1
|
Hebert E, Silvia M, Wessel GM. Structural and molecular distinctions of primary and secondary spines in the sea urchin Lytechinus variegatus. Sci Rep 2024; 14:28525. [PMID: 39557944 PMCID: PMC11574069 DOI: 10.1038/s41598-024-76239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
Sea urchins (echinoids) are common model organisms for research in developmental biology and for their unusual transition from a bilaterally organized larva into a post-metamorphic adult with pentaradial body symmetry. The adult also has a calcareous endoskeleton with a multimetameric pattern of continuously added elements, among them the namesake of this phylum, spines. Nearly all echinoids have both large primary spines, and an associated set of smaller secondary spines. We hypothesize that the secondary spines of the tropical variegated urchin species, Lytechinus variegatus, are morphologically and molecularly distinct structures from primary spines and not just small versions of the large spines. To test this premise, we examined both spine types using light microscopy, micro-CT imaging, lectin labeling, transcriptomics, and fluorescence in situ hybridization (FISH). Our findings reveal basic similarities between the two spine types in mineral and cellular anatomy, but with clear differences in growth patterns, genes expressed, and in the profile of various expressed genes. In particular, secondary spines have non-overlapping, longitudinally concentrated growth bands that lead to a blunt and straight profile, and a distinct transcriptome involving the upregulation in many genes in comparison to the primary spines. Neural, ciliary, and extracellular matrix interacting factors are implicated in the differentially expressed gene (DEG) dataset, including two genes-ONECUT2 and an uncharacterized discoidin- and thrombospondin-containing protein. We show spine type-specific localizations by FISH, which will be of interest to ongoing work in urchin spine patterning. These results demonstrate that primary and secondary spines of L. variegatus have overlapping but distinct molecular and biomineralization characteristics, suggesting unique developmental, regenerative, and representation in this spiny dermal phylum.
Collapse
Affiliation(s)
- Elise Hebert
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Madison Silvia
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Stolarski J, Coronado I, Potocka M, Janiszewska K, Mazur M, Baronnet A, Cruz JA, Grauby O, Meibom A. Post-mortem recrystallization of biogenic amorphous calcium carbonate guided by the inherited macromolecular framework. Sci Rep 2024; 14:17304. [PMID: 39068177 PMCID: PMC11283521 DOI: 10.1038/s41598-024-68037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
In contrast to abiotically formed carbonates, biogenetic carbonates have been observed to be nanocomposite, organo-mineral structures, the basic build-blocks of which are particles of quasi-uniform size (10-100 nm) organized into complex higher-order hierarchical structures, typically with highly controlled crystal-axis alignments. Some of these characteristics serve as criteria for inferring a biological origin and the state of preservation of fossil carbonate materials, and to determine whether the biomineralization process was biologically induced or controlled. Here we show that a calcium storage structure formed by the American lobster, a gastrolith initially consisting of amorphous calcium carbonate (ACC) and amorphous calcium phosphate (ACP), post-mortem can crystallize into (thus secondary) calcite with structural properties strongly influenced by the inherited organic matrix. This secondary calcite meets many structural criteria for biominerals (thus called the biomorphic calcite), but differs in trace element distributions (e.g., P and Mg). Such observations refine the capability to determine whether a fossil carbonates can be attributed to biogenic processes, with implications for the record of life on Earth and other terrestrial planets.
Collapse
Affiliation(s)
- Jarosław Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00818, Warsaw, Poland.
