1
|
Bledzka KM, Manaserh IH, Ifft AD, Rennison JH, Bohacek M, Vasiliauskas KM, Grondolsky J, Ampong I, Van Wagoner DR, Schumacher SM. Female Specific Restrictive Cardiomyopathy and Metabolic Dysregulation in transgenic mice expressing a Peptide of the Amino-Terminus of GRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618348. [PMID: 39463972 PMCID: PMC11507674 DOI: 10.1101/2024.10.14.618348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cardiovascular disease and heart failure are a major health challenge, with sex differences in pathophysiology and treatment responses critically influencing patient outcomes. G protein-coupled receptor (GPCR) kinase 2 (GRK2) is a pivotal regulator of cellular signaling whose elevation is a hallmark of heart failure progression. Its complex network of protein interactions impact a wide range of physiological and pathophysiological processes including cardiac function. In this study, we examined the effects of cardiac-restricted expression of an amino-terminal peptide of GRK2 (βARKnt) in female mice subjected to acute and chronic pressure overload. Our findings reveal that that βARKnt affects hypertrophy development and cardiac function differently in female mice than in males, leading to a transition to heart failure not observed in control females or βARKnt males. Notably, the βARKnt female mice exhibited baseline hypertrophy with distinct left atrial morphology, increased fibrosis, and immune cell infiltration compared to the controls, which progressed under chronic stress, indicating adverse cardiac remodeling. Furthermore, βARKnt female mice, unlike males, exhibit impaired tissue respiration following acute pressure overload and altered glucose sensitivity and insulin tolerance, highlighting significant remodeling of cardiac and systemic metabolism.
Collapse
|
2
|
Zhang F, Armando I, Jose PA, Zeng C, Yang J. G protein-coupled receptor kinases in hypertension: physiology, pathogenesis, and therapeutic targets. Hypertens Res 2024; 47:2317-2336. [PMID: 38961282 PMCID: PMC11374685 DOI: 10.1038/s41440-024-01763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
G protein-coupled receptors (GPCRs) mediate cellular responses to a myriad of hormones and neurotransmitters that play vital roles in the regulation of physiological processes such as blood pressure. In organs such as the artery and kidney, hormones or neurotransmitters, such as angiotensin II (Ang II), dopamine, epinephrine, and norepinephrine exert their functions via their receptors, with the ultimate effect of keeping normal vascular reactivity, normal body sodium, and normal blood pressure. GPCR kinases (GRKs) exert their biological functions, by mediating the regulation of agonist-occupied GPCRs, non-GPCRs, or non-receptor substrates. In particular, increasing number of studies show that aberrant expression and activity of GRKs in the cardiovascular system and kidney inhibit or stimulate GPCRs (e.g., dopamine receptors, Ang II receptors, and α- and β-adrenergic receptors), resulting in hypertension. Current studies focus on the effect of selective GRK inhibitors in cardiovascular diseases, including hypertension. Moreover, genetic studies show that GRK gene variants are associated with essential hypertension, blood pressure response to antihypertensive medicines, and adverse cardiovascular outcomes of antihypertensive treatment. In this review, we present a comprehensive overview of GRK-mediated regulation of blood pressure, role of GRKs in the pathogenesis of hypertension, and highlight potential strategies for the treatment of hypertension. Schematic representation of GPCR desensitization process. Activation of GPCRs begins with the binding of an agonist to its corresponding receptor. Then G proteins activate downstream effectors that are mediated by various signaling pathways. GPCR signaling is halted by GRK-mediated receptor phosphorylation, which causes receptor internalization through β-arrestin.
