1
|
Guan ZB, Deng XT, Zhang ZH, Xu GC, Cheng WL, Liao XR, Cai YJ. Engineering Glucosamine-6-Phosphate Synthase to Achieve Efficient One-Step Biosynthesis of Glucosamine. ACS Chem Biol 2024; 19:1237-1242. [PMID: 38723147 DOI: 10.1021/acschembio.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
As an important functional monosaccharide, glucosamine (GlcN) is widely used in fields such as medicine, food nutrition, and health care. Here, we report a distinct GlcN biosynthesis method that utilizes engineered Bacillus subtilis glucosamine-6-phosphate synthase (BsGlmS) to convert D-fructose to directly generate GlcN. The best variant obtained by using a combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) strategy was a quadruple mutant S596D/V597G/S347H/G299Q (BsGlmS-BK19), which has a catalytic activity 1736-fold that of the wild type toward D-fructose. Upon using mutant BK19 as a whole-cell catalyst, D-fructose was converted into GlcN with 65.32% conversion in 6 h, whereas the wild type only attained a conversion rate of 0.31% under the same conditions. Molecular docking and molecular dynamics simulations were implemented to provide insights into the mechanism underlying the enhanced activity of BK19. Importantly, the BsGlmS-BK19 variant specifically catalyzes D-fructose without the need for phosphorylated substrates, representing a significant advancement in GlcN biosynthesis.
Collapse
Affiliation(s)
- Zheng-Bing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xue-Ting Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zi-Hao Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Guo-Chao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Wan-Li Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China
| | - Xiang-Ru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yu-Jie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
2
|
Ma X, Zou D, Ji A, Jiang C, Zhao Z, Ding X, Han Z, Bao P, Chen K, Ma A, Wei X. Identification of a Novel Chitinase from Bacillus paralicheniformis: Gene Mining, Sequence Analysis, and Enzymatic Characterization. Foods 2024; 13:1777. [PMID: 38891005 PMCID: PMC11171888 DOI: 10.3390/foods13111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
In this study, a novel strain for degrading chitin was identified as Bacillus paralicheniformis HL37, and the key chitinase CH1 was firstly mined through recombinant expression in Bacillus amyloliquefaciens HZ12. Subsequently, the sequence composition and catalytic mechanism of CH1 protein were analyzed. The molecular docking indicated that the triplet of Asp526, Asp528, and Glu530 was a catalytic active center. The enzymatic properties analysis revealed that the optimal reaction temperature and pH was 65 °C and 6.0, respectively. Especially, the chitinase activity showed no significant change below 55 °C and it could maintain over 60% activity after exposure to 85 °C for 30 min. Moreover, the optimal host strain and signal peptide were obtained to enhance the expression of chitinase CH1 significantly. As far as we know, it was the first time finding the highly efficient chitin-degrading enzymes in B. paralicheniformis, and detailed explanations were provided on the catalytic mechanism and enzymatic properties on CH1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.M.); (D.Z.); (A.J.); (C.J.); (Z.Z.); (X.D.); (Z.H.); (P.B.); (K.C.); (A.M.)
| |
Collapse
|
3
|
Das S, Chowdhury C, Kumar SP, Roy D, Gosavi SW, Sen R. Microbial production of N-acetyl-D-glucosamine (GlcNAc) for versatile applications: Biotechnological strategies for green process development. Carbohydr Res 2024; 536:109039. [PMID: 38277719 DOI: 10.1016/j.carres.2024.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
N-acetyl-d-glucosamine (GlcNAc) is a commercially important amino sugar for its wide range of applications in pharmaceutical, food, cosmetics and biofuel industries. In nature, GlcNAc is polymerised into chitin biopolymer, which is one of the major constituents of fungal cell wall and outer shells of crustaceans. Sea food processing industries generate a large volume of chitin as biopolymeric waste. Because of its high abundance, chitinaceous shellfish wastes have been exploited as one of the major precursor substrates of GlcNAc production, both in chemical and enzymatic means. Nevertheless, the current process of GlcNAc extraction from shellfish wastes generates poor turnover and attracts environmental hazards. Moreover, GlcNAc isolated from shellfish could not be prescribed to certain groups of people because of the allergic nature of shell components. Therefore, an alternative route of GlcNAc production is advocated. With the advancement of metabolic construction and synthetic biology, microbial synthesis of GlcNAc is gaining much attention nowadays. Several new and cutting-edge technologies like substrate co-utilization strategy, promoter engineering, and CRISPR interference system were proposed in this fascinating area. The study would put forward the potential application of microbial engineering in the production of important pharmaceuticals. Very recently, autotrophic fermentation of GlcNAc synthesis has been proposed. The metabolic engineering approaches would offer great promise to mitigate the issues of low yield and high production cost, which are major challenges in microbial bio-processes industries. Further process optimization, optimising metabolic flux, and efficient recovery of GlcNAc from culture broth, should be investigated in order to achieve a high product titer. The current study presents a comprehensive review on microbe-based eco-friendly green methods that would pave the way towards the development of future research directions in this field for the designing of a cost-effective fermentation process on an industrial setup.
Collapse
Affiliation(s)
- Sancharini Das
- Department of Environmental Science, Savitribai Phule Pune University, Pune, MH, 411007, India; Department of Biotechnology, Indian Institute of Technology Kharagpur, WB, 721302, India.
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH, 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - S Pavan Kumar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN, 600 036, India
| | - Debasis Roy
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Suresh W Gosavi
- Department of Environmental Science, Savitribai Phule Pune University, Pune, MH, 411007, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, WB, 721302, India
| |
Collapse
|
4
|
Nie M, Wang J, Zhang K. Engineering a Novel Acetyl-CoA Pathway for Efficient Biosynthesis of Acetyl-CoA-Derived Compounds. ACS Synth Biol 2024; 13:358-369. [PMID: 38151239 DOI: 10.1021/acssynbio.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Acetyl-CoA is an essential central metabolite in living organisms and a key precursor for various value-added products as well. However, the intracellular availability of acetyl-CoA limits the efficient production of these target products due to complex and strict regulation. Here, we proposed a new acetyl-CoA pathway, relying on two enzymes, threonine aldolase and acetaldehyde dehydrogenase (acetylating), which can convert one l-threonine into one acetyl-CoA, one glycine, and generate one NADH, without carbon loss. Introducing the acetyl-CoA pathway could increase the intracellular concentration of acetyl-CoA by 8.6-fold compared with the wild-type strain. To develop a cost-competitive and genetically stable acetyl-CoA platform strain, the new acetyl-CoA pathway, driven by the constitutive strong promoter, was integrated into the chromosome of Escherichia coli. We demonstrated the practical application of this new acetyl-CoA pathway by high titer production of β-alanine, mevalonate, and N-acetylglucosamine. At the same time, this pathway achieved a high-yield production of glycine, a value-added commodity chemical for the synthesis of glyphosate and thiamphenicol. This work shows the potential of this new acetyl-CoA pathway for the industrial production of acetyl-CoA-derived compounds.
Collapse
Affiliation(s)
- Mengzhen Nie
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jingyu Wang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kechun Zhang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
5
|
Hu S, Xu L, Xie C, Hong J. Structural Insights into the Catalytic Activity of Cyclobacterium marinum N-Acetylglucosamine Deacetylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:783-793. [PMID: 38141024 DOI: 10.1021/acs.jafc.3c06146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
N-Acetylglucosamine deacetylase from Cyclobacterium marinum (CmCBDA) is a highly effective and selective biocatalyst for the production of d-glucosamine (GlcN) from N-acetylglucosamine (GlcNAc). However, the underlying catalytic mechanism remains elusive. Here, we show that CmCBDA is a metalloenzyme with a preference for Ni2+ over Mn2+. Crystal structures of CmCBDA in complex with Ni2+ and Mn2+ revealed slight remodeling of the CmCBDA active site by the metal ions. We also demonstrate that CmCBDA exists as a mixture of homodimers and monomers in solution, and dimerization is indispensable for catalytic activity. A mutagenesis analysis also indicated that the active site residues Asp22, His72, and His143 as well as the residues involved in dimerization, Pro52, Trp53, and Tyr55, are essential for catalytic activity. Furthermore, a mutation on the protein surface, Lys219Glu, resulted in a 2.3-fold improvement in the deacetylation activity toward GlcNAc. Mechanistic insights obtained here may facilitate the development of CmCBDA variants with higher activities.
