and displayed altered electrophysiological properties including increases in conduction velocity, spike slope, and action potential duration, all characteristic features of Purkinje fiber cells. RNA-sequencing demonstrated that Notch-activated cardiomyocytes undergo a sequential transcriptome shift, which included upregulation of key Purkinje fiber marker genes involved in fast conduction such as SCN5A, HCN4 and ID2, and downregulation of genes involved in contractile maturation. Correspondingly, we demonstrate that Notch-induced cardiomyocytes have decreased contractile force in bioengineered tissues compared to control cardiomyocytes. We next modified existing in silico models of human pluripotent stem cell-derived cardiomyocytes using our transcriptomic data and modeled the effect of several anti-arrhythmogenic drugs on action potential and calcium transient waveforms. Our models predicted that Purkinje fiber cells respond more strongly to dofetilide and amiodarone, while cardiomyocytes are more sensitive to treatment with nifedipine. We validated these findings in vitro, demonstrating that our new cell-specific in vitro model can be utilized to better understand human Purkinje fiber physiology and its relevance to disease.
Collapse
Affiliation(s)
- David M Gonzalez
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Mount Sinai, New York, NY 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rafael Dariolli
- Department of Pharmacology and Systems Biology, Mount Sinai Center for Bioinformatics, Department of Artificial Intelligence and Human Health, Mount Sinai, New York, NY 10029, USA
| | - Julia Moyett
- Duke University School of Medicine, Durham, NC 27710
| | - Stephanie Song
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Mount Sinai, New York, NY 10029, USA
| | - Bhavana Shewale
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Mount Sinai, New York, NY 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Daniel Clarke
- Department of Pharmacology and Systems Biology, Mount Sinai Center for Bioinformatics, Department of Artificial Intelligence and Human Health, Mount Sinai, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Biology, Mount Sinai Center for Bioinformatics, Department of Artificial Intelligence and Human Health, Mount Sinai, New York, NY 10029, USA
| | - Stacey Rentschler
- Washington University School of Medicine in St. Louis, Missouri MO 63110
| | | | - Eric Sobie
- Department of Pharmacology and Systems Biology, Mount Sinai Center for Bioinformatics, Department of Artificial Intelligence and Human Health, Mount Sinai, New York, NY 10029, USA
| | - Nicole C Dubois
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Riebel LL, Wang ZJ, Martinez-Navarro H, Trovato C, Camps J, Berg LA, Zhou X, Doste R, Sachetto Oliveira R, Weber Dos Santos R, Biasetti J, Rodriguez B. In silico evaluation of cell therapy in acute versus chronic infarction: role of automaticity, heterogeneity and Purkinje in human. Sci Rep 2024; 14:21584. [PMID: 39284812 PMCID: PMC11405404 DOI: 10.1038/s41598-024-67951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/17/2024] [Indexed: 09/22/2024] Open
Abstract
Human-based modelling and simulation offer an ideal testbed for novel medical therapies to guide experimental and clinical studies. Myocardial infarction (MI) is a common cause of heart failure and mortality, for which novel therapies are urgently needed. Although cell therapy offers promise, electrophysiological heterogeneity raises pro-arrhythmic safety concerns, where underlying complex spatio-temporal dynamics cannot be investigated experimentally. Here, after demonstrating credibility of the modelling and simulation framework, we investigate cell therapy in acute versus chronic MI and the role of cell heterogeneity, scar size and the Purkinje system. Simulations agreed with experimental and clinical recordings from ionic to ECG dynamics in acute and chronic infarction. Following cell delivery, spontaneous beats were facilitated by heterogeneity in cell populations, chronic MI due to tissue depolarisation and slow sinus rhythm. Subsequent re-entrant arrhythmias occurred, in some instances with Purkinje involvement and their susceptibility was enhanced by impaired Purkinje-myocardium coupling, large scars and acute infarction. We conclude that homogeneity in injected ventricular-like cell populations minimises their spontaneous beating, which is enhanced by chronic MI, whereas a healthy Purkinje-myocardium coupling is key to prevent subsequent re-entrant arrhythmias, particularly for large scars.