| | - Ismael Coronado
- Faculty of Biological and Environmental Sciences, University of Leon, Campus of Vegazana S/N, 24071, Leon, Spain
| | - Marta Potocka
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02106, Warsaw, Poland
| | - Katarzyna Janiszewska
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00818, Warsaw, Poland
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Pasteura 1, 02093, Warsaw, Poland
| | - Alain Baronnet
- UMR 7325, CINaM, CNRS - Aix Marseille Université, 13288, Marseille, France
| | - Juncal A Cruz
- Faculty of Biological and Environmental Sciences, University of Leon, Campus of Vegazana S/N, 24071, Leon, Spain
| | - Olivier Grauby
- UMR 7325, CINaM, CNRS - Aix Marseille Université, 13288, Marseille, France
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, Université de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Alam MK, Sahadat Hossain M, Kawsar M, Bahadur NM, Ahmed S. Synthesis of nano-hydroxyapatite using emulsion, pyrolysis, combustion, and sonochemical methods and biogenic sources: a review. RSC Adv 2024; 14:3548-3559. [PMID: 38259993 PMCID: PMC10801447 DOI: 10.1039/d3ra07559a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Hydroxyapatite (HAp) is comparable to materials in bone because its chemical components are similar to those contained in animal bone, and thus, its bioactive and biocompatible properties are similar. There are applications for HAp and relevant calcium phosphate in the medical and industrial sectors, and due to the rising demand for HAp nanoparticles, considerable work has been performed to develop a variety of synthetic pathways that incorporate scientifically and practically novel aspects. Numerous studies have been conducted to examine how changes in reaction parameters will successfully influence crucial HAp features. HAp can also be synthesized from biogenic sources such as HAp-rich fish scales or animal bones as an alternative to chemical precursors. Various preparation techniques produce crystals with varying sizes, but it has been found that nano-sized HAp exhibits a greater number of bioactive properties as compared to micron-sized HAp. Rather than considering conventional methods, this review focuses on alternative approaches such as emulsion, pyrolysis, combustion, and sonochemical methods along with waste bio-sources (biogenic sources) to obtain HAp. We summarize the currently accessible information pertaining to each synthesis process, while also focusing on their benefits and drawbacks.
Collapse
Affiliation(s)
- Md Kawcher Alam
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Md Sahadat Hossain
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Md Kawsar
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Samina Ahmed
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
- BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| |
Collapse
|
4
|
Colon S, Paige A, Bolarinho R, Young H, Gerdon AE. Secondary Structure of DNA Aptamer Influences Biomimetic Mineralization of Calcium Carbonate. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6274-6282. [PMID: 36715729 PMCID: PMC9924263 DOI: 10.1021/acsami.2c15626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Calcium materials, such as calcium carbonate, are produced in natural and industrial settings that range from oceanic to biomedical. An array of biological and biomimetic template molecules have been employed in controlling and understanding the mineralization reaction but have largely focused on small molecule additives or disordered polyelectrolytes. DNA aptamers are synthetic and programmable biomolecules with polyelectrolyte characteristics but with predictable and controllable secondary structure akin to native extracellular moieties. This work demonstrates for the first time the influence of DNA aptamers with known G-quadruplex structures on calcium carbonate mineralization. Aptamers demonstrate kinetic inhibition of mineral formation, sequence and pH-dependent uptake into the mineral, and morphological control of the primarily calcite material in controlled solution conditions. In reactions initiated from the complex matrix of ocean water, DNA aptamers demonstrated enhancement of mineralization kinetics and resulting amorphous material. This work provides new biomimetic tools to employ in controlled mineralization and demonstrates the influence that template secondary structure can have in material formation.
Collapse
Affiliation(s)
| | | | - Rylie Bolarinho
- Department of Chemistry and
Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Hailey Young
- Department of Chemistry and
Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Aren E Gerdon
- Department of Chemistry and
Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Perricone V, Cesarano P, Mancosu A, Asnicar D, Bravi S, Marmo F. Echinoid skeleton: an insight on the species-specific pattern of the Paracentrotus lividus plate and its microstructural variability. J R Soc Interface 2023; 20:20220673. [PMID: 36722170 PMCID: PMC9890320 DOI: 10.1098/rsif.2022.0673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/04/2023] [Indexed: 02/02/2023] Open
Abstract
The skeletal plates of echinoids consist of a peculiar lightweight structure, called stereom, which is organized in a porous three-dimensional lattice-like meshwork. The stereom is characterized by an extremely complex and diverse microarchitecture, largely varying not only from species to species but also among different test plates. It consists of different basic types combined in extremely different ways according to specific functional needs, creating species-specific structural patterns. These patterns can lead to specific mechanical behaviours, which can inspire biomimetic technology and design development. In this framework, the present study aimed to characterize the species-specific pattern of the Paracentrotus lividus interambulacral plate and the main microstructural features regarding its geometrical variability and mechanical responses. The results achieved quantitatively highlighted the differences between the analysed stereom types providing new insights regarding their topological configuration and isotropic and anisotropic behaviour. Interestingly, data also revealed that the galleried stereom present at the tubercle is significantly different from the one located at the suture. These analyses and findings are encouraging and provide a starting point for future research to unravel the wide range of mechanical strategies evolved in the echinoid skeletal structure.