Collapse
Affiliation(s)
- Shenglin Hu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, China
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230027, China
| | - Li Xu
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Changlin Xie
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Li Z, Wang Q, Liu H, Wang Y, Zheng Z, Zhang Y, Tan T. Engineering Corynebacterium glutamicum for the efficient production of N-acetylglucosamine. BIORESOURCE TECHNOLOGY 2023; 390:129865. [PMID: 37832852 DOI: 10.1016/j.biortech.2023.129865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
N-acetylglucosamine (GlcNAc) is significant functional monosaccharides with diverse applications in medicine, food, and cosmetics. In this study, the GlcNAc synthesis pathway was constructed in Corynebacterium glutamicum and its reverse byproduct pathways were blocked. Simultaneously the driving force of GlcNAc synthesis was enhanced by screening key gene sources and inhibiting the GlcNAc consumption pathway. To maximize carbon flux, some competitive pathways (Pentose phosphate pathway, Glycolysis pathway and Mannose pathway) were weakened and the titer of GlcNAc reached 23.30 g/L in shake flasks. Through transcriptome analysis, it was found that dissolved oxygen was an important limiting factor, which was optimized in a 5 L bioreactor. Employing optimal fermentation conditions and feeding strategy, the titer of GlcNAc reached 138.9 g/L, with the yeild of 0.44 g/g glucose. This study significantly increased the yield and titer of GlcNAc, which lay a solid foundation for the industrial production of GlcNAc in C. glutamicum.
Collapse
Affiliation(s)
- Zemin Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Qiuting Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Hui Liu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yating Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Zhaoyi Zheng
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yang Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
7
|
Zhang Q, Zhang J, Shao Y, Shang G. Escherichia coli BL21(DE3) optimized deletion mutant as the host for whole-cell biotransformation of N‑acetyl‑D‑neuraminic acid. Biotechnol Lett 2023; 45:1521-1528. [PMID: 37688676 DOI: 10.1007/s10529-023-03426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/11/2023]
Abstract
N‑Acetyl‑D‑neuraminic acid (Neu5Ac) is the crucial compound for the chemical synthesis of antiflu medicine Zanamivir. Chemoenzymatic synthesis of Neu5Ac involves N-acetyl-D-glucosamine 2-epimerase (AGE)-catalyzed epimerization of N-acetyl-D-glucosamine (GlcNAc) to N-acetyl-D-mannosamine (ManNAc), and aldolase-catalyzed condensation between ManNAc and pyruvate. Host optimization plays an important role in the whole-cell biotransformation of value-added compounds. In this study, via single-plasmid biotransformation system, we showed that the AGE gene BT0453, cloned from human gut microorganism Bacteroides thetaiotaomicron VPI-5482, showed the highest biotransformation yield among the AGE genes tested; and there is no clear Neu5Ac yield difference between the BT0453 coupled with one aldolase coding nanA gene and two nanA genes. Next, Escherichia coli chromosomal genes involved in substrate degradation, product exportation and pH change were deleted via recombineering and CRISPR/Cas9. With the final E. coli BL21(DE3) ΔnanA Δnag ΔpoxB as host, a significant 16.5% yield improvement was obtained. Furthermore, precursor (pyruvate) feeding resulted in 3.2% yield improvement, reaching 66.8% molar biotransformation. The result highlights the importance of host optimization, and set the stage for further metabolic engineering of whole-cell biotransformation of Neu5Ac.
Collapse
Affiliation(s)
- Qiong Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China
| | - Jiao Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China
| | - Yanhong Shao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China
| | - Guangdong Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China.
| |
Collapse
|
8
|
Bi Y, Wang J, Li J, Chou HH, Ren T, Li J, Zhang K. Engineering acetylation platform for the total biosynthesis of D-amino acids. Metab Eng 2023; 80:25-32. [PMID: 37689258 DOI: 10.1016/j.ymben.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Optically pure D-amino acids are key chemicals with various applications. Although the production of specific D-amino acids has been achieved by chemical synthesis or with in vitro enzyme catalysts, it is challenging to convert a simple carbon source into D-amino acids with high efficiency. Here, we design an artificial metabolic pathway by engineering bacteria to heterologously express racemase and N-acetyltransferase to produce N-acetyl-D-amino acids from L-amino acids. This new platform allows the cytotoxicity of D-amino acids to be avoided. The universal potential of this acetylation protection strategy for effectively synthesizing optically pure D-amino acids is demonstrated by testing sixteen amino acid targets. Furthermore, we combine pathway optimization and metabolic engineering in Escherichia coli and achieve practically useful efficiency with four specific examples, including N-acetyl-D-valine, N-acetyl-D-serine, N-acetyl-D-phenylalanine and N-acetyl-D-phenylglycine, with titers reaching 5.65 g/L, 5.25 g/L, 8.025 g/L and 130 mg/L, respectively. This work opens up opportunities for synthesizing D-amino acids directly from simple carbon sources, avoiding costly and unsustainable conventional approaches.
Collapse
Affiliation(s)
- Yanqi Bi
- Fudan University, 220 Handan Road, Shanghai, 201100, China; School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jingyu Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jialong Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hsiang-Hui Chou
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Tianhua Ren
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jinlin Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Kechun Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
9
|
Peng Y, Xu P, Tao F. Production of N-acetylglucosamine with Vibrio alginolyticus FA2, an emerging platform for economical unsterile open fermentation. Synth Syst Biotechnol 2023; 8:546-554. [PMID: 37637200 PMCID: PMC10457514 DOI: 10.1016/j.synbio.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Members of the Vibrionaceae family are predominantly fast-growing and halophilic microorganisms that have captured the attention of researchers owing to their potential applications in rapid biotechnology. Among them, Vibrio alginolyticus FA2 is a particularly noteworthy halophilic bacterium that exhibits superior growth capability. It has the potential to serve as a biotechnological platform for sustainable and eco-friendly open fermentation with seawater. To evaluate this hypothesis, we integrated the N-acetylglucosamine (GlcNAc) pathway into V. alginolyticus FA2. Seven nag genes were knocked out to obstruct the utilization of GlcNAc, and then 16 exogenous gna1s co-expressing with EcglmS were introduced to strengthen the flux of GlcNAc pathway, respectively. To further enhance GlcNAc production, we fine-tuned promoter strength of the two genes and inactivated two genes alsS and alsD to prevent the production of acetoin. Furthermore, unsterile open fermentation was carried out using simulated seawater and a chemically defined medium, resulting in the production of 9.2 g/L GlcNAc in 14 h. This is the first report for de-novo synthesizing GlcNAc with a Vibrio strain, facilitated by an unsterile open fermentation process employing seawater as a substitute for fresh water. This development establishes a basis for production of diverse valuable chemicals using Vibrio strains and provides insights into biomanufacture.
Collapse
Affiliation(s)
- Yuan Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Wang X, Chang F, Wang T, Luo H, Su X, Tu T, Wang Y, Bai Y, Qin X, Zhang H, Wang Y, Yao B, Huang H, Zhang J. Production of N-acetylglucosamine from carbon dioxide by engineering Cupriavidus necator H16. BIORESOURCE TECHNOLOGY 2023; 379:129024. [PMID: 37028529 DOI: 10.1016/j.biortech.2023.129024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The conversion of CO2 into valuable bioactive substances using synthetic biological techniques is a potential approach for mitigating the greenhouse effect. Here, the engineering of C. necator H16 to produce N-acetylglucosamine (GlcNAc) from CO2 is reported. First, GlcNAc importation and intracellular metabolic pathways were disrupted by the deletion of nagF, nagE, nagC, nagA and nagB genes. Second, the GlcNAc-6-phosphate N-acetyltransferase gene (gna1) was screened. A GlcNAc-producing strain was constructed by overexpressing a mutant gna1 from Caenorhabditis elegans. A further increase in GlcNAc production was achieved by disrupting poly(3-hydroxybutyrate) biosynthesis and the Entner-Doudoroff pathways. The maximum GlcNAc titers were 199.9 and 566.3 mg/L for fructose and glycerol, respectively. Finally, the best strain achieved a GlcNAc titer of 75.3 mg/L in autotrophic fermentation. This study demonstrated a conversion of CO2 to GlcNAc, thereby providing a feasible approach for the biosynthesis of various bioactive chemicals from CO2 under normal conditions..