Collapse
Affiliation(s)
| | | | | | - Cristian Trovato
- Department of Computer Science, University of Oxford, Oxford, UK
- Systems Medicine, Clinical Pharmacology & Safety Science, R&D, AstraZeneca, Cambridge, UK
| | - Julia Camps
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Lucas Arantes Berg
- Department of Computer Science, University of Oxford, Oxford, UK
- Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Xin Zhou
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Ruben Doste
- Department of Computer Science, University of Oxford, Oxford, UK
| | | | | | - Jacopo Biasetti
- Systems Medicine, Clinical Pharmacology & Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Trayanova NA, Lyon A, Shade J, Heijman J. Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation. Physiol Rev 2024; 104:1265-1333. [PMID: 38153307 PMCID: PMC11381036 DOI: 10.1152/physrev.00017.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales, makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias, from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed, and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook toward potential future advances, including the combination of mechanistic modeling and machine learning/artificial intelligence, is provided. As the field of cardiology is embarking on a journey toward precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Aurore Lyon
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Julie Shade
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Camps J, Berg LA, Wang ZJ, Sebastian R, Riebel LL, Doste R, Zhou X, Sachetto R, Coleman J, Lawson B, Grau V, Burrage K, Bueno-Orovio A, Weber Dos Santos R, Rodriguez B. Digital twinning of the human ventricular activation sequence to Clinical 12-lead ECGs and magnetic resonance imaging using realistic Purkinje networks for in silico clinical trials. Med Image Anal 2024; 94:103108. [PMID: 38447244 DOI: 10.1016/j.media.2024.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Cardiac in silico clinical trials can virtually assess the safety and efficacy of therapies using human-based modelling and simulation. These technologies can provide mechanistic explanations for clinically observed pathological behaviour. Designing virtual cohorts for in silico trials requires exploiting clinical data to capture the physiological variability in the human population. The clinical characterisation of ventricular activation and the Purkinje network is challenging, especially non-invasively. Our study aims to present a novel digital twinning pipeline that can efficiently generate and integrate Purkinje networks into human multiscale biventricular models based on subject-specific clinical 12-lead electrocardiogram and magnetic resonance recordings. Essential novel features of the pipeline are the human-based Purkinje network generation method, personalisation considering ECG R wave progression as well as QRS morphology, and translation from reduced-order Eikonal models to equivalent biophysically-detailed monodomain ones. We demonstrate ECG simulations in line with clinical data with clinical image-based multiscale models with Purkinje in four control subjects and two hypertrophic cardiomyopathy patients (simulated and clinical QRS complexes with Pearson's correlation coefficients > 0.7). Our methods also considered possible differences in the density of Purkinje myocardial junctions in the Eikonal-based inference as regional conduction velocities. These differences translated into regional coupling effects between Purkinje and myocardial models in the monodomain formulation. In summary, we demonstrate a digital twin pipeline enabling simulations yielding clinically consistent ECGs with clinical CMR image-based biventricular multiscale models, including personalised Purkinje in healthy and cardiac disease conditions.
Collapse
Affiliation(s)
- Julia Camps
- University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | - Ruben Doste
- University of Oxford, Oxford, United Kingdom
| | - Xin Zhou
- University of Oxford, Oxford, United Kingdom
| | - Rafael Sachetto
- Universidade Federal de São João del Rei, São João del Rei, MG, Brazil
| | | | - Brodie Lawson
- Queensland University of Technology, Brisbane, Australia
| | | | - Kevin Burrage
- University of Oxford, Oxford, United Kingdom; Queensland University of Technology, Brisbane, Australia
| | | | | | | |
Collapse
|
6
|
Berg LA, Rocha BM, Oliveira RS, Sebastian R, Rodriguez B, de Queiroz RAB, Cherry EM, Dos Santos RW. Enhanced optimization-based method for the generation of patient-specific models of Purkinje networks. Sci Rep 2023; 13:11788. [PMID: 37479707 PMCID: PMC10362015 DOI: 10.1038/s41598-023-38653-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
Cardiac Purkinje networks are a fundamental part of the conduction system and are known to initiate a variety of cardiac arrhythmias. However, patient-specific modeling of Purkinje networks remains a challenge due to their high morphological complexity. This work presents a novel method based on optimization principles for the generation of Purkinje networks that combines geometric and activation accuracy in branch size, bifurcation angles, and Purkinje-ventricular-junction activation times. Three biventricular meshes with increasing levels of complexity are used to evaluate the performance of our approach. Purkinje-tissue coupled monodomain simulations are executed to evaluate the generated networks in a realistic scenario using the most recent Purkinje/ventricular human cellular models and physiological values for the Purkinje-ventricular-junction characteristic delay. The results demonstrate that the new method can generate patient-specific Purkinje networks with controlled morphological metrics and specified local activation times at the Purkinje-ventricular junctions.
Collapse
Affiliation(s)
- Lucas Arantes Berg
- Graduate Program in Computational Modeling, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
- Department of Computer Science, University of Oxford, Oxford, UK.