Collapse
Affiliation(s)
- Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
3
|
Manaserh IH, Bledzka KM, Ampong I, Junker A, Grondolsky J, Schumacher SM. A cardiac amino-terminal GRK2 peptide inhibits insulin resistance yet enhances maladaptive cardiovascular and brown adipose tissue remodeling in females during diet-induced obesity. J Mol Cell Cardiol 2023; 183:81-97. [PMID: 37714510 PMCID: PMC10591815 DOI: 10.1016/j.yjmcc.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/06/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Obesity and metabolic disorders are increasing in epidemic proportions, leading to poor outcomes including heart failure. With a growing recognition of the effect of adipose tissue dysfunction on heart disease, it is less well understood how the heart can influence systemic metabolic homeostasis. Even less well understood is sex differences in cardiometabolic responses. Previously, our lab investigated the role of the amino-terminus of GRK2 in cardiometabolic remodeling using transgenic mice with cardiac restricted expression of a short peptide, βARKnt. Male mice preserved insulin sensitivity, enhanced metabolic flexibility and adipose tissue health, elicited cardioprotection, and improved cardiac metabolic signaling. To examine the effect of cardiac βARKnt expression on cardiac and metabolic function in females in response to diet-induced obesity, we subjected female mice to high fat diet (HFD) to trigger cardiac and metabolic adaptive changes. Despite equivalent weight gain, βARKnt mice exhibited improved glucose tolerance and insulin sensitivity. However, βARKnt mice displayed a progressive reduction in energy expenditure during cold challenge after acute and chronic HFD stress. They also demonstrated reduced cardiac function and increased markers of maladaptive remodeling and tissue injury, and decreased or aberrant metabolic signaling. βARKnt mice exhibited reduced lipid deposition in the brown adipose tissue (BAT), but delayed or decreased markers of BAT activation and function suggested multiple mechanisms contributed to the decreased thermogenic capacity. These data suggest a non-canonical cardiac regulation of BAT lipolysis and function that highlights the need for studies elucidating the mechanisms of sex-specific responses to metabolic dysfunction.
Collapse
Affiliation(s)
- Iyad H Manaserh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kamila M Bledzka
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Isaac Ampong
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alex Junker
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Grondolsky
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sarah M Schumacher
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
4
|
Ferrero KM, Koch WJ. GRK2 in cardiovascular disease and its potential as a therapeutic target. J Mol Cell Cardiol 2022; 172:14-23. [PMID: 35878706 DOI: 10.1016/j.yjmcc.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVDs) represent the leading cause of death globally. Despite major advances in the field of pharmacological CVD treatments, particularly in the field of heart failure (HF) research, case numbers and overall mortality remain high and have trended upwards over the last few years. Thus, identifying novel molecular targets for developing HF therapeutics remains a key research focus. G protein-coupled receptors (GPCRs) are critical myocardial signal transducers which regulate cardiac contractility, growth, adaptation and metabolism. Additionally, GPCR dysregulation underlies multiple models of cardiac pathology, and most pharmacological therapeutics currently used in HF target these receptors. Currently-approved treatments have improved patient outcomes, but therapies to stop or reverse HF are lacking. A recent focus on GPCR intracellular-regulating proteins such as GPCR kinases (GRKs) has uncovered GRK2 as a promising target for combating HF. Current literature strongly establishes increased levels and activity of GRK2 in multiple models of CVD. Additionally, the GRK2 interactome includes numerous proteins which interact with differential domains of GRK2 to modulate both beneficial and deleterious signaling pathways in the heart, indicating that these domains can be targeted with a high level of specificity unique to various cardiac pathologies. These data support the premise that GRK2 should be at the forefront of a novel investigative drug search. This perspective reviews cardiac GPCRs, describes the structure and functions of GRK2 in cardiac function and maladaptive pathology, and summarizes the ongoing and future research for targeting this critical kinase across cellular, animal and human models of cardiac dysfunction and HF.