Collapse
Affiliation(s)
- Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fangfang Chang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tingting Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Gasparella M, Cenzi C, Piccione M, Madia VN, Di Santo R, Tudino V, Artico M, Taurone S, De Ponte C, Costi R, Di Liddo R. Effects of Modified Glucosamine on the Chondrogenic Potential of Circulating Stem Cells under Experimental Inflammation. Int J Mol Sci 2023; 24:10397. [PMID: 37373540 DOI: 10.3390/ijms241210397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glucosamine (GlcN) is a glycosaminoglycan (GAGs) constituent in connective tissues. It is naturally produced by our body or consumed from diets. In the last decade, in vitro and in vivo trials have demonstrated that the administration of GlcN or its derivates has a protective effect on cartilage when the balance between catabolic and anabolic processes is disrupted and cells are no longer able to fully compensate for the loss of collagen and proteoglycans. To date, these benefits are still controversial because the mechanism of action of GlcN is not yet well clarified. In this study, we have characterized the biological activities of an amino acid (AA) derivate of GlcN, called DCF001, in the growth and chondrogenic induction of circulating multipotent stem cells (CMCs) after priming with tumor necrosis factor-alpha (TNFα), a pleiotropic cytokine commonly expressed in chronic inflammatory joint diseases. In the present work, stem cells were isolated from the human peripheral blood of healthy donors. After priming with TNFα (10 ng/mL) for 3 h, cultures were treated for 24 h with DCF001 (1 μg/mL) dissolved in a proliferative (PM) or chondrogenic (CM) medium. Cell proliferation was analyzed using a Corning® Cell Counter and trypan blue exclusion technique. To evaluate the potentialities of DCF001 in counteracting the inflammatory response to TNFα, we measured the amount of extracellular ATP (eATP) and the expression of adenosine-generating enzymes CD39/CD73, TNFα receptors, and NF-κB inhibitor IκBα using flow cytometry. Finally, total RNA was extracted to perform a gene expression study of some chondrogenic differentiation markers (COL2A1, RUNX2, and MMP13). Our analysis has shed light on the ability of DCF001 to (a) regulate the expression of CD39, CD73, and TNF receptors; (b) modulate eATP under differentiative induction; (c) enhance the inhibitory activity of IκBα, reducing its phosphorylation after TNFα stimulation; and (d) preserve the chondrogenic potentialities of stem cells. Although preliminary, these results suggest that DCF001 could be a valuable supplement for ameliorating the outcome of cartilage repair interventions, enhancing the efficacy of endogenous stem cells under inflammatory stimuli.
Collapse
Affiliation(s)
- Marco Gasparella
- Local Health Unit Treviso, Department of Pediatric Surgery, 31100 Treviso, Italy
| | - Carola Cenzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Monica Piccione
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Valentina Noemi Madia
- Department of Drug Chemistry and Technology, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Roberto Di Santo
- Department of Drug Chemistry and Technology, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Valeria Tudino
- Department of Drug Chemistry and Technology, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Samanta Taurone
- Department of Movement, Human and Health Sciences-Division of Health Sciences, University of Rome "Foro Italico", 00185 Rome, Italy
| | - Chiara De Ponte
- Department of Sensory Organs, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Roberta Costi
- Department of Drug Chemistry and Technology, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
12
|
Ren J, Barton CD, Zhan J. Engineered production of bioactive polyphenolic O-glycosides. Biotechnol Adv 2023; 65:108146. [PMID: 37028465 DOI: 10.1016/j.biotechadv.2023.108146] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from nucleotide-activated diphosphate sugar (NDP-sugar) donors to sugar acceptors such as polyphenolic compounds. In this review, we systematically review and summarize the representative polyphenolic O-glycosides with various bioactivities and their engineered biosynthesis in microbes with different biotechnological strategies. We also review the major routes towards NDP-sugar formation in microbes, which is significant for producing unusual or novel glycosides. Finally, we discuss the trends in NDP-sugar based glycosylation research to promote the development of prodrugs that positively impact human health and wellness.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
13
|
An update on the review of microbial synthesis of glucosamine and N-acetylglucosamine. World J Microbiol Biotechnol 2023; 39:93. [PMID: 36754899 DOI: 10.1007/s11274-023-03531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Glucosamine (GlcN) is a natural amino monosaccharide in which a hydroxyl group of glucose is substituted by an amino group. It belongs to functional amino sugar compounds. In the traditional preparation process, GlcN and GlcNAc are obtained by hydrolyzing the cell wall of shrimp and crab. There are many potential problems with this method, such as geographical and seasonal restrictions on the supply of raw materials, serious environmental pollution and potential allergic reactions. Microbial fermentation has the advantages of mild conditions, low environmental pollution, high production intensity, and product safety. It can effectively solve the problem of shrimp and crab hydrolysis process, attracting many researchers to participate in the research of microbial fermentation production of GlcN. This paper mainly summarizes the research on strain construction method, metabolic pathway design and fermentation condition optimization in microbial fermentation, which has certain guiding significance for the further production, research and production of glucosamine.
Collapse
|
14
|
Soni T, Zhuang M, Kumar M, Balan V, Ubanwa B, Vivekanand V, Pareek N. Multifaceted production strategies and applications of glucosamine: a comprehensive review. Crit Rev Biotechnol 2023; 43:100-120. [PMID: 34923890 DOI: 10.1080/07388551.2021.2003750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucosamine (GlcN) and its derivatives are in high demand and used in various applications such as food, a precursor for the biochemical synthesis of fuels and chemicals, drug delivery, cosmetics, and supplements. The vast number of applications attributed to GlcN has raised its demand, and there is a growing emphasis on developing production methods that are sustainable and economical. Several: physical, chemical, enzymatic, microbial fermentation, recombinant processing methods, and their combinations have been reported to produce GlcN from chitin and chitosan available from different sources, such as animals, plants, and fungi. In addition, genetic manipulation of certain organisms has significantly improved the quality and yield of GlcN compared to conventional processing methods. This review will summarize the chitin and chitosan-degrading enzymes found in various organisms and the expression systems that are widely used to produce GlcN. Furthermore, new developments and methods, including genetic and metabolic engineering of Escherichia coli and Bacillus subtilis to produce high titers of GlcN and GlcNAc will be reviewed. Moreover, other sources of glucosamine production viz. starch and inorganic ammonia will also be discussed. Finally, the conversion of GlcN to fuels and chemicals using catalytic and biochemical conversion will be discussed.