| | - Bernardo Martins Rocha
- Graduate Program in Computational Modeling, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rafael Sachetto Oliveira
- Department of Computer Science, Federal University of São João del-Rei, São João del-Rei, Brazil
| | - Rafael Sebastian
- Department of Computer Science, Universitat de Valencia, Valencia, Spain
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Rafael Alves Bonfim de Queiroz
- Graduate Program in Computational Modeling, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Department of Computer Science, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Elizabeth M Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rodrigo Weber Dos Santos
- Graduate Program in Computational Modeling, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
7
|
Agrawal A, Wang K, Polonchuk L, Cooper J, Hendrix M, Gavaghan DJ, Mirams GR, Clerx M. Models of the cardiac L-type calcium current: A quantitative review. WIREs Mech Dis 2023; 15:e1581. [PMID: 36028219 PMCID: PMC10078428 DOI: 10.1002/wsbm.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 01/31/2023]
Abstract
The L-type calcium current (I CaL ) plays a critical role in cardiac electrophysiology, and models ofI CaL are vital tools to predict arrhythmogenicity of drugs and mutations. Five decades of measuring and modelingI CaL have resulted in several competing theories (encoded in mathematical equations). However, the introduction of new models has not typically been accompanied by a data-driven critical comparison with previous work, so that it is unclear which model is best suited for any particular application. In this review, we describe and compare 73 published mammalianI CaL models and use simulated experiments to show that there is a large variability in their predictions, which is not substantially diminished when grouping by species or other categories. We provide model code for 60 models, list major data sources, and discuss experimental and modeling work that will be required to reduce this huge list of competing theories and ultimately develop a community consensus model ofI CaL . This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Aditi Agrawal
- Computational Biology & Health Informatics, Department of Computer ScienceUniversity of OxfordOxfordUK
| | - Ken Wang
- Pharma Research and Early Development, Innovation Center BaselF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Liudmila Polonchuk
- Pharma Research and Early Development, Innovation Center BaselF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Jonathan Cooper
- Centre for Advanced Research ComputingUniversity College LondonLondonUK
| | - Maurice Hendrix
- Centre for Mathematical Medicine & Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
- Digital Research Service, Information SciencesUniversity of NottinghamNottinghamUK
| | - David J. Gavaghan
- Computational Biology & Health Informatics, Department of Computer ScienceUniversity of OxfordOxfordUK
| | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
| | - Michael Clerx
- Centre for Mathematical Medicine & Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
8
|
Yuan M, Lian H, Li P. Spatiotemporal patterns of early afterdepolarizations underlying abnormal T-wave morphologies in a tissue model of the Purkinje-ventricular system. PLoS One 2023; 18:e0280267. [PMID: 36622850 PMCID: PMC9829164 DOI: 10.1371/journal.pone.0280267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Sudden cardiac death (SCD) is a leading cause of death worldwide, and the majority of SCDs are caused by acute ventricular arrhythmias (VAs). Early afterdepolarizations (EADs) are an important trigger of VA under pathological conditions, e.g., inherited or acquired long QT syndrome (LQTS). However, it remains unclear how EAD events at the cellular level are spatially organized at the tissue level to induce and maintain ventricular arrhythmias and whether the spatial-temporal patterns of EADs at the tissue level are associated with abnormal T-wave morphologies that are often observed in LQTS, such as broad-based, notched or bifid; late appearance; and pointed T-waves. Here, a tissue model of the Purkinje-ventricular system (PVS) was developed to quantitatively investigate the complex spatial-temporal dynamics of EADs during T-wave abnormalities. We found that (1) while major inhibition of ICaL can substantially reduce the excitability of the PVS leading to conduction failures, moderate ICaL inhibition can promote occurrences of AP alternans at short cycle lengths (CLs), and EAD events preferentially occur with a major reduction of IKr (>50%) at long CLs; (2) with a minor reduction of ICaL, spatially synchronized steady-state EAD events with inverted and biphasic T-waves can be "weakened" into beat-to-beat concurrences of spatially synchronized EADs and T-wave alternans, and as pacing CLs increase, beat-to-beat concurrences of localized EADs with late-appearing and pointed T-wave morphologies can be observed; (3) under certain conditions, localized EAD events in the midmyocardium may trigger slow uni-directional electric propagation with inverted (antegrade) or upright (retrograde) broad-based T-waves; (4) spatially discordant EADs were typically characterized by desynchronized spontaneous onsets of EAD events between two groups of PVS tissues with biphasic T-wave morphologies, and they can evolve into spatially discordant oscillating EAD patterns with sustained or self-terminated alternating EAD and electrocardiogram (ECG) patterns. Our results provide new insights into the spatiotemporal aspects of the onset and development of EADs and suggest possible mechanistic links between the complex spatial dynamics of EADs and T-wave morphologies.
Collapse
Affiliation(s)
- Mengya Yuan
- Henan Engineering Research Center of Health Big Data and Intelligent Computing, School of Public Health, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Heqiang Lian
- Henan Engineering Research Center of Health Big Data and Intelligent Computing, School of Public Health, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Pan Li
- Henan Engineering Research Center of Health Big Data and Intelligent Computing, School of Public Health, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
9
|
SHOX2 refines the identification of human sinoatrial nodal cell population in the in vitro cardiac differentiation. Regen Ther 2022; 21:239-249. [PMID: 36092505 PMCID: PMC9420958 DOI: 10.1016/j.reth.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/22/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Dysfunction of the sinoatrial node (SAN) cells causes arrhythmias, and many patients require artificial cardiac pacemaker implantation. However, the mechanism of impaired SAN automaticity remains unknown, and the generation of human SAN cells in vitro may provide a platform for understanding the pathogenesis of SAN dysfunction. The short stature homeobox 2 (SHOX2) and hyperpolarization-activated cyclic nucleotide-gated cation channel 4 (HCN4) genes are specifically expressed in SAN cells and are important for SAN development and automaticity. In this study, we aimed to purify and characterize human SAN-like cells in vitro, using HCN4 and SHOX2 as SAN markers. Methods We developed an HCN4-EGFP/SHOX2-mCherry dual reporter cell line derived from human induced pluripotent stem cells (hiPSCs), and HCN4 and SHOX2 gene expressions were visualized using the fluorescent proteins EGFP and mCherry, respectively. The dual reporter cell line was established using an HCN4-EGFP bacterial artificial chromosome-based semi-knock-in system and a CRISPR-Cas9-dependent knock-in system with a SHOX2-mCherry targeting vector. Flow cytometry, RT-PCR, and whole-cell patch-clamp analyses were performed to identify SAN-like cells. Results Flow cytometry analysis and cell sorting isolated HCN4-EGFP single-positive (HCN4+/SHOX2-) and HCN4-EGFP/SHOX2-mCherry double-positive (HCN4+/SHOX2+) cells. RT-PCR analyses showed that SAN-related genes were enriched within the HCN4+/SHOX2+ cells. Further, electrophysiological analyses showed that approximately 70% of the HCN4+/SHOX2+ cells exhibited SAN-like electrophysiological characteristics, as defined by the action potential parameters of the maximum upstroke velocity and action potential duration. Conclusions The HCN4-EGFP/SHOX2-mCherry dual reporter hiPSC system developed in this study enabled the enrichment of SAN-like cells within a mixed HCN4+/SHOX2+ population of differentiating cardiac cells. This novel cell line is useful for the further enrichment of human SAN-like cells. It may contribute to regenerative medicine, for example, biological pacemakers, as well as testing for cardiotoxic and chronotropic actions of novel drug candidates.