Collapse
Affiliation(s)
- Valentina Perricone
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Pasquale Cesarano
- Department of Structures for Engineering and Architecture, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Andrea Mancosu
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Davide Asnicar
- Aquatic Bioscience, Huntsman Marine Science Centre, 1 Lower Campus Road, St Andrews, New Brunswick, Canada E5B 2L7
| | - Sergio Bravi
- Department of Earth Science, Environment and Resources, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy
| | - Francesco Marmo
- Department of Structures for Engineering and Architecture, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
6
|
Structure of an amorphous calcium carbonate phase involved in the formation of Pinctada margaritifera shells. Proc Natl Acad Sci U S A 2022; 119:e2212616119. [PMID: 36322756 PMCID: PMC9659418 DOI: 10.1073/pnas.2212616119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Some mollusc shells are formed from an amorphous calcium carbonate (ACC) compound, which further transforms into a crystalline material. The transformation mechanism is not fully understood but is however crucial to develop bioinspired synthetic biomineralization strategies or accurate marine biomineral proxies for geoscience. The difficulty arises from the simultaneous presence of crystalline and amorphous compounds in the shell, which complicates the selective experimental characterization of the amorphous fraction. Here, we use nanobeam X-ray total scattering together with an approach to separate crystalline and amorphous scattering contributions to obtain the spatially resolved atomic pair distribution function (PDF). We resolve three distinct amorphous calcium carbonate compounds, present in the shell of Pinctada margaritifera and attributed to: interprismatic periostracum, young mineralizing units, and mature mineralizing units. From this, we extract accurate bond parameters by reverse Monte Carlo (RMC) modeling of the PDF. This shows that the three amorphous compounds differ mostly in their Ca-O nearest-neighbor atom pair distance. Further characterization with conventional spectroscopic techniques unveils the presence of Mg in the shell and shows Mg-calcite in the final, crystallized shell. In line with recent literature, we propose that the amorphous-to-crystal transition is mediated by the presence of Mg. The transition occurs through the decomposition of the initial Mg-rich precursor into a second Mg-poor ACC compound before forming a crystal.
Collapse
|
7
|
Perricone V, Grun TB, Rendina F, Marmo F, Candia Carnevali MD, Kowalewski M, Facchini A, De Stefano M, Santella L, Langella C, Micheletti A. Hexagonal Voronoi pattern detected in the microstructural design of the echinoid skeleton. J R Soc Interface 2022; 19:20220226. [PMID: 35946165 PMCID: PMC9363984 DOI: 10.1098/rsif.2022.0226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Repeated polygonal patterns are pervasive in natural forms and structures. These patterns provide inherent structural stability while optimizing strength-per-weight and minimizing construction costs. In echinoids (sea urchins), a visible regularity can be found in the endoskeleton, consisting of a lightweight and resistant micro-trabecular meshwork (stereom). This foam-like structure follows an intrinsic geometrical pattern that has never been investigated. This study aims to analyse and describe it by focusing on the boss of tubercles-spine attachment sites subject to strong mechanical stresses-in the common sea urchin Paracentrotus lividus. The boss microstructure was identified as a Voronoi construction characterized by 82% concordance to the computed Voronoi models, a prevalence of hexagonal polygons, and a regularly organized seed distribution. This pattern is interpreted as an evolutionary solution for the construction of the echinoid skeleton using a lightweight microstructural design that optimizes the trabecular arrangement, maximizes the structural strength and minimizes the metabolic costs of secreting calcitic stereom. Hence, this identification is particularly valuable to improve the understanding of the mechanical function of the stereom as well as to effectively model and reconstruct similar structures in view of future applications in biomimetic technologies and designs.