Collapse
Affiliation(s)
- Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Mengchuan Zhuang
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Venkatesh Balan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
15
|
Kokarakis EJ, Nazos TT, Mavroudakis L, Stratigakis NC, Sfendourakis GP, Lioudaki S, Spyros A, Pergantis SA, Ghanotakis DF. Structural and physicochemical characterization of an aminosugar-rich exopolysaccharide isolated from a Chlorella sp. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
16
|
Lu J, Wu Y, Deng C, Liu Y, Lv X, Li J, Du G, Liu L. Model-based dynamic engineering of Escherichia coli for N-acetylglucosamine overproduction. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:15-24. [PMID: 39416442 PMCID: PMC11446382 DOI: 10.1016/j.biotno.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2024]
Abstract
N-acetylglucosamine (GlcNAc), a glucosamine derivative, has a wide range of applications in pharmaceutical fields, and there is an increasing interest in the efficient production of GlcNAc genetic engineered bacteria. In this work, Escherichia coli ATCC 25947 (DE3) strain was engineered by a model-based dynamic regulation strategy achieving GlcNAc overproduction. First, the GlcNAc synthetic pathway was introduced into E. coli, and through flux balance analysis of the genome-scale metabolic network model, metabolic engineering strategies were generated to further increase GlcNAc yield. Knock-out of genes poxB and ldhA, encoding pyruvate oxidase and lactate dehydrogenase, increased GlcNAc titer by 5.1%. Furthermore, knocking out N-acetylmuramic acid 6-phosphate etherase encoded by murQ and enhancing glutamine synthetase encoded by glnA gene further increased GlcNAc titer to 130.8 g/L. Analysis of metabolic flux balance showed that GlcNAc production maximization requires the strict dynamic restriction of the reactions catalyzed by pfkA and zwf to balance cell growth and product synthesis. Hence, a dynamic regulatory system was constructed by combining the CRISPRi (clustered regularly interspaced short palindromic repeats interference) system with the lactose operon lacI and the transcription factor pdhR, allowing the cell to respond to the concentration of pyruvate and IPTG to dynamically repress pfkA and zwf transcription. Finally, the engineered bacteria with the dynamic regulatory system produced 143.8 g/L GlcNAc in a 30-L bioreactor in 55 h with a yield reaching 0.539 g/g glucose. Taken together, this work significantly enhanced the GlcNAc production of E. coli. Moreover, it provides a systematic, effective, and universal way to improve the synthetic ability of other engineered strains.
Collapse
Affiliation(s)
- Jiangong Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Chen Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
17
|
Efficient production of d-glucosamine by diacetylchitobiose deacetylase catalyzed deacetylation of N-acetyl-d-glucosamine. Biotechnol Lett 2022; 44:473-483. [DOI: 10.1007/s10529-022-03225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
|
18
|
Wang K, Wang X, Luo H, Wang Y, Wang Y, Tu T, Qin X, Bai Y, Huang H, Yao B, Su X, Zhang J. Synergetic Fermentation of Glucose and Glycerol for High-Yield N-Acetylglucosamine Production in Escherichia coli. Int J Mol Sci 2022; 23:ijms23020773. [PMID: 35054959 PMCID: PMC8775389 DOI: 10.3390/ijms23020773] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 01/13/2023] Open
Abstract
N-acetylglucosamine (GlcNAc) is an amino sugar that has been widely used in the nutraceutical and pharmaceutical industries. Recently, microbial production of GlcNAc has been developed. One major challenge for efficient biosynthesis of GlcNAc is to achieve appropriate carbon flux distribution between growth and production. Here, a synergistic substrate co-utilization strategy was used to address this challenge. Specifically, glycerol was utilized to support cell growth and generate glutamine and acetyl-CoA, which are amino and acetyl donors, respectively, for GlcNAc biosynthesis, while glucose was retained for GlcNAc production. Thanks to deletion of the 6-phosphofructokinase (PfkA and PfkB) and glucose-6-phosphate dehydrogenase (ZWF) genes, the main glucose catabolism pathways of Escherichia coli were blocked. The resultant mutant showed a severe defect in glucose consumption. Then, the GlcNAc production module containing glucosamine-6-phosphate synthase (GlmS*), glucosamine-6-phosphate N-acetyltransferase (GNA1*) and GlcNAc-6-phosphate phosphatase (YqaB) expression cassettes was introduced into the mutant, to drive the carbon flux from glucose to GlcNAc. Furthermore, co-utilization of glucose and glycerol was achieved by overexpression of glycerol kinase (GlpK) gene. Using the optimized fermentation medium, the final strain produced GlcNAc with a high stoichiometric yield of 0.64 mol/mol glucose. This study offers a promising strategy to address the challenge of distributing carbon flux in GlcNAc production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaoyun Su
- Correspondence: (X.S.); (J.Z.); Tel.: +86-10-62599910 (X.S. & J.Z.)
| | - Jie Zhang
- Correspondence: (X.S.); (J.Z.); Tel.: +86-10-62599910 (X.S. & J.Z.)
| |
Collapse
|
19
|
Zhu Y, Li Y, Xu Y, Zhang J, Ma L, Qi Q, Wang Q. Development of bifunctional biosensors for sensing and dynamic control of glycolysis flux in metabolic engineering. Metab Eng 2021; 68:142-151. [PMID: 34610458 DOI: 10.1016/j.ymben.2021.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022]
Abstract
Glycolysis is the primary metabolic pathway in all living organisms. Maintaining the balance of glycolysis flux and biosynthetic pathways is the crucial matter involved in the microbial cell factory. Few regulation systems can address the issue of metabolic flux imbalance in glycolysis. Here, we designed and constructed a bifunctional glycolysis flux biosensor that can dynamically regulate glycolysis flux for overproduction of desired biochemicals. A series of positive-and negative-response biosensors were created and modified for varied thresholds and dynamic ranges. These engineered glycolysis flux biosensors were verified to be able to characterize in vivo fructose-1,6-diphosphate concentration. Subsequently, the biosensors were applied for fine-tuning glycolysis flux to effectively balance the biosynthesis of two chemicals: mevalonate and N-acetylglucosamine. A glycolysis flux-dynamically controlled Escherichia coli strain achieved a 111.3 g/L mevalonate titer in a 1L fermenter.
Collapse
Affiliation(s)
- Yuan Zhu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ying Li
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ya Xu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Linlin Ma
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China; CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China.
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
20
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
21
|
Huang Z, Mao X, Lv X, Sun G, Zhang H, Lu W, Liu Y, Li J, Du G, Liu L. Engineering diacetylchitobiose deacetylase from Pyrococcus horikoshii towards an efficient glucosamine production. BIORESOURCE TECHNOLOGY 2021; 334:125241. [PMID: 33964814 DOI: 10.1016/j.biortech.2021.125241] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
In this study, semi-rational design based on site-directed saturation mutagenesis and surface charge modification was used to improve the catalytic efficiency of the diacetylchitobiose deacetylase derived from Pyrococcus horikoshii (PhDac). PhDac mutant M14, which was screened by site-directed saturation mutagenesis, showed a ~ 2.21 -fold enhanced catalytic efficiency (kcat/Km) and the specific activity was improved by 70.02%. To keep the stability of glucosamine (GlcN), we reduced the optimal pH of M14 by modifying the surface charge from -35 to -59 to obtain mutant M20, whose specific activity reached 2 -fold of the wild-type. The conversion rate of N-acetylglucosamine (GlcNAc) to GlcN catalyzed by M20 reached 94.3%. Moreover, the decline of GlcN production was slowed down by the reduction of pH when temperature was higher than 50 ℃. Our results would accelerate the process of industrial production of GlcN by biocatalysis.