Collapse
|
10
|
Trovato C, Mohr M, Schmidt F, Passini E, Rodriguez B. Cross clinical-experimental-computational qualification of in silico drug trials on human cardiac purkinje cells for proarrhythmia risk prediction. FRONTIERS IN TOXICOLOGY 2022; 4:992650. [PMID: 36278026 PMCID: PMC9581132 DOI: 10.3389/ftox.2022.992650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
The preclinical identification of drug-induced cardiotoxicity and its translation into human risk are still major challenges in pharmaceutical drug discovery. The ICH S7B Guideline and Q&A on Clinical and Nonclinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential promotes human in silico drug trials as a novel tool for proarrhythmia risk assessment. To facilitate the use of in silico data in regulatory submissions, explanatory control compounds should be tested and documented to demonstrate consistency between predictions and the historic validation data. This study aims to quantify drug-induced electrophysiological effects on in silico cardiac human Purkinje cells, to compare them with existing in vitro rabbit data, and to assess their accuracy for clinical pro-arrhythmic risk predictions. The effects of 14 reference compounds were quantified in simulations with a population of in silico human cardiac Purkinje models. For each drug dose, five electrophysiological biomarkers were quantified at three pacing frequencies, and results compared with available in vitro experiments and clinical proarrhythmia reports. Three key results were obtained: 1) In silico, repolarization abnormalities in human Purkinje simulations predicted drug-induced arrhythmia for all risky compounds, showing higher predicted accuracy than rabbit experiments; 2) Drug-induced electrophysiological changes observed in human-based simulations showed a high degree of consistency with in vitro rabbit recordings at all pacing frequencies, and depolarization velocity and action potential duration were the most consistent biomarkers; 3) discrepancies observed for dofetilide, sotalol and terfenadine are mainly caused by species differences between humans and rabbit. Taken together, this study demonstrates higher accuracy of in silico methods compared to in vitro animal models for pro-arrhythmic risk prediction, as well as a high degree of consistency with in vitro experiments commonly used in safety pharmacology, supporting the potential for industrial and regulatory adoption of in silico trials for proarrhythmia prediction.
Collapse
Affiliation(s)
- Cristian Trovato
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Marcel Mohr
- Sanofi-Aventis Deutschland GmbH, R&D Preclinical Safety, Frankfurt, Germany
| | - Friedemann Schmidt
- Sanofi-Aventis Deutschland GmbH, R&D Preclinical Safety, Frankfurt, Germany
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Koivumäki JT, Hoffman J, Maleckar MM, Einevoll GT, Sundnes J. Computational cardiac physiology for new modelers: Origins, foundations, and future. Acta Physiol (Oxf) 2022; 236:e13865. [PMID: 35959512 DOI: 10.1111/apha.13865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 01/29/2023]
Abstract
Mathematical models of the cardiovascular system have come a long way since they were first introduced in the early 19th century. Driven by a rapid development of experimental techniques, numerical methods, and computer hardware, detailed models that describe physical scales from the molecular level up to organs and organ systems have been derived and used for physiological research. Mathematical and computational models can be seen as condensed and quantitative formulations of extensive physiological knowledge and are used for formulating and testing hypotheses, interpreting and directing experimental research, and have contributed substantially to our understanding of cardiovascular physiology. However, in spite of the strengths of mathematics to precisely describe complex relationships and the obvious need for the mathematical and computational models to be informed by experimental data, there still exist considerable barriers between experimental and computational physiological research. In this review, we present a historical overview of the development of mathematical and computational models in cardiovascular physiology, including the current state of the art. We further argue why a tighter integration is needed between experimental and computational scientists in physiology, and point out important obstacles and challenges that must be overcome in order to fully realize the synergy of experimental and computational physiological research.
