1
|
Goedeke L, Ma Y, Gaspar RC, Nasiri A, Lee J, Zhang D, Galsgaard KD, Hu X, Zhang J, Guerrera N, Li X, LaMoia T, Hubbard BT, Haedersdal S, Wu X, Stack J, Dufour S, Butrico GM, Kahn M, Perry RJ, Cline GW, Young LH, Shulman GI. SGLT2 inhibition alters substrate utilization and mitochondrial redox in healthy and failing rat hearts. J Clin Invest 2024; 134:e176708. [PMID: 39680452 DOI: 10.1172/jci176708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/17/2024] [Indexed: 12/18/2024] Open
Abstract
Previous studies highlight the potential for sodium-glucose cotransporter type 2 (SGLT2) inhibitors (SGLT2i) to exert cardioprotective effects in heart failure by increasing plasma ketones and shifting myocardial fuel utilization toward ketone oxidation. However, SGLT2i have multiple in vivo effects and the differential impact of SGLT2i treatment and ketone supplementation on cardiac metabolism remains unclear. Here, using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology combined with infusions of [13C6]glucose or [13C4]βOHB, we demonstrate that acute SGLT2 inhibition with dapagliflozin shifts relative rates of myocardial mitochondrial metabolism toward ketone oxidation, decreasing pyruvate oxidation with little effect on fatty acid oxidation in awake rats. Shifts in myocardial ketone oxidation persisted when plasma glucose levels were maintained. In contrast, acute βOHB infusion similarly augmented ketone oxidation, but markedly reduced fatty acid oxidation and did not alter glucose uptake or pyruvate oxidation. After inducing heart failure, dapagliflozin increased relative rates of ketone and fatty acid oxidation, but decreased pyruvate oxidation. Dapagliflozin increased mitochondrial redox and reduced myocardial oxidative stress in heart failure, which was associated with improvements in left ventricular ejection fraction after 3 weeks of treatment. Thus, SGLT2i have pleiotropic effects on systemic and heart metabolism, which are distinct from ketone supplementation and may contribute to the long-term cardioprotective benefits of SGLT2i.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Medicine (Cardiology) and The Cardiovascular Research Institute and
- Department of Medicine (Endocrinology) and The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yina Ma
- Department of Internal Medicine (Cardiovascular Medicine) and The Yale Cardiovascular Research Center, Yale School of Medicine, New Haven Connecticut, USA
| | - Rafael C Gaspar
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Ali Nasiri
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Jieun Lee
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Dongyan Zhang
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Katrine Douglas Galsgaard
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoyue Hu
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Jiasheng Zhang
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Nicole Guerrera
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Xiruo Li
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Traci LaMoia
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Brandon T Hubbard
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Sofie Haedersdal
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Clinical Research, Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Xiaohong Wu
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - John Stack
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Sylvie Dufour
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Gina Marie Butrico
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Mario Kahn
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Rachel J Perry
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Gary W Cline
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Lawrence H Young
- Department of Internal Medicine (Cardiovascular Medicine) and The Yale Cardiovascular Research Center, Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Gerald I Shulman
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
2
|
Fulghum KL, Collins HE, Lorkiewicz PK, Cassel TA, Fan TWM, Hill BG. Exercise-induced changes in myocardial glucose utilization during periods of active cardiac growth. J Mol Cell Cardiol 2024; 191:50-62. [PMID: 38703412 PMCID: PMC11135805 DOI: 10.1016/j.yjmcc.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Exercise training can promote physiological cardiac growth, which has been suggested to involve changes in glucose metabolism to facilitate hypertrophy of cardiomyocytes. In this study, we used a dietary, in vivo isotope labeling approach to examine how exercise training influences the metabolic fate of carbon derived from dietary glucose in the heart during acute, active, and established phases of exercise-induced cardiac growth. Male and female FVB/NJ mice were subjected to treadmill running for up to 4 weeks and cardiac growth was assessed by gravimetry. Cardiac metabolic responses to exercise were assessed via in vivo tracing of [13C6]-glucose via mass spectrometry and nuclear magnetic resonance. We found that the half-maximal cardiac growth response was achieved by approximately 1 week of daily exercise training, with near maximal growth observed in male mice with 2 weeks of training; however, female mice were recalcitrant to exercise-induced cardiac growth and required a higher daily intensity of exercise training to achieve significant, albeit modest, increases in cardiac mass. We also found that increases in the energy charge of adenylate and guanylate nucleotide pools precede exercise-induced changes in cardiac size and were associated with higher glucose tracer enrichment in the TCA pool and in amino acids (aspartate, glutamate) sourced by TCA intermediates. Our data also indicate that the activity of collateral biosynthetic pathways of glucose metabolism may not be markedly altered by exercise. Overall, this study provides evidence that metabolic remodeling in the form of heightened energy charge and increased TCA cycle activity and cataplerosis precedes cardiac growth caused by exercise training in male mice.