Collapse
Affiliation(s)
- Ziyang Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xinzhu Mao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guoyun Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Hongzhi Zhang
- Shandong Runde Biotechnology Co., Ltd., Tai'an 271000, China
| | - Wei Lu
- Shandong Runde Biotechnology Co., Ltd., Tai'an 271000, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
22
|
Ma Q, Sun Q, Tan M, Xia L, Zhang Y, Yang M, Zhuo M, Zhao K, Li Y, Xu Q, Chen N, Xie X. Highly Efficient Production of N-Acetyl-glucosamine in Escherichia coli by Appropriate Catabolic Division of Labor in the Utilization of Mixed Glycerol/Glucose Carbon Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5966-5975. [PMID: 34004112 DOI: 10.1021/acs.jafc.1c01513] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Currently, microbial production is becoming a competitive method for N-acetyl-glucosamine production. As the biosynthesis of N-acetyl-glucosamine originating from fructose-6-P directly competes with central carbon metabolism for precursor supply, the consumption of glucose for cell growth and cellular metabolism severely limits the yield of N-acetyl-glucosamine. In this study, appropriate catabolic division of labor in the utilization of mixed carbon sources was achieved by deleting the pfkA gene and enhancing the utilization of glycerol by introducing the glpK mutant. Glycerol thus mainly contributed to cell growth and cellular metabolism, and more glucose was saved for efficient N-acetyl-glucosamine synthesis. By optimizing the ratio of glycerol to glucose, the balancing of cell growth/cellular metabolism and N-acetyl-glucosamine synthesis was achieved. The resulting strain GLALD-7 produced 179.7 g/L N-acetyl-glucosamine using mixed glycerol/glucose (1:8, m/m) carbon sources in a 5 L bioreactor, with a yield of 0.458 g/g total carbon sources (0.529 g/g glucose) and a productivity of 2.57 g/L/h. Coherent high titer/yield/productivity was obtained, with the highest values ever reported, suggesting that an appropriate catabolic division of labor using mixed glycerol/glucose carbon sources is a useful strategy for facilitating the microbial production of chemicals originating from glucose or metabolites upstream of glycolysis.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Quanwei Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Miao Tan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Xia
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengya Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingyang Zhuo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kexin Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingyang Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
23
|
Zhang Y, Yang J, Yang S, Zhang J, Chen J, Tao R, Jiang Y, Yang J, Yang S. Programming Cells by Multicopy Chromosomal Integration Using CRISPR-Associated Transposases. CRISPR J 2021; 4:350-359. [PMID: 34152213 DOI: 10.1089/crispr.2021.0018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Directed evolution and targeted genome editing have been deployed to create genetic variants with usefully altered phenotypes. However, these methods are limited to high-throughput screening methods or serial manipulation of single genes. In this study, we implemented multicopy chromosomal integration using CRISPR-associated transposases (MUCICAT) to simultaneously target up to 11 sites on the Escherichia coli chromosome for multiplex gene interruption and/or insertion, generating combinatorial genomic diversity. The MUCICAT system was improved by replacing the isopropyl-beta-D-thiogalactoside (IPTG)-dependent promoter to decouple gene editing and product synthesis and truncating the right end to reduce the leakage expression of cargo. We applied MUCICAT to engineer and optimize the N-acetylglucosamine (GlcNAc) biosynthesis pathway in E. coli to overproduce the industrially important GlcNAc in only 8 days. Two rounds of transformation, the first round for disruption of two degradation pathways related gene clusters and the second round for multiplex integration of the GlcNAc gene cassette, would generate a library with 1-11 copies of the GlcNAc cassette. We isolated a best variant with five copies of GlcNAc cassettes, producing 11.59 g/L GlcNAc, which was more than sixfold than that of the strain containing the pET-GNAc plasmid. Our multiplex approach MUCICAT has potential to become a powerful tool of cell programing and can be widely applied in many fields such as synthetic biology.
Collapse
Affiliation(s)
- Yiwen Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institutes for Biological Sciences, Huzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China; Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Jiawei Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institutes for Biological Sciences, Huzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China; Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Siqi Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institutes for Biological Sciences, Huzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China; Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California, USA; and Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Jun Chen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Rongsheng Tao
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institutes for Biological Sciences, Huzhou, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institutes for Biological Sciences, Huzhou, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, China
| |
Collapse
|
24
|
Zhang Y, Yu J, Wu Y, Li M, Zhao Y, Zhu H, Chen C, Wang M, Chen B, Tan T. Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Meng D, Wei X, Bai X, Zhou W, You C. Artificial in Vitro Synthetic Enzymatic Biosystem for the One-Pot Sustainable Biomanufacturing of Glucosamine from Starch and Inorganic Ammonia. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dongdong Meng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Xue Bai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Wei Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, People’s Republic of China
| |
Collapse
|
26
|
Latimer LN, Russ ZN, Lucas J, Dueber JE. Exploration of Acetylation as a Base-Labile Protecting Group in Escherichia coli for an Indigo Precursor. ACS Synth Biol 2020; 9:2775-2783. [PMID: 32886882 DOI: 10.1021/acssynbio.0c00297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biochemical protecting groups are observed in natural metabolic pathways to control reactivity and properties of chemical intermediates; similarly, they hold promise as a tool for metabolic engineers to achieve the same goals. Protecting groups come with costs: lower yields from carbon, metabolic load to the production host, deprotection catalyst costs and kinetics limitations, and wastewater treatment of the group. Compared to glycosyl biochemical protection, such as glucosyl groups, acetylation can mitigate each of these costs. As an example application where these benefits could be valuable, we explored acetylation protection of indoxyl, the reactive precursor to the clothing dye, indigo. First, we demonstrated denim dyeing with chemically sourced indoxyl acetate by deprotection with base, showing results comparable to industry-standard denim dyeing. Second, we modified an Escherichia coli production host for improved indoxyl acetate stability by the knockout of 14 endogenous hydrolases. Cumulatively, these knockouts yielded a 67% reduction in the indoxyl acetate hydrolysis rate from 0.22 mmol/g DCW/h to 0.07 mmol/g DCW/h. To biosynthesize indoxyl acetate, we identified three promiscuous acetyltransferases which acetylate indoxyl in vivo. Indoxyl acetate titer, while low, was improved 50%, from 43 μM to 67 μM, in the hydrolase knockout strain compared to wild-type E. coli. Unfortunately, low millimolar concentrations of indoxyl acetate proved to be toxic to the E. coli production host; however, the principle of acetylation as a readily cleavable and low impact biochemical protecting group and the engineered hydrolase knockout production host should prove useful for other metabolic products.
Collapse
Affiliation(s)
- Luke N. Latimer
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zachary N. Russ
- The UC Berkeley & UCSF Graduate Program in Bioengineering, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - James Lucas
- The UC Berkeley & UCSF Graduate Program in Bioengineering, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - John E. Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
27
|
Li P, Li K, Li X, Zhao F, Wang R, Wang J. Improving enzyme activity of glucosamine-6-phosphate synthase by semi-rational design strategy and computer analysis. Biotechnol Lett 2020; 42:2319-2332. [PMID: 32601959 DOI: 10.1007/s10529-020-02949-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/24/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To improve enzyme activity of Glucosamine-6-phosphate synthase (Glms) of Bacillus subtilis by site saturation mutagenesis at Leu593, Ala594, Lys595, Ser596 and Val597 based on computer-aided semi-rational design. RESULTS The results indicated that L593S had the greatest effect on the activity of BsGlms and the enzyme activity increased from 5 to 48 U/mL. The mutation of L593S increased the yield of glucosamine by 1.6 times that of the original strain. The binding energy of the mutant with substrate was reduced from - 743.864 to - 768.246 kcal/mol. Molecular dynamics simulation results showed that Ser593 enhanced the flexibility of the protein, which ultimately led to increased enzyme activity. CONCLUSION We successfully improved BsGlms activity through computer simulation and site saturation mutagenesis. This combination of methodologies may fit into an efficient workflow for improving Glms and other proteins activity.