Collapse
Affiliation(s)
- Kimberly M Ferrero
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Philadelphia, PA, USA; Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, USA
| | - Walter J Koch
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Philadelphia, PA, USA; Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Hill BG. Cardiac GRK2 and the Communicative Axis Between Heart and Fat. JACC Basic Transl Sci 2022; 7:580-581. [PMID: 35818507 PMCID: PMC9270589 DOI: 10.1016/j.jacbts.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Bradford G. Hill
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
6
|
Manaserh IH, Bledzka KM, Junker A, Grondolsky J, Schumacher SM. A Cardiac Amino-Terminal GRK2 Peptide Inhibits Maladaptive Adipocyte Hypertrophy and Insulin Resistance During Diet-Induced Obesity. JACC Basic Transl Sci 2022; 7:563-579. [PMID: 35818501 PMCID: PMC9270572 DOI: 10.1016/j.jacbts.2022.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/04/2022]
Abstract
Heart disease remains the leading cause of death, and mortality rates positively correlate with the presence of obesity and diabetes. Despite the correlation between cardiac and metabolic dysregulation, the mechanistic pathway(s) of interorgan crosstalk still remain undefined. This study reveals that cardiac-restricted expression of an amino-terminal peptide of GRK2 (βARKnt) preserves systemic and cardiac insulin responsiveness, and protects against adipocyte maladaptive hypertrophy in a diet-induced obesity model. These data suggest a cardiac-driven mechanism to ameliorate maladaptive cardiac remodeling and improve systemic metabolic homeostasis that may lead to new treatment modalities for cardioprotection in obesity and obesity-related metabolic syndromes.
Collapse
Key Words
- AS160, Akt substrate of 160 kilodaltons
- BAT, brown adipose tissue
- GRK2
- GRK2, G protein-coupled receptor kinase 2
- HFD, high-fat diet
- HOMA-IR, homeostatic model assessment of insulin resistance
- NLC, nontransgenic littermate control
- NP, natriuretic peptide
- NPR, natriuretic peptide receptor
- RER, respiratory exchange ratio
- T2D, type II diabetes
- Tg, transgenic
- beiging
- cardioprotection
- gWAT, gonadal white adipose tissue
- mTOR, mechanistic target of rapamycin protein kinase
- metabolism
- obesity
- βARKct, cardiac restricted expression of C-terminus domain of GRK2
- βARKnt, cardiac-restricted expression of N-terminus domain of GRK2
Collapse
Affiliation(s)
- Iyad H. Manaserh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kamila M. Bledzka
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alex Junker
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jessica Grondolsky
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sarah M. Schumacher
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Winkle AJ, Nassal DM, Shaheen R, Thomas E, Mohta S, Gratz D, Weinberg SH, Hund TJ. Emerging therapeutic targets for cardiac hypertrophy. Expert Opin Ther Targets 2022; 26:29-40. [PMID: 35076342 PMCID: PMC8885901 DOI: 10.1080/14728222.2022.2031974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Cardiac hypertrophy is associated with adverse outcomes across cardiovascular disease states. Despite strides over the last three decades in identifying molecular and cellular mechanisms driving hypertrophy, the link between pathophysiological stress stimuli and specific myocyte/heart growth profiles remains unclear. Moreover, the optimal strategy for preventing pathology in the setting of hypertrophy remains controversial. AREAS COVERED This review discusses molecular mechanisms underlying cardiac hypertrophy with a focus on factors driving the orientation of myocyte growth and the impact on heart function. We highlight recent work showing a novel role for the spectrin-based cytoskeleton, emphasizing regulation of myocyte dimensions but not hypertrophy per se. Finally, we consider opportunities for directing the orientation of myocyte growth in response to hypertrophic stimuli as an alternative therapeutic approach. Relevant publications on the topic were identified through Pubmed with open-ended search dates. EXPERT OPINION To define new therapeutic avenues, more precision is required when describing changes in myocyte and heart structure/function in response to hypertrophic stimuli. Recent developments in computational modeling of hypertrophic networks, in concert with more refined experimental approaches will catalyze translational discovery to advance the field and further our understanding of cardiac hypertrophy and its relationship with heart disease.
Collapse
Affiliation(s)
- Alexander J Winkle
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Rebecca Shaheen
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Evelyn Thomas
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Shivangi Mohta
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Seth H Weinberg
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA.,Department of Internal Medicine, College of Medicine, the Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|