Collapse
Affiliation(s)
- Kyle L Fulghum
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Helen E Collins
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Pawel K Lorkiewicz
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Teresa A Cassel
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Teresa W M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America.
| |
Collapse
|
3
|
Huo A, Xiong X. PAICS as a potential target for cancer therapy linking purine biosynthesis to cancer progression. Life Sci 2023; 331:122070. [PMID: 37673296 DOI: 10.1016/j.lfs.2023.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/02/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Tumor cells are required to undergo metabolic reprogramming for rapid development and progression, and one of the metabolic characteristics of cancer cells is the excessive synthesis and utilization of nucleotides. Abnormally increased nucleotides and their metabolites not only directly accelerate tumor cell progression but also indirectly act on stromal cells in the tumor microenvironment (TME) via a paracrine manner to regulate tumor progression. Purine nucleotides are mainly produced via de novo nucleotide synthesis in tumor cells; therefore, intervening in their synthesis has emerged as a promising strategy in anti-tumor therapy. De novo purine synthesis is a 10-step reaction catalyzed by six enzymes to synthesize inosine 5-monophosphate (IMP) and subsequently synthesize AMP and GMP. Phosphoribosylaminoimidazole carboxylase/phosphori-bosylaminoimidazole succinocarboxamide synthetase (PAICS) is a bifunctional enzyme that catalyzes de novo purine synthesis. Aberrantly elevated PAICS expression in various tumors is associated with poor prognosis. Evidence suggests that PAICS and its catalytic product, N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR), could inhibit tumor cell apoptosis and promote the growth, epithelial-mesenchymal transition (EMT), invasion, and metastasis by regulating signaling pathways such as pyruvate kinase M2 (PKM2), extracellular signal-related kinases 1 and 2 (ERK1/2), focal adhesion kinase (FAK) and so on. This review summarizes the structure, biological functions and the molecular mechanisms of PAICS in cancer development and discusses its potential to be a target for tumor therapy.
Collapse
Affiliation(s)
- Anqi Huo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
4
|
Li Y, Ye Y, Li W, Liu X, Zhao Y, Jiang Q, Che X. Effects of Salinity Stress on Histological Changes, Glucose Metabolism Index and Transcriptomic Profile in Freshwater Shrimp, Macrobrachium nipponense. Animals (Basel) 2023; 13:2884. [PMID: 37760284 PMCID: PMC10525465 DOI: 10.3390/ani13182884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Salinity is an important factor in the aquatic environment and affects the ion homeostasis and physiological activities of crustaceans. Macrobrachium nipponense is a shrimp that mainly lives in fresh and low-salt waters and plays a huge economic role in China's shrimp market. Currently, there are only a few studies on the effects of salinity on M. nipponense. Therefore, it is of particular importance to study the molecular responses of M. nipponense to salinity fluctuations. In this study, M. nipponense was set at salinities of 0, 8, 14 and 22‱ for 6 weeks. The gills from the control (0‱) and isotonic groups (14‱) were used for RNA extraction and transcriptome analysis. In total, 593 differentially expressed genes (DEGs) were identified, of which 282 were up-regulated and 311 were down-regulated. The most abundant gill transcripts responding to different salinity levels based on GO classification were organelle membrane (cellular component), creatine transmembrane transporter activity (molecular function) and creatine transmembrane transport (biological function). KEGG analysis showed that the most enriched and significantly affected pathways included AMPK signaling, lysosome and cytochrome P450. In addition, 15 DEGs were selected for qRT-PCR verification, which were mainly related to ion homeostasis, glucose metabolism and lipid metabolism. The results showed that the expression patterns of these genes were similar to the high-throughput data. Compared with the control group, high salinity caused obvious injury to gill tissue, mainly manifested as contraction and relaxation of gill filament, cavity vacuolation and severe epithelial disintegration. Glucose-metabolism-related enzyme activities (e.g., pyruvate kinase, hexokinase, 6-phosphate fructose kinase) and related-gene expression (e.g., hexokinase, pyruvate kinase, 6-phosphate fructose kinase) in the gills were significantly higher at a salinity of 14‱. This study showed that salinity stress activated ion transport channels and promoted an up-regulated level of glucose metabolism. High salinity levels caused damage to the gill tissue of M. nipponense. Overall, these results improved our understanding of the salt tolerance mechanism of M. nipponense.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China; (Y.L.); (X.L.)