Collapse
Affiliation(s)
- Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan, 250353, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, QILU University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Kang Li
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Xu Li
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Fei Zhao
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan, 250353, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, QILU University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan, 250353, Shandong, People's Republic of China. .,Key Laboratory of Shandong Microbial Engineering, QILU University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
28
|
Coussement P, Bauwens D, Peters G, Maertens J, De Mey M. Mapping and refactoring pathway control through metabolic and protein engineering: The hexosamine biosynthesis pathway. Biotechnol Adv 2020; 40:107512. [DOI: 10.1016/j.biotechadv.2020.107512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/07/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023]
|
29
|
Yang H, Liu Y, Li J, Liu L, Du G, Chen J. Systems metabolic engineering of
Bacillus subtilis
for efficient biosynthesis of 5‐methyltetrahydrofolate. Biotechnol Bioeng 2020; 117:2116-2130. [DOI: 10.1002/bit.27332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Han Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| |
Collapse
|
30
|
Mindt M, Walter T, Kugler P, Wendisch VF. Microbial Engineering for Production of N-Functionalized Amino Acids and Amines. Biotechnol J 2020; 15:e1900451. [PMID: 32170807 DOI: 10.1002/biot.201900451] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/04/2020] [Indexed: 01/04/2023]
Abstract
N-functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine-chemical industries N-functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N-alkylated, N-hydroxylated, N-acylated, or other N-functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N-functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N-hydroxylases, N-acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany.,BU Bioscience, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Tatjana Walter
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Pierre Kugler
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
31
|
Zhang Q, Hou Z, Ma Q, Mo X, Sun Q, Tan M, Xia L, Lin G, Yang M, Zhang Y, Xu Q, Li Y, Chen N, Xie X. CRISPRi-Based Dynamic Control of Carbon Flow for Efficient N-Acetyl Glucosamine Production and Its Metabolomic Effects in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3203-3213. [PMID: 32101421 DOI: 10.1021/acs.jafc.9b07896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon competition between cell growth and product synthesis is the bottleneck in efficient N-acetyl glucosamine (GlcNAc) production in microbial cell factories. In this study, a xylose-induced T7 RNA polymerase-PT7 promoter system was introduced in Escherichia coli W3110 to control the GlcNAc synthesis. Meanwhile, an arabinose-induced CRISPR interference (CRISPRi) system was applied to adjust cell growth by attenuating the transcription of key growth-related genes. By designing proper sgRNAs, followed by elaborate adjustment of the addition time and concentration of the two inducers, the carbon flux between cell growth and GlcNAc synthesis was precisely redistributed. Comparative metabolomics analysis results confirmed that the repression of pfkA and zwf significantly attenuated the TCA cycle and the synthesis of related amino acids, saving more carbon for the GlcNAc synthesis. Finally, the simultaneous repression of pfkA and zwf in strain GLA-14 increased the GlcNAc titer by 47.6% compared with that in E. coli without the CRISPRi system in a shake flask. GLA-14 could produce 90.9 g/L GlcNAc within 40 h in a 5 L bioreactor, with a high productivity of 2.27 g/L/h. This dynamic strategy for rebalancing cell growth and product synthesis could be applied in the fermentative production of other chemicals derived from precursors synthesized via central carbon metabolism.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengjie Hou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Xiaolin Mo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Quanwei Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Miao Tan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Xia
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Gaoyang Lin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengya Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Xixian Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| |
Collapse
|
32
|
Ma Q, Gao X, Bi X, Han Q, Tu L, Yang Y, Shen Y, Wang M. Dissolution and deacetylation of chitin in ionic liquid tetrabutylammonium hydroxide and its cascade reaction in enzyme treatment for chitin recycling. Carbohydr Polym 2020; 230:115605. [DOI: 10.1016/j.carbpol.2019.115605] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/09/2019] [Indexed: 01/10/2023]
|
33
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
34
|
CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in N-Acetylglucosamine Production. Appl Environ Microbiol 2019; 85:AEM.01367-19. [PMID: 31444197 DOI: 10.1128/aem.01367-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/14/2019] [Indexed: 12/30/2022] Open
Abstract
Lactobacillus plantarum is a potential starter and health-promoting probiotic bacterium. Effective, precise, and diverse genome editing of Lactobacillus plantarum without introducing exogenous genes or plasmids is of great importance. In this study, CRISPR/Cas9-assisted double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) recombineering was established in L. plantarum WCFS1 to seamlessly edit the genome, including gene knockouts, insertions, and point mutations. To optimize our editing method, phosphorothioate modification was used to improve the dsDNA insertion, and adenine-specific methyltransferase was used to improve the ssDNA recombination efficiency. These strategies were applied to engineer L. plantarum WCFS1 toward producing N-acetylglucosamine (GlcNAc). nagB was truncated to eliminate the reverse reaction of fructose-6-phosphate (F6P) to glucosamine 6-phosphate (GlcN-6P). Riboswitch replacement and point mutation in glmS1 were introduced to relieve feedback repression. The resulting strain produced 797.3 mg/liter GlcNAc without introducing exogenous genes or plasmids. This strategy may contribute to the available methods for precise and diverse genetic engineering in lactic acid bacteria and boost strain engineering for more applications.IMPORTANCE CRISPR/Cas9-assisted recombineering is restricted in lactic acid bacteria because of the lack of available antibiotics and vectors. In this study, a seamless genome editing method was carried out in Lactobacillus plantarum using CRISPR/Cas9-assisted double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) recombineering, and recombination efficiency was effectively improved by endogenous adenine-specific methyltransferase overexpression. L. plantarum WCFS1 produced 797.3 mg/liter N-acetylglucosamine (GlcNAc) through reinforcement of the GlcNAc pathway, without introducing exogenous genes or plasmids. This seamless editing strategy, combined with the potential exogenous GlcNAc-producing pathway, makes this strain an attractive candidate for industrial use in the future.
Collapse
|
35
|
Categories and biomanufacturing methods of glucosamine. Appl Microbiol Biotechnol 2019; 103:7883-7889. [DOI: 10.1007/s00253-019-10084-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/04/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022]
|
36
|
Deng C, Lv X, Liu Y, Li J, Lu W, Du G, Liu L. Metabolic engineering of Corynebacterium glutamicum S9114 based on whole-genome sequencing for efficient N-acetylglucosamine synthesis. Synth Syst Biotechnol 2019; 4:120-129. [PMID: 31198861 PMCID: PMC6558094 DOI: 10.1016/j.synbio.2019.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Glucosamine (GlcN) and its acetylated derivative N-acetylglucosamine (GlcNAc) are widely used in the pharmaceutical industries. Here, we attempted to achieve efficient production of GlcNAc via genomic engineering of Corynebacterium glutamicum. Specifically, we ligated the GNA1 gene, which converts GlcN-6-phosphate to GlcNAc-6-phosphate by transferring the acetyl group in Acetyl-CoA to the amino group of GlcN-6-phosphate, into the plasmid pJYW4 and then transformed this recombinant vector into the C. glutamicum ATCC 13032, ATCC 13869, ATCC 14067, and S9114 strains, and we assessed the GlcNAc titers at 0.5 g/L, 1.2 g/L, 0.8 g/L, and 3.1 g/L from each strain, respectively. This suggested that there were likely to be significant differences among the key genes in the glutamate and GlcNAc synthesis pathways of these C. glutamicum strains. Therefore, we performed whole genome sequencing of the S9114 strain, which has not been previously published, and found that there are many differences among the genes in the glutamate and GlcNAc synthesis pathways among the four strains tested. Next, nagA (encoding GlcNAc-6-phosphate deacetylase) and gamA (encoding GlcN-6-phosphate deaminase) were deleted in C. glutamicum S9114 to block the catabolism of intracellular GlcNAc, leading to a 54.8% increase in GlcNAc production (from 3.1 to 4.8 g/L) when grown in a shaker flask. In addition, lactate synthesis was blocked by knockout of ldh (encoding lactate dehydrogenase); thus, further increasing the GlcNAc titer to 5.4 g/L. Finally, we added a key gene of the GlcN synthetic pathway, glmS, from different sources into the expression vector pJYW-4-ceN, and the resulting recombinant strain CGGN2-GNA1-CgglmS produced the GlcNAc titer of 6.9 g/L. This is the first report concerning the metabolic engineering of C. glutamicum, and the results of this study provide a good starting point for further metabolic engineering to achieve industrial-scale production of GlcNAc.