Collapse
Affiliation(s)
- Jussi T Koivumäki
- Faculty of Medicine and Health Technology, and Centre of Excellence in Body-on-Chip Research, Tampere University, Tampere, Finland
| | - Johan Hoffman
- Division of Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mary M Maleckar
- Computational Physiology Department, Simula Research Laboratory, Oslo, Norway
| | - Gaute T Einevoll
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway.,Department of Physics, Norwegian University of Life Sciences, Ås, Norway
| | - Joakim Sundnes
- Computational Physiology Department, Simula Research Laboratory, Oslo, Norway
| |
Collapse
|
12
|
Barral YSHM, Shuttleworth JG, Clerx M, Whittaker DG, Wang K, Polonchuk L, Gavaghan DJ, Mirams GR. A Parameter Representing Missing Charge Should Be Considered when Calibrating Action Potential Models. Front Physiol 2022; 13:879035. [PMID: 35557969 PMCID: PMC9086858 DOI: 10.3389/fphys.2022.879035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Computational models of the electrical potential across a cell membrane are longstanding and vital tools in electrophysiology research and applications. These models describe how ionic currents, internal fluxes, and buffering interact to determine membrane voltage and form action potentials (APs). Although this relationship is usually expressed as a differential equation, previous studies have shown it can be rewritten in an algebraic form, allowing direct calculation of membrane voltage. Rewriting in this form requires the introduction of a new parameter, called Γ0 in this manuscript, which represents the net concentration of all charges that influence membrane voltage but are not considered in the model. Although several studies have examined the impact of Γ0 on long-term stability and drift in model predictions, there has been little examination of its effects on model predictions, particularly when a model is refit to new data. In this study, we illustrate how Γ0 affects important physiological properties such as action potential duration restitution, and examine the effects of (in)correctly specifying Γ0 during model calibration. We show that, although physiologically plausible, the range of concentrations used in popular models leads to orders of magnitude differences in Γ0, which can lead to very different model predictions. In model calibration, we find that using an incorrect value of Γ0 can lead to biased estimates of the inferred parameters, but that the predictive power of these models can be restored by fitting Γ0 as a separate parameter. These results show the value of making Γ0 explicit in model formulations, as it forces modellers and experimenters to consider the effects of uncertainty and potential discrepancy in initial concentrations upon model predictions.
Collapse
Affiliation(s)
- Yann-Stanislas H. M. Barral
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Joseph G. Shuttleworth
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Michael Clerx
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Dominic G. Whittaker
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ken Wang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Liudmila Polonchuk
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - David J. Gavaghan
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Gary R. Mirams
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
13
|
Jian K, Li C, Hancox JC, Zhang H. Pro-Arrhythmic Effects of Discontinuous Conduction at the Purkinje Fiber-Ventricle Junction Arising From Heart Failure-Induced Ionic Remodeling - Insights From Computational Modelling. Front Physiol 2022; 13:877428. [PMID: 35547576 PMCID: PMC9081695 DOI: 10.3389/fphys.2022.877428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure is associated with electrical remodeling of the electrical properties and kinetics of the ion channels and transporters that are responsible for cardiac action potentials. However, it is still unclear whether heart failure-induced ionic remodeling can affect the conduction of excitation waves at the Purkinje fiber-ventricle junction contributing to pro-arrhythmic effects of heart failure, as the complexity of the heart impedes a detailed experimental analysis. The aim of this study was to employ computational models to investigate the pro-arrhythmic effects of heart failure-induced ionic remodeling on the cardiac action potentials and excitation wave conduction at the Purkinje fiber-ventricle junction. Single cell models of canine Purkinje fiber and ventricular myocytes were developed for control and heart failure. These single cell models were then incorporated into one-dimensional strand and three-dimensional wedge models to investigate the effects of heart failure-induced remodeling on propagation of action potentials in Purkinje fiber and ventricular tissue and at the Purkinje fiber-ventricle junction. This revealed that heart failure-induced ionic remodeling of Purkinje fiber and ventricular tissue reduced conduction safety and increased tissue vulnerability to the genesis of the unidirectional conduction block. This was marked at the Purkinje fiber-ventricle junction, forming a potential substrate for the genesis of conduction failure that led to re-entry. This study provides new insights into proarrhythmic consequences of heart failure-induced ionic remodeling.
Collapse
Affiliation(s)
- Kun Jian
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Chen Li
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Accurate in silico simulation of the rabbit Purkinje fiber electrophysiological assay to facilitate early pharmaceutical cardiosafety assessment: Dream or reality? J Pharmacol Toxicol Methods 2022; 115:107172. [DOI: 10.1016/j.vascn.2022.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022]
|
15
|
Geng Z, Jin L, Huang Y, Wu X. Rate dependence of early afterdepolarizations in the His-Purkinje system: A simulation study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 217:106665. [PMID: 35172249 DOI: 10.1016/j.cmpb.2022.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/04/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Early afterdepolarizations (EADs) are associated with a variety of arrhythmias and have the property of rate dependence. EADs can occur in Purkinje cells while the effect of rate dependence of EADs in the His-Purkinje system has not been fully investigated. In order to reveal the rate dependence of EADs in the His-Purkinje system and its effect on ventricular electrical activities, the simulation research was carried out in this manuscript. METHODS This manuscript first studied the relationship between the occurrence of EADs and stimulation cycle length on the DiFranNoble cell model. Then, the relationship between the rate dependence of EADs and the conduction block of the His-Purkinje system at slow heart rates was studied on the rabbit whole ventricular model including the His-Purkinje system, and its mechanism was analyzed from multiple angles. RESULTS ① The rate dependence of EADs is related to the inconsistency of EADs occurrence in the His-Purkinje system. When the stimulation cycle length is long or short enough, EADs either occur or not occur stably in the His-Purkinje system, while in a certain stimulation cycle length window, the chaotic state of EADs will be observed. ② The key subcellular factors x-gate is an important mechanism involved to the rate dependence of EADs in the His-Purkinje system. ③ The discrete distribution of x-gate values and the "source-sink" mechanism lead to the inconsistency of EADs in the His-Purkinje system. The prolonged action potential duration caused by EADs can lead to conduction block at slow heart rates. CONCLUSION The rate dependence of EADs in Purkinje system can lead to disordered ventricular electrical activity.