Collapse
Affiliation(s)
- Valentina Perricone
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, Aversa 81031, Italy
| | - Tobias B. Grun
- Division of Invertebrate Paleontology, Florida Museum of Natural History, University of Florida, Gainesville, FL 32618, USA
| | - Francesco Rendina
- Department of Science and Technology, University of Naples ‘Parthenope’, URL CoNISMa, Centro Direzionale Is.4, Naples 80143, Italy
| | - Francesco Marmo
- Department of Structures for Engineering and Architecture, University of Naples Federico II, Via Claudio 21, Naples 80125, Italy
| | | | - Michal Kowalewski
- Division of Invertebrate Paleontology, Florida Museum of Natural History, University of Florida, Gainesville, FL 32618, USA
| | - Angelo Facchini
- IMT school for advanced studies Lucca, Piazza S. Ponziano 6, 55100, Lucca, Italy
| | - Mario De Stefano
- Department of Environmental, Biological and Pharmaceutical Science and Technology University of Campania ‘L. Vanvitelli’, Via Vivaldi 43, Caserta 80127, Italy
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples 80121, Italy
| | - Carla Langella
- Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo, 81031, Aversa, Italy
| | - Alessandra Micheletti
- Department of Environmental Science and Policy, University of Milano, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
8
|
Deng Z, Jia Z, Li L. Biomineralized Materials as Model Systems for Structural Composites: Intracrystalline Structural Features and Their Strengthening and Toughening Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103524. [PMID: 35315243 PMCID: PMC9108615 DOI: 10.1002/advs.202103524] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/09/2022] [Indexed: 05/02/2023]
Abstract
Biomineralized composites, which are usually composed of microscopic mineral building blocks organized in 3D intercrystalline organic matrices, have evolved unique structural designs to fulfill mechanical and other biological functionalities. While it has been well recognized that the intricate architectural designs of biomineralized composites contribute to their remarkable mechanical performance, the structural features within and corresponding mechanical properties of individual mineral building blocks are often less appreciated in the context of bio-inspired structural composites. The mineral building blocks in biomineralized composites exhibit a variety of salient intracrystalline structural features, such as, organic inclusions, inorganic impurities (or trace elements), crystalline features (e.g., amorphous phases, single crystals, splitting crystals, polycrystals, and nanograins), residual stress/strain, and twinning, which significantly modify the mechanical properties of biogenic minerals. In this review, recent progress in elucidating the intracrystalline structural features of three most common biomineral systems (calcite, aragonite, and hydroxyapatite) and their corresponding mechanical significance are discussed. Future research directions and corresponding challenges are proposed and discussed, such as the advanced structural characterizations and formation mechanisms of intracrystalline structures in biominerals, amorphous biominerals, and bio-inspired synthesis.
Collapse
Affiliation(s)
- Zhifei Deng
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| | - Zian Jia
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| | - Ling Li
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| |
Collapse
|
9
|
Cestari F, Agostinacchio F, Galotta A, Chemello G, Motta A, M. Sglavo V. Nano-Hydroxyapatite Derived from Biogenic and Bioinspired Calcium Carbonates: Synthesis and In Vitro Bioactivity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:264. [PMID: 33498482 PMCID: PMC7909533 DOI: 10.3390/nano11020264] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/02/2023]
Abstract
Biogenic calcium carbonates naturally contain ions that can be beneficial for bone regeneration and therefore are attractive resources for the production of bioactive calcium phosphates. In the present work, cuttlefish bones, mussel shells, chicken eggshells and bioinspired amorphous calcium carbonate were used to synthesize hydroxyapatite nano-powders which were consolidated into cylindrical pellets by uniaxial pressing and sintering 800-1100 °C. Mineralogical, structural and chemical composition were studied by SEM, XRD, inductively coupled plasma/optical emission spectroscopy (ICP/OES). The results show that the phase composition of the sintered materials depends on the Ca/P molar ratio and on the specific CaCO3 source, very likely associated with the presence of some doping elements like Mg2+ in eggshell and Sr2+ in cuttlebone. Different CaCO3 sources also resulted in variable densification and sintering temperature. Preliminary in vitro tests were carried out (by the LDH assay) and they did not reveal any cytotoxic effects, while good cell adhesion and proliferation was observed at day 1, 3 and 5 after seeding through confocal microscopy. Among the different tested materials, those derived from eggshells and sintered at 900 °C promoted the best cell adhesion pattern, while those from cuttlebone and amorphous calcium carbonate showed round-shaped cells and poorer cell-to-cell interconnection.