Collapse
Affiliation(s)
- Chen Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Lu
- Shandong Runde Biotechnology CO., LTD, Taian, 271200, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
37
|
Gao X, Zhang F, Wu M, Wu Z, Shang G. Production of N-Acetyl-d-neuraminic Acid by Whole Cells Expressing Bacteroides thetaiotaomicron N-Acetyl-d-glucosamine 2-Epimerase and Escherichia coli N-Acetyl-d-neuraminic Acid Aldolase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6285-6291. [PMID: 31117501 DOI: 10.1021/acs.jafc.9b01839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
N-Acetyl-d-neuraminic acid (Neu5Ac) is a potential baby nutrient and the key precursor of antiflu medicine Zanamivir. The Neu5Ac chemoenzymatic synthesis consists of N-acetyl-d-glucosamine epimerase (AGE)-catalyzed epimerization of N-acetyl-d-glucosamine (GlcNAc) to N-acetyl-d-mannosamine (ManNAc) and aldolase-catalyzed condensation between ManNAc and pyruvate. Herein, we cloned and characterized BT0453, a novel AGE, from a human gut symbiont Bacteroides thetaiotaomicron. BT0453 shows the highest soluble fraction among the AGEs tested. With GlcNAc and sodium pyruvate as substrates, Neu5Ac production by coupling whole cells expressing BT0453 and Escherichia coli N-acetyl-d-neuraminic acid aldolase was explored. After 36 h, a 53.6% molar yield, 3.6 g L-1 h-1 productivity and 42.9 mM titer of Neu5Ac were obtained. Furthermore, for the first time, the T7- BT0453-T7- nanA polycistronic unit was integrated into the E. coli genome, generating a chromosome-based biotransformation system. BT0453 protein engineering and metabolic engineering studies hold potential for the industrial production of Neu5Ac.
Collapse
Affiliation(s)
- Xinyue Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| | - Feifei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| | - Meng Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| | - Zhixin Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| | - Guangdong Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|
38
|
Co-immobilization of Short-Chain Dehydrogenase/Reductase and Glucose Dehydrogenase for the Efficient Production of (±)-Ethyl Mandelate. Catal Letters 2019. [DOI: 10.1007/s10562-019-02727-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Artmann DJ, Amrain W, Murauer A, Ganzera M, Vrabl P, Schinagl CW, Burgstaller W. Critical evaluation of a putative glucosamine excretion by Aspergillus niger CBS120.49 and Penicillium ochrochloron CBS123.824 under citric acid producing conditions. Sci Rep 2019; 9:7496. [PMID: 31097735 PMCID: PMC6522597 DOI: 10.1038/s41598-019-43976-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/07/2019] [Indexed: 12/03/2022] Open
Abstract
As one of the most frequently occurring monomers in the biosphere, glucosamine is a valuable metabolite for several applications. Although microbial glucosamine production is still in its infancy, it offers the possibility to circumvent problems associated with traditional production by hydrolysis. Of particular interest is a study with Aspergillus niger, which reports for the first time high glucosamine excretion in the early phase of citric acid production. These results have relevance for both the commercial glucosamine production and deeper insight into the regulation of organic acid excretion in fungi. To investigate glucosamine excretion, we performed bioreactor batch cultivations with Penicillium ochrochloron CBS123.824 and A. niger CBS120.49 using cultivation conditions which are known to trigger the production of citric acid. Glucosamine detection in culture filtrates was achieved by two photometric methods, High performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) and HPLC with mass spectrometry detection (HPLC-MS). Surprisingly, we detected no glucosamine at all. Based on a critical review of published data for A. niger, we conclude that the reported high levels of excreted glucosamine might be an experimental artifact. However, growth experiments with glucosamine as a combined or single source for carbon or nitrogen showed that both organisms are in principle able to transport glucosamine across their plasma membrane, which is a prerequisite for the excretion of glucosamine.
Collapse
Affiliation(s)
- Desirée Josefine Artmann
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - Werner Amrain
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Adele Murauer
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Markus Ganzera
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Pamela Vrabl
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | | | - Wolfgang Burgstaller
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
40
|
Zhu DQ, Wu JR, Zhan XB, Zhu L, Jiang Y. Enhanced N-acetyl-D-neuraminic production from glycerol and N-acetyl-D-glucosamine by metabolically engineered Escherichia coli with a two-stage pH-shift control strategy. J Ind Microbiol Biotechnol 2019; 46:125-132. [PMID: 30623269 DOI: 10.1007/s10295-018-02132-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
Typical N-acetyl-D-neuraminic acid (Neu5Ac) production uses N-acetyl-D-glucosamine (GlcNAc) and excess pyruvate as substrates in the enzymatic or whole-cell biocatalysis process. In a previous study, a Neu5Ac-producing biocatalytic process via engineered Escherichia coli SA-05/pDTrc-AB/pCDF-pck-ppsA was constructed without exogenous pyruvate. In this study, glycerol was found to be a good energy source compared with glucose for the catalytic system with resting cells, and Neu5Ac production increased to 13.97 ± 0.27 g L-1. In addition, a two-stage pH shift strategy was carried out, and the Neu5Ac yield was improved to 14.61 ± 0.31 g L-1. The GlcNAc concentration for Neu5Ac production was optimized. Finally, an integrated strategy was developed for Neu5Ac production, and the Neu5Ac yield reached as high as 18.17 ± 0.27 g L-1. These results provide a new biocatalysis technology for Neu5Ac production without exogenous pyruvate.
Collapse
Affiliation(s)
- De-Qiang Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Jian-Rong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Bei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Li Zhu
- Jiangsu Rayguang Biotech Co. Ltd., Wuxi, 214122, China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
41
|
Lee SW, Lee BY, Oh MK. Combination of Three Methods to Reduce Glucose Metabolic Rate For Improving N-Acetylglucosamine Production in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13191-13198. [PMID: 30463407 DOI: 10.1021/acs.jafc.8b04291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Previously, the production of N-acetylglucosamine (GlcNAc) in Saccharomyces cerevisiae was improved by deletion of the genes encoding phosphofructokinase 2 (PFK-2) isoforms, which reduced the glycolytic flux by eliminating the pathway to produce fructose-2,6-bisphosphate, an allosteric activator of phosphofructokinase 1 (PFK-1). We further examined the effects of an additional reduction in glucose metabolic rate on N-acetylglucosamine production. Glucose uptake rate was lowered by expressing a gene encoding truncated glucose-sensing regulator ( MTH1-Δ T). In addition, catalytically dead Cas9 (dCas9) was introduced in order to down-regulate the expression levels of PFK-1 and pyruvate kinase-1 (Pyk1). Finally, the three strategies were introduced into S. cerevisiae strains in a combinatorial way; the strain containing all three modules resulted in the highest N-acetylglucosamine production yield. The results showed that the three modules cooperatively reduced the glucose metabolism and improved N-acetylglucosamine production up to 3.0 g/L in shake flask cultivation.
Collapse
Affiliation(s)
- Sang-Woo Lee
- Novo Nordisk Foundation Center for Biosustainability , Technical University of Denmark , 2800 Kongens Lyngby , Denmark
- Department of Chemical & Biological Engineering , Korea University , Anam-Ro 145, Seongbuk-Gu, Seoul 02841 , Republic of Korea
| | - Bo-Young Lee
- Department of Chemical & Biological Engineering , Korea University , Anam-Ro 145, Seongbuk-Gu, Seoul 02841 , Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering , Korea University , Anam-Ro 145, Seongbuk-Gu, Seoul 02841 , Republic of Korea
| |
Collapse
|
42
|
Whole-genome sequence of purple non-sulfur bacteria, Rhodobacter sphaeroides strain MBTLJ-8 with improved CO2 reduction capacity. J Biotechnol 2018; 288:9-14. [DOI: 10.1016/j.jbiotec.2018.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 01/13/2023]
|
43
|
Wu Y, Chen T, Liu Y, Lv X, Li J, Du G, Ledesma-Amaro R, Liu L. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metab Eng 2018; 49:232-241. [DOI: 10.1016/j.ymben.2018.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
|
44
|
Molecular insights into the antifungal mechanism of bacilysin. J Mol Model 2018; 24:118. [DOI: 10.1007/s00894-018-3645-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/28/2018] [Indexed: 01/14/2023]
|
45
|
Enhancing fructosylated chondroitin production in Escherichia coli K4 by balancing the UDP-precursors. Metab Eng 2018; 47:314-322. [PMID: 29654832 DOI: 10.1016/j.ymben.2018.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 11/23/2022]
Abstract
Microbial production of chondroitin and chondroitin-like polysaccharides from renewable feedstock is a promising and sustainable alternative to extraction from animal tissues. In this study, we attempted to improve production of fructosylated chondroitin in Escherichia coli K4 by balancing intracellular levels of the precursors UDP-GalNAc and UDP-GlcA. To this end, we deleted pfkA to favor the production of Fru-6-P. Then, we identified rate-limiting enzymes in the synthesis of UDP-precursors. Third, UDP-GalNAc synthesis, UDP-GlcA synthesis, and chondroitin polymerization were combinatorially optimized by altering the expression of relevant enzymes. The ratio of intracellular UDP-GalNAc to UDP-GlcA increased from 0.17 in the wild-type strain to 1.05 in a 30-L fed-batch culture of the engineered strain. Titer and productivity of fructosylated chondroitin also increased to 8.43 g/L and 227.84 mg/L/h; the latter represented the highest productivity level achieved to date.