Collapse
Affiliation(s)
- Zihui Geng
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Lian Jin
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yanqi Huang
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Xiaomei Wu
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, Shanghai Engineering Research Center of Assistive Devices, Yiwu Research Institute of Fudan University, 322000, Chengbei Road, Yiwu City, 322000 Zhejiang, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
16
|
Cumberland MJ, Riebel LL, Roy A, O’Shea C, Holmes AP, Denning C, Kirchhof P, Rodriguez B, Gehmlich K. Basic Research Approaches to Evaluate Cardiac Arrhythmia in Heart Failure and Beyond. Front Physiol 2022; 13:806366. [PMID: 35197863 PMCID: PMC8859441 DOI: 10.3389/fphys.2022.806366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Patients with heart failure often develop cardiac arrhythmias. The mechanisms and interrelations linking heart failure and arrhythmias are not fully understood. Historically, research into arrhythmias has been performed on affected individuals or in vivo (animal) models. The latter however is constrained by interspecies variation, demands to reduce animal experiments and cost. Recent developments in in vitro induced pluripotent stem cell technology and in silico modelling have expanded the number of models available for the evaluation of heart failure and arrhythmia. An agnostic approach, combining the modalities discussed here, has the potential to improve our understanding for appraising the pathology and interactions between heart failure and arrhythmia and can provide robust and validated outcomes in a variety of research settings. This review discusses the state of the art models, methodologies and techniques used in the evaluation of heart failure and arrhythmia and will highlight the benefits of using them in combination. Special consideration is paid to assessing the pivotal role calcium handling has in the development of heart failure and arrhythmia.
Collapse
Affiliation(s)
- Max J. Cumberland
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leto L. Riebel
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ashwin Roy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris Denning
- Stem Cell Biology Unit, Biodiscovery Institute, British Heart Foundation Centre for Regenerative Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and British Heart Foundation Centre of Research Excellence Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Occurrence of early afterdepolarization under healthy or hypertrophic cardiomyopathy conditions in the human ventricular endocardial myocyte: In silico study using 109 torsadogenic or non-torsadogenic compounds. Toxicol Appl Pharmacol 2022; 438:115914. [DOI: 10.1016/j.taap.2022.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 11/18/2022]
|
18
|
Odening KE, Gomez AM, Dobrev D, Fabritz L, Heinzel FR, Mangoni ME, Molina CE, Sacconi L, Smith G, Stengl M, Thomas D, Zaza A, Remme CA, Heijman J. ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research. Europace 2021; 23:1795-1814. [PMID: 34313298 PMCID: PMC11636574 DOI: 10.1093/europace/euab142] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.
Collapse
Affiliation(s)
- Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
- Institute of Physiology, University of Bern, Bern, Switzerland
| | - Ana-Maria Gomez
- Signaling and cardiovascular pathophysiology—UMR-S 1180, Inserm, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Hospital Birmingham NHS Trust, Birmingham, UK
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Leonardo Sacconi
- National Institute of Optics and European Laboratory for Non Linear Spectroscopy, Italy
- Institute for Experimental Cardiovascular Medicine, University Freiburg, Germany
| | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Milan Stengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Dierk Thomas
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Germany
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
19
|
Theoretical Investigation of the Mechanism by which A Gain-of-Function Mutation of the TRPM4 Channel Causes Conduction Block. Int J Mol Sci 2021; 22:ijms22168513. [PMID: 34445219 PMCID: PMC8395173 DOI: 10.3390/ijms22168513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
In the heart, TRPM4 is most abundantly distributed in the conduction system. Previously, a single mutation, 'E7K', was identified in its distal N-terminus to cause conduction disorder because of enhanced cell-surface expression. It remains, however, unclear how this expression increase leads to conduction failure rather than abnormally enhanced cardiac excitability. To address this issue theoretically, we mathematically formulated the gating kinetics of the E7K-mutant TRPM4 channel by a combined use of voltage jump analysis and ionomycin-perforated cell-attached recording technique and incorporated the resultant rate constants of opening and closing into a human Purkinje fiber single-cell action potential (AP) model (Trovato model) to perform 1D-cable simulations. The results from TRPM4 expressing HEK293 cells showed that as compared with the wild-type, the open state is much preferred in the E7K mutant with increased voltage-and Ca2+-sensitivities. These theoretical predictions were confirmed by power spectrum and single channel analyses of expressed wild-type and E7K-mutant TRPM4 channels. In our modified Trovato model, the facilitated opening of the E7K mutant channel markedly prolonged AP duration with concomitant depolarizing shifts of the resting membrane potential in a manner dependent on the channel density (or maximal activity). This was, however, little evident in the wild-type TRPM4 channel. Moreover, 1D-cable simulations with the modified Trovato model revealed that increasing the density of E7K (but not of wild-type) TRPM4 channels progressively reduced AP conduction velocity eventually culminating in complete conduction block. These results clearly suggest the brady-arrhythmogenicity of the E7K mutant channel which likely results from its pathologically enhanced activity.