Collapse
Affiliation(s)
- Francesca Cestari
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
| | - Francesca Agostinacchio
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
- BIOTech Research Center, and European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, University of Trento, via delle Regole 101, 38123 Trento, Italy
| | - Anna Galotta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
| | - Giovanni Chemello
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
- BIOTech Research Center, and European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, University of Trento, via delle Regole 101, 38123 Trento, Italy
- INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Vincenzo M. Sglavo
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (A.G.); (G.C.); (A.M.); (V.M.S.)
- INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
10
|
Sun CY, Stifler CA, Chopdekar RV, Schmidt CA, Parida G, Schoeppler V, Fordyce BI, Brau JH, Mass T, Tambutté S, Gilbert PUPA. From particle attachment to space-filling coral skeletons. Proc Natl Acad Sci U S A 2020; 117:30159-30170. [PMID: 33188087 PMCID: PMC7720159 DOI: 10.1073/pnas.2012025117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Reef-building corals and their aragonite (CaCO3) skeletons support entire reef ecosystems, yet their formation mechanism is poorly understood. Here we used synchrotron spectromicroscopy to observe the nanoscale mineralogy of fresh, forming skeletons from six species spanning all reef-forming coral morphologies: Branching, encrusting, massive, and table. In all species, hydrated and anhydrous amorphous calcium carbonate nanoparticles were precursors for skeletal growth, as previously observed in a single species. The amorphous precursors here were observed in tissue, between tissue and skeleton, and at growth fronts of the skeleton, within a low-density nano- or microporous layer varying in thickness from 7 to 20 µm. Brunauer-Emmett-Teller measurements, however, indicated that the mature skeletons at the microscale were space-filling, comparable to single crystals of geologic aragonite. Nanoparticles alone can never fill space completely, thus ion-by-ion filling must be invoked to fill interstitial pores. Such ion-by-ion diffusion and attachment may occur from the supersaturated calcifying fluid known to exist in corals, or from a dense liquid precursor, observed in synthetic systems but never in biogenic ones. Concomitant particle attachment and ion-by-ion filling was previously observed in synthetic calcite rhombohedra, but never in aragonite pseudohexagonal prisms, synthetic or biogenic, as observed here. Models for biomineral growth, isotope incorporation, and coral skeletons' resilience to ocean warming and acidification must take into account the dual formation mechanism, including particle attachment and ion-by-ion space filling.
Collapse
Affiliation(s)
- Chang-Yu Sun
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Ganesh Parida
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Vanessa Schoeppler
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Jack H Brau
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Tali Mass
- Marine Biology Department, University of Haifa, 31905 Haifa, Israel
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 98000 Monaco, Principality of Monaco
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706;
- Department of Chemistry, University of Wisconsin, Madison, WI 53706
- Department of Geoscience, University of Wisconsin, Madison, WI 53706
- Department of Materials Science, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
11
|
Kołbuk D, Di Giglio S, M'Zoudi S, Dubois P, Stolarski J, Gorzelak P. Effects of seawater Mg 2+ /Ca 2+ ratio and diet on the biomineralization and growth of sea urchins and the relevance of fossil echinoderms to paleoenvironmental reconstructions. GEOBIOLOGY 2020; 18:710-724. [PMID: 32772500 DOI: 10.1111/gbi.12409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
It has been argued that skeletal Mg/Ca ratio in echinoderms is mostly governed by Mg2+ and Ca2+ concentrations in the ambient seawater. Accordingly, well-preserved fossil echinoderms were used to reconstruct Phanerozoic seawater Mg2+ /Ca2+ ratio. However, Mg/Ca ratio in echinoderm skeleton can be affected by a number of environmental and physiological factors, the effects of which are still poorly understood. Notably, experimental data supporting the applicability of echinoderms in paleoenvironmental reconstructions remain limited. Here, we investigated the effect of ambient Mg2+ /Ca2+ seawater ratio and diet on skeletal Mg/Ca ratio and growth rate in two echinoid species (Psammechinus miliaris and Prionocidaris baculosa). Sea urchins were tagged with manganese and then cultured in different Mg2+ /Ca2+ conditions to simulate fluctuations in the Mg2+ /Ca2+ seawater ratios in the Phanerozoic. Simultaneously, they were fed on a diet containing different amounts of magnesium. Our results show that the skeletal Mg/Ca ratio in both species varied not only between ossicle types but also between different types of stereom within a single ossicle. Importantly, the skeletal Mg/Ca ratio in both species decreased proportionally with decreasing seawater Mg2+ /Ca2+ ratio. However, sea urchins feeding on Mg-enriched diet produced a skeleton with a higher Mg/Ca ratio. We also found that although incubation in lower ambient Mg2+ /Ca2+ ratio did not affect echinoid respiration rates, it led to a decrease or inhibition of their growth. Overall, these results demonstrate that although skeletal Mg/Ca ratios in echinoderms can be largely determined by seawater chemistry, the type of diet may also influence skeletal geochemistry, which imposes constraints on the application of fossil echinoderms as a reliable proxy. The accuracy of paleoseawater Mg2+ /Ca2+ calculations is further limited by the fact that Mg partition coefficients vary significantly at different scales (between species, specimens feeding on different types of food, different ossicle types, and stereom types within a single ossicle).