Collapse
|
46
|
Anderson LA, Islam MA, Prather KLJ. Synthetic biology strategies for improving microbial synthesis of "green" biopolymers. J Biol Chem 2018; 293:5053-5061. [PMID: 29339554 PMCID: PMC5892568 DOI: 10.1074/jbc.tm117.000368] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polysaccharide-based biopolymers have many material properties relevant to industrial and medical uses, including as drug delivery agents, wound-healing adhesives, and food additives and stabilizers. Traditionally, polysaccharides are obtained from natural sources. Microbial synthesis offers an attractive alternative for sustainable production of tailored biopolymers. Here, we review synthetic biology strategies for select "green" biopolymers: cellulose, alginate, chitin, chitosan, and hyaluronan. Microbial production pathways, opportunities for pathway yield improvements, and advances in microbial engineering of biopolymers in various hosts are discussed. Taken together, microbial engineering has expanded the repertoire of green biological chemistry by increasing the diversity of biobased materials.
Collapse
Affiliation(s)
- Lisa A Anderson
- From the Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - M Ahsanul Islam
- From the Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Kristala L J Prather
- From the Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
47
|
Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, Contreras LM, Yang S. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng 2018; 50:57-73. [PMID: 29627506 DOI: 10.1016/j.ymben.2018.04.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/31/2018] [Accepted: 04/01/2018] [Indexed: 12/22/2022]
Abstract
Biorefinery of biomass-based biofuels and biochemicals by microorganisms is a competitive alternative of traditional petroleum refineries. Zymomonas mobilis is a natural ethanologen with many desirable characteristics, which makes it an ideal industrial microbial biocatalyst for commercial production of desirable bioproducts through metabolic engineering. In this review, we summarize the metabolic engineering progress achieved in Z. mobilis to expand its substrate and product ranges as well as to enhance its robustness against stressful conditions such as inhibitory compounds within the lignocellulosic hydrolysates and slurries. We also discuss a few metabolic engineering strategies that can be applied in Z. mobilis to further develop it as a robust workhorse for economic lignocellulosic bioproducts. In addition, we briefly review the progress of metabolic engineering in Z. mobilis related to the classical synthetic biology cycle of "Design-Build-Test-Learn", as well as the progress and potential to develop Z. mobilis as a model chassis for biorefinery practices in the synthetic biology era.
Collapse
Affiliation(s)
- Xia Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Qiaoning He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Yongfu Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jingwen Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Katie Haning
- Institute for Cellular and Molecular Biology, Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States.
| | - Yun Hu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, South Renmin Road, Chengdu 610041, China.
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, South Renmin Road, Chengdu 610041, China.
| | - Yaoping Zhang
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, United States.
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lydia M Contreras
- Institute for Cellular and Molecular Biology, Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States.
| | - Shihui Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
48
|
Takeo M, Kimura K, Mayilraj S, Inoue T, Tada S, Miyamoto K, Kashiwa M, Ikemoto K, Baranwal P, Kato D, Negoro S. Biosynthetic Pathway and Genes of Chitin/Chitosan-Like Bioflocculant in the Genus Citrobacter. Polymers (Basel) 2018; 10:polym10030237. [PMID: 30966272 PMCID: PMC6414854 DOI: 10.3390/polym10030237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 11/17/2022] Open
Abstract
Chitin/chitosan, one of the most abundant polysaccharides in nature, is industrially produced as a powder or flake form from the exoskeletons of crustaceans such as crabs and shrimps. Intriguingly, many bacterial strains in the genus Citrobacter secrete a soluble chitin/chitosan-like polysaccharide into the culture medium during growth in acetate. Because this polysaccharide shows strong flocculation activity for suspended solids in water, it can be used as a bioflocculant (BF). The BF synthetic pathway of C. freundii IFO 13545 is expected from known bacterial metabolic pathways to be as follows: acetate is metabolized in the TCA cycle and the glyoxylate shunt via acetyl-CoA. Next, fructose 6-phosphate is generated from the intermediates of the TCA cycle through gluconeogenesis and enters into the hexosamine synthetic pathway to form UDP-N-acetylglucosamine, which is used as a direct precursor to extend the BF polysaccharide chain. We conducted the draft genome sequencing of IFO 13545 and identified all of the candidate genes corresponding to the enzymes in this pathway in the 5420-kb genome sequence. Disruption of the genes encoding acetyl-CoA synthetase and isocitrate lyase by homologous recombination resulted in little or no growth on acetate, indicating that the cell growth depends on acetate assimilation via the glyoxylate shunt. Disruption of the gene encoding glucosamine 6-phosphate synthase, a key enzyme for the hexosamine synthetic pathway, caused a significant decrease in flocculation activity, demonstrating that this pathway is primarily used for the BF biosynthesis. A gene cluster necessary for the polymerization and secretion of BF, named bfpABCD, was also identified for the first time. In addition, quantitative RT-PCR analysis of several key genes in the expected pathway was conducted to know their expression in acetate assimilation and BF biosynthesis. Based on the data obtained in this study, an overview of the BF synthetic pathway is discussed.
Collapse
Affiliation(s)
- Masahiro Takeo
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Kazuyuki Kimura
- Hyogo Analysis Center Co., Ltd., 4-10-8 Seimondori, Hirohata, Himeji, Hyogo 671-1116, Japan.
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh-160 036, India.
| | - Takuya Inoue
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Shohei Tada
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Kouki Miyamoto
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Masami Kashiwa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Keishi Ikemoto
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Priyanka Baranwal
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Daiichiro Kato
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima 890-8580, Japan.
| | - Seiji Negoro
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| |
Collapse
|
49
|
Halder SK, Mondal KC. Microbial Valorization of Chitinous Bioresources for Chitin Extraction and Production of Chito-Oligomers and N-Acetylglucosamine: Trends, Perspectives and Prospects. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
50
|
Mikami Y, Yoneda H, Tatsukami Y, Aoki W, Ueda M. Ammonia production from amino acid-based biomass-like sources by engineered Escherichia coli. AMB Express 2017; 7:83. [PMID: 28429328 PMCID: PMC5399010 DOI: 10.1186/s13568-017-0385-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/07/2017] [Indexed: 11/10/2022] Open
Abstract
The demand for ammonia is expected to increase in the future because of its importance in agriculture, industry, and hydrogen transportation. Although the Haber–Bosch process is known as an effective way to produce ammonia, the process is energy-intensive. Thus, an environmentally friendly ammonia production process is desired. In this study, we aimed to produce ammonia from amino acids and amino acid-based biomass-like resources by modifying the metabolism of Escherichia coli. By engineering metabolic flux to promote ammonia production using the overexpression of the ketoisovalerate decarboxylase gene (kivd), derived from Lactococcus lactis, ammonia production from amino acids was 351 mg/L (36.6% yield). Furthermore, we deleted the glnA gene, responsible for ammonia assimilation. Using yeast extract as the sole source of carbon and nitrogen, the resultant strain produced 458 mg/L of ammonia (47.8% yield) from an amino acid-based biomass-like material. The ammonia production yields obtained are the highest reported to date. This study suggests that it will be possible to produce ammonia from waste biomass in an environmentally friendly process.
Collapse
|