Collapse
|
20
|
Ton AT, Nguyen W, Sweat K, Miron Y, Hernandez E, Wong T, Geft V, Macias A, Espinoza A, Truong K, Rasoul L, Stafford A, Cotta T, Mai C, Indersmitten T, Page G, Miller PE, Ghetti A, Abi-Gerges N. Arrhythmogenic and antiarrhythmic actions of late sustained sodium current in the adult human heart. Sci Rep 2021; 11:12014. [PMID: 34103608 PMCID: PMC8187365 DOI: 10.1038/s41598-021-91528-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Late sodium current (late INa) inhibition has been proposed to suppress the incidence of arrhythmias generated by pathological states or induced by drugs. However, the role of late INa in the human heart is still poorly understood. We therefore investigated the role of this conductance in arrhythmias using adult primary cardiomyocytes and tissues from donor hearts. Potentiation of late INa with ATX-II (anemonia sulcata toxin II) and E-4031 (selective blocker of the hERG channel) slowed the kinetics of action potential repolarization, impaired Ca2+ homeostasis, increased contractility, and increased the manifestation of arrhythmia markers. These effects could be reversed by late INa inhibitors, ranolazine and GS-967. We also report that atrial tissues from donor hearts affected by atrial fibrillation exhibit arrhythmia markers in the absence of drug treatment and inhibition of late INa with GS-967 leads to a significant reduction in arrhythmic behaviour. These findings reveal a critical role for the late INa in cardiac arrhythmias and suggest that inhibition of this conductance could provide an effective therapeutic strategy. Finally, this study highlights the utility of human ex-vivo heart models for advancing cardiac translational sciences.
Collapse
Affiliation(s)
- Anh Tuan Ton
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - William Nguyen
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Katrina Sweat
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Yannick Miron
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Eduardo Hernandez
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tiara Wong
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Valentyna Geft
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Andrew Macias
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Ana Espinoza
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Ky Truong
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Lana Rasoul
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Alexa Stafford
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tamara Cotta
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Christina Mai
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tim Indersmitten
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Guy Page
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Paul E Miller
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Andre Ghetti
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA.
| |
Collapse
|
21
|
Zhang XD, Thai PN, Lieu DK, Chiamvimonvat N. Model Systems for Addressing Mechanism of Arrhythmogenesis in Cardiac Repair. Curr Cardiol Rep 2021; 23:72. [PMID: 34050853 PMCID: PMC8164614 DOI: 10.1007/s11886-021-01498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cardiac cell-based therapy represents a promising approach for cardiac repair. However, one of the main challenges is cardiac arrhythmias associated with stem cell transplantation. The current review summarizes the recent progress in model systems for addressing mechanisms of arrhythmogenesis in cardiac repair. RECENT FINDINGS Animal models have been extensively developed for mechanistic studies of cardiac arrhythmogenesis. Advances in human induced pluripotent stem cells (hiPSCs), patient-specific disease models, tissue engineering, and gene editing have greatly enhanced our ability to probe the mechanistic bases of cardiac arrhythmias. Additionally, recent development in multiscale computational studies and machine learning provides yet another powerful tool to quantitatively decipher the mechanisms of cardiac arrhythmias. Advancing efforts towards the integrations of experimental and computational studies are critical to gain insights into novel mitigation strategies for cardiac arrhythmias in cell-based therapy.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Phung N. Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Deborah K. Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
22
|
Jordaan P, Dumotier B, Traebert M, Miller PE, Ghetti A, Urban L, Abi-Gerges N. Cardiotoxic Potential of Hydroxychloroquine, Chloroquine and Azithromycin in Adult Human Primary Cardiomyocytes. Toxicol Sci 2021; 180:356-368. [PMID: 33483756 PMCID: PMC7928616 DOI: 10.1093/toxsci/kfaa194] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Substantial efforts have been recently committed to develop coronavirus disease-2019 (COVID-19) medications, and Hydroxychloroquine alone or in combination with Azithromycin has been promoted as a repurposed treatment. Although these drugs may increase cardiac toxicity risk, cardiomyocyte mechanisms underlying this risk remain poorly understood in humans. Therefore, we evaluated the proarrhythmia risk and inotropic effects of these drugs in the cardiomyocyte contractility-based model of the human heart. We found Hydroxychloroquine to have a low proarrhythmia risk, whereas Chloroquine and Azithromycin were associated with high risk. Hydroxychloroquine proarrhythmia risk changed to high with low level of K+, whereas high level of Mg2+ protected against proarrhythmic effect of high Hydroxychloroquine concentrations. Moreover, therapeutic concentration of Hydroxychloroquine caused no enhancement of elevated temperature-induced proarrhythmia. Polytherapy of Hydroxychloroquine plus Azithromycin and sequential application of these drugs were also found to influence proarrhythmia risk categorization. Hydroxychloroquine proarrhythmia risk changed to high when combined with Azithromycin at therapeutic concentration. However, Hydroxychloroquine at therapeutic concentration impacted the cardiac safety profile of Azithromycin and its proarrhythmia risk only at concentrations above therapeutic level. We also report that Hydroxychloroquine and Chloroquine, but not Azithromycin, decreased contractility while exhibiting multi-ion channel block features, and Hydroxychloroquine's contractility effect was abolished by Azithromycin. Thus, this study has the potential to inform clinical studies evaluating repurposed therapies, including those in the COVID-19 context. Additionally, it demonstrates the translational value of the human cardiomyocyte contractility-based model as a key early discovery path to inform decisions on novel therapies for COVID-19, malaria, and inflammatory diseases.