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China; (Y.Y.); (W.L.); (Y.Z.)
| | - Wen Li
- School of Life Science, East China Normal University, Shanghai 200241, China; (Y.Y.); (W.L.); (Y.Z.)
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China; (Y.L.); (X.L.)
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China; (Y.Y.); (W.L.); (Y.Z.)
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China;
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China; (Y.L.); (X.L.)
| |
Collapse
|
5
|
Stepanov GF, Vastyanov RS, Tertyshnyi SV, Petruk LH. THE IMPACT OF HORMONE-VITAMIN COMPLEX ON FUNCTIONAL ACTIVITY OF THE MUSCLE TISSUE OF DESCENDANTS OF IRRADIATED ANIMALS. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:2288-2294. [PMID: 37948728 DOI: 10.36740/wlek202310124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The aim: To determine the hormone-vitamin complex impact on the terminal links of glycolysis, the tricarboxylic acids cycle, and the initial stage of glucone¬ogenesis in the muscle tissue in descendants of irradiated animals. PATIENTS AND METHODS Materials and methods: Pyruvate kinase, lactate dehydrogenase, malate dehydrogenase, NADP-dependent malate dehydrogenasee and phosphoenolpyruvate carboxykinase activities, the content of lactate, pyruvate, malate and oxaloacetate were determined in the blood, myocardium and thigh muscles of 66 rats after exposure to ionizing gamma-radiation. Rats were injected by a hormone-vitamin complex which efficacy was determined using the abovementioned indexes. RESULTS Results: Hormone-vitamin complex administration to descendants of irradiated animals exposed to 1.0 Gy results to pyruvate kinase activity increase in the myocardium and skeletal muscles of descendants from animals irradiated by 0.5 Gy and exposed to 1.0 Gy irradiation. Blood serum pyruvate kinase activity in descendants from animals irradiated by 1.0 Gy and exposed to 1.0 Gy radiation after the pharmacological correction was higher compared with the same index before pharmacological correction. The lactate dehydrogenase activity in the myocardium, skeletal muscles and blood in descendants born from animals irradiated by maximal dose exposed to 1.0 Gy radiation was less in these tissues after pharmacological correction. CONCLUSION Conclusions: The hormone-vitamin complex use in the descendants of irradiated animals led to muscle tissue energy resources improvement. Our data are the experimental background for theoriginal hormone-vitamin complex efficacy further evaluation in the aspect of vital organs and body systems functional activity restoration under the influence of ionizing radiation.
Collapse
|
6
|
Fulghum K, Collins HE, Jones SP, Hill BG. Influence of biological sex and exercise on murine cardiac metabolism. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:479-494. [PMID: 35688382 PMCID: PMC9338340 DOI: 10.1016/j.jshs.2022.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
Although the structural and functional effects of exercise on the heart are well established, the metabolic changes that occur in the heart during and after exercise remain unclear. In this study, we used metabolomics to assess time-dependent changes in the murine cardiac metabolome following 1 session of treadmill exercise. After the exercise bout, we also recorded blood lactate, glucose, and ketone body levels and measured cardiac mitochondrial respiration. In both male and female mice, moderate- and high-intensity exercise acutely increased blood lactate levels. In both sexes, low- and moderate-intensity exercise augmented circulating 3-hydroxybutryrate levels immediately after the exercise bout; however, only in female mice did high-intensity exercise increase 3-hydroxybutyrate levels, with significant increases occurring 1 h after the exercise session. Untargeted metabolomics analyses of sedentary female and male hearts suggest considerable sex-dependent differences in basal cardiac metabolite levels, with female hearts characterized by higher levels of pantothenate, pyridoxamine, homoarginine, tryptophan, and several glycerophospholipid and sphingomyelin species and lower levels of numerous metabolites, including acetyl coenzyme A, glucuronate, gulonate, hydroxyproline, prolyl-hydroxyproline, carnosine, anserine, and carnitinylated and glycinated species, as compared with male hearts. Immediately after a bout of treadmill exercise, both male and female hearts had higher levels of corticosterone; however, female mice showed more extensive exercise-induced changes in the cardiac metabolome, characterized by significant, time-dependent changes in amino acids (e.g., serine, alanine, tyrosine, tryptophan, branched-chain amino acids) and the ketone body 3-hydroxybutyrate. Results from experiments using isolated cardiac mitochondria suggest that high-intensity treadmill exercise does not acutely affect respiration or mitochondrial coupling; however, female cardiac mitochondria demonstrate generally higher adenosine diphosphate sensitivity compared with male cardiac mitochondria. Collectively, these findings in mice reveal key sex-dependent differences in cardiac metabolism and suggest that the metabolic network in the female heart is more responsive to physiological stress caused by exercise.