Collapse
Affiliation(s)
- Dorota Kołbuk
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | - Sarah Di Giglio
- Laboratoire de Biologie Marine, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Saloua M'Zoudi
- Laboratoire de Biologie Marine, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Philippe Dubois
- Laboratoire de Biologie Marine, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | | |
Collapse
|
12
|
Chemical Composition and Microstructural Morphology of Spines and Tests of Three Common Sea Urchins Species of the Sublittoral Zone of the Mediterranean Sea. Animals (Basel) 2020; 10:ani10081351. [PMID: 32759777 PMCID: PMC7460165 DOI: 10.3390/ani10081351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis play a key role in many sublittoral biocommunities of the Mediterranean Sea. However, their skeletons seem to differ, both morphologically and in chemical composition. Thus, the skeletal elements display different properties, which are affected not only by the environment, but also by the vital effect of each species. We studied the microstructural morphology and crystalline phase of the test and spines, while also examining the effect of time on their elemental composition. Results showed morphologic differences among the three species both in spines and tests. They also seem to respond differently to possible time-related changes. The mineralogical composition of P. lividus appears to be quite different compare to the other two species. The results of the present study may contribute to a better understanding of the skeletal properties of these species, this being especially useful in predicting the effects of ocean acidification. More specifically, since the skeleton plays a key role for the survival of sea urchins in general, a potential change in any skeletal structure, either morphologically or chemically, may affect these organisms directly while also affecting their ecosystem indirectly. Abstract In the Mediterranean Sea, the species Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis often coexist, occupying different subareas of the same habitat. The mechanical and chemical properties of their calcitic skeletons are affected both by their microstructural morphology and chemical composition. The present study describes the main morphologic features and the possible temporal differences in elemental composition of the test and spines of the three species, while also determining the molar ratio of each element of their crystalline phase. Scanning electron microscopy showed major differences in the ultrastructure of the spines, while minor differences in the test were also noticed. More specifically, the spines of all three sea urchins possess wedges, however A. lixula exhibits bridges connecting each wedge, while barbs are observed in the wedges of S. granularis. The spines of P. lividus are devoid of both microstructures. Secondary tubercles are absent in the test of A. lixula, while the tests and spines of all three species are characterized by different superficial stereom. Energy dispersive x-ray spectroscopy detected that Ca, Mg, S, Na and Cl were present in all specimen. Mg and Mg/Ca showed significant differences between species both in test and spines with S. granularis having the highest concentration. The spines of P. lividus exhibited lowest values between all species. Differences between spines and test were observed in all elements for P. lividus except S. A. lixula exhibited different concentrations between test and spines for Ca, Mg and Mg/Ca, whereas S. granularis for Mg, Cl and Mg/Ca. Finally, temporal differences for Ca were observed in the test of P. lividus and the spines of S. granularis, for Mg in test of S. granularis, for S in the spines of A. lixula and the test and spine of S. granularis, for Na in the test of P. lividus and A. lixula and for Cl and Mg/Ca in the test P. lividus. Powder X-ray diffractometry determined that, out of all three species, the spines of P. lividus contained the least Mg, while the test of the same species exhibited higher Mg concentration compared to A. lixula and S. granularis. The current study, although not labeling the specimens attempts to estimate potential time-related elemental differences among other results. These may occur due to changes in abiotic factors, probably water temperature, salinity and/or pH. Divergence in food preference and food availability may also play a key role in possible temporal differences the skeletons of these species
Collapse
|