Collapse
Affiliation(s)
- Pierre Jordaan
- Chief Medical Officer and Patient Safety, Novartis AG, Basel, Switzerland
| | - Bérengère Dumotier
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | - Martin Traebert
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | - Paul E Miller
- AnaBios Corporation, San Diego, California 92109, USA
| | - Andre Ghetti
- AnaBios Corporation, San Diego, California 92109, USA
| | - Laszlo Urban
- Novartis Institutes for Biomedical Research, Preclinical Secondary Pharmacology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
23
|
Amuzescu B, Airini R, Epureanu FB, Mann SA, Knott T, Radu BM. Evolution of mathematical models of cardiomyocyte electrophysiology. Math Biosci 2021; 334:108567. [PMID: 33607174 DOI: 10.1016/j.mbs.2021.108567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Advanced computational techniques and mathematical modeling have become more and more important to the study of cardiac electrophysiology. In this review, we provide a brief history of the evolution of cardiomyocyte electrophysiology models and highlight some of the most important ones that had a major impact on our understanding of the electrical activity of the myocardium and associated transmembrane ion fluxes in normal and pathological states. We also present the use of these models in the study of various arrhythmogenesis mechanisms, particularly the integration of experimental pharmacology data into advanced humanized models for in silico proarrhythmogenic risk prediction as an essential component of the Comprehensive in vitro Proarrhythmia Assay (CiPA) drug safety paradigm.
Collapse
Affiliation(s)
- Bogdan Amuzescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| | - Razvan Airini
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Florin Bogdan Epureanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Stefan A Mann
- Cytocentrics Bioscience GmbH, Nattermannallee 1, 50829 Cologne, Germany
| | - Thomas Knott
- CytoBioScience Inc., 3463 Magic Drive, San Antonio, TX 78229, USA
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| |
Collapse
|
24
|
Zhu Y, Bai J, Lo A, Lu Y, Zhao J. Mechanisms underlying pro-arrhythmic abnormalities arising from Pitx2-induced electrical remodelling: an in silico intersubject variability study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:106. [PMID: 33569408 PMCID: PMC7867875 DOI: 10.21037/atm-20-5660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Electrical remodelling as a result of the homeodomain transcription factor 2 (Pitx2)-dependent gene regulation induces atrial fibrillation (AF) with different mechanisms. The purpose of this study was to identify Pitx2-induced changes in ionic currents that cause action potential (AP) shortening and lead to triggered activity. Methods Populations of computational atrial AP models were developed based on AP recordings from sinus rhythm (SR) and AF patients. Models in the AF population were divided into triggered and untriggered AP groups to evaluate the relationship between each ion current regulated by Pitx2 and triggered APs. Untriggered AP models were then divided into shortened and unshortened AP groups to determine which Pitx2-dependent ion currents contribute to AP shortening. Results According to the physiological range of AP biomarkers measured experimentally, populations of 2,885 SR and 4,781 AF models out of the initial pool of 30,000 models were selected. Models in the AF population predicted AP shortening and triggered activity observed in experiments in Pitx2-induced remodelling conditions. The AF models included 925 triggered AP models, 1,412 shortened AP models and 2,444 unshortened AP models. Intersubject variability in IKs and ICaL primarily modulated variability in AP duration (APD) in all shortened and unshortened AP models, whereas intersubject variability in IK1 and SERCA mainly contributed to the variability in AP morphology in all triggered and untriggered AP models. The incidence of shortened AP was positively correlated with IKs and IK1 and was negatively correlated with INa , ICaL and SERCA, whereas the incidence of triggered AP was negatively correlated with IKs and IK1 and was positively correlated with INa , ICaL and SERCA. Conclusions Electrical remodelling due to Pitx2 upregulation may increase the incidence of shortened AP, whereas electrical remodelling arising from Pitx2 downregulation may favor to the genesis of triggered AP.
Collapse
Affiliation(s)
- Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|