Collapse
Affiliation(s)
- Kyle Fulghum
- Diabetes and Obesity Center, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA; Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Helen E Collins
- Diabetes and Obesity Center, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| | - Steven P Jones
- Diabetes and Obesity Center, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
7
|
Shi X, Qiu H. New Insights Into Energy Substrate Utilization and Metabolic Remodeling in Cardiac Physiological Adaption. Front Physiol 2022; 13:831829. [PMID: 35283773 PMCID: PMC8914108 DOI: 10.3389/fphys.2022.831829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac function highly relies on sufficient energy supply. Perturbations in myocardial energy metabolism play a causative role in cardiac pathogenesis. Accumulating evidence has suggested that modifications of cardiac metabolism are also an essential part of the adaptive responses to various physiological conditions in the heart to meet specific energy needs. The review highlighted some new studies on basic myocardial energy substrate metabolism and updated recent findings regarding cardiac metabolic remodeling and their associated mechanisms under physiological conditions, including exercise and cardiac development. Studying basic metabolic profiles in the heart in these conditions can contribute to understanding the significance of metabolic regulation in the heart during physiological adaption and gaining further insights into the maladaptive metabolic changes associated with cardiac pathogenesis, thus opening up new avenues to exploring novel therapeutic strategies in cardiac diseases.
Collapse
|
8
|
Abstract
The adult mammalian heart is recalcitrant to regeneration after injury, in part due to the postmitotic nature of cardiomyocytes. Accumulating evidence suggests that cardiomyocyte proliferation in fetal or neonatal mammals and in regenerative non-mammalian models depends on a conducive metabolic state. Results from numerous studies in adult hearts indicate that conditions of relatively low fatty acid oxidation, low reactive oxygen species generation, and high glycolysis are required for induction of cardiomyocyte proliferation. Glycolysis appears particularly important because it provides branchpoint metabolites for several biosynthetic pathways that are essential for synthesis of nucleotides and nucleotide sugars, amino acids, and glycerophospholipids, all of which are required for daughter cell formation. In addition, the proliferative cardiomyocyte phenotype is supported in part by relatively low oxygen tensions and through the actions of critical transcription factors, coactivators, and signaling pathways that promote a more glycolytic and proliferative cardiomyocyte phenotype, such as hypoxia inducible factor 1α (Hif1α), Yes-associated protein (Yap), and ErbB2. Interventions that inhibit glycolysis or its integrated biosynthetic pathways almost universally impair cardiomyocyte proliferative capacity. Furthermore, metabolic enzymes that augment biosynthetic capacity such as phosphoenolpyruvate carboxykinase 2 and pyruvate kinase M2 appear to be amplifiers of cardiomyocyte proliferation. Collectively, these studies suggest that acquisition of a glycolytic and biosynthetic metabolic phenotype is a sine qua non of cardiomyocyte proliferation. Further knowledge of the regulatory mechanisms that control substrate partitioning to coordinate biosynthesis with energy provision could be leveraged to prompt or augment cardiomyocyte division and to promote cardiac repair.
Collapse
Affiliation(s)
- Tamer M A Mohamed
- Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
- Corresponding authors: Tamer M.A. Mohamed, PhD, Department of Medicine, Division of Cardiovascular Medicine, Institute of Molecular Cardiology, 580 S. Preston Street, Rm 121A, Louisville, KY 40202, USA.
| | - Riham Abouleisa
- Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| | - Bradford G Hill
- Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Bradford G. Hill, PhD, Department of Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, 580 S. Preston Street, Rm 321E, Louisville, KY 40202, USA.
| |
Collapse
|