1
|
Lim SH, Kim EJ, Lee CH, Park GH, Yoo KM, Nam SJ, Shin KO, Park K, Choi EH. A Lipid Mixture Enriched by Ceramide NP with Fatty Acids of Diverse Chain Lengths Contributes to Restore the Skin Barrier Function Impaired by Topical Corticosteroid. Skin Pharmacol Physiol 2021; 35:112-123. [PMID: 34348350 DOI: 10.1159/000518517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/10/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The stratum corneum (SC) is a skin barrier that consists of corneocytes, intercellular lipids, and corneodesmosomes. Ceramides are composed of sphingoid bases linked with various types of fatty acids (FAs), and they are an essential constituent of SC intercellular lipids. Among their subtypes, ceramide NP with a phytosphingosine base is especially important. Most of the previous studies on barrier recovery have focused on a specific ceramide with a single chain FA, not with diverse chain lengths. Skin barrier function is impaired by various factors, including topical corticosteroid. OBJECTIVE We evaluated whether a lipid mixture enriched by ceramide NP with FAs of diverse chain lengths (CER [NP]*) can restore the skin barrier function impaired by topical corticosteroid. METHODS Twenty-seven healthy adult male volunteers were recruited. Topical corticosteroid was applied on both volar forearms of volunteers. Then, the test cream containing a lipid mixture with CER (NP)* was applied on the left forearm, and a vehicle cream without a lipid mixture was applied on the right forearm of each subject. The functional parameters of the skin barrier were compared before and after the treatment. Epidermal differentiation markers, hyaluronic acid synthase 3 (HAS3), cytokine levels, and the lipid profiles in the SC were analyzed. RESULTS The functional parameters of the skin barrier, such as barrier recovery rate, SC integrity, and SC hydration were significantly improved in the test cream-applied site compared to the vehicle cream-applied sites. Filaggrin and HAS3 levels were significantly higher in the sites applied with the test cream. Interleukin (IL)-1α levels were also significantly increased in these sites. IL-2, IL-6, IL-10, and IL-13 levels were significantly decreased in the test cream-applied sites. Lipid analyses showed that C18, C20, and total ceramide NP levels significantly increased in the sites where the test cream was applied. Also, C16, C18, C20, C24, and total ceramide NP levels were significantly elevated in the test cream-applied sites after acute barrier disruption. CONCLUSION Our results demonstrate that a lipid mixture enriched by CER (NP)* could recover the barrier function impaired by topical corticosteroid.
Collapse
Affiliation(s)
- Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eun Jung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Chung Hyuk Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | | | | | | | - Kyong-Oh Shin
- The Korean Institute of Nutrition, Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Kyungho Park
- The Korean Institute of Nutrition, Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
2
|
Guo Z, Li Q. Enzymatic Synthesis of Glycosphingolipids: A Review. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1426-4451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractGlycosphingolipids (GSLs) are the major vertebrate glycolipids, which contain two distinctive moieties, a glycan and a ceramide, stitched together by a β-glycosidic linkage. The hydrophobic lipid chains of ceramide can insert into the cell membrane to form ‘lipid rafts’ and anchor the hydrophilic glycan onto the cell surface to generate microdomains and function as signaling molecules. GSLs mediate signal transduction, cell interactions, and many other biological activities, and are also related to many diseases. To meet the need of biological studies, chemists have developed various synthetic methodologies to access GSLs. Among them, the application of enzymes to GSL synthesis has witnessed significant advancements in the past decades. This short review briefly summarizes the history and progress of enzymatic GSL synthesis.1 Introduction1.1 The Glycosphingolipid Structure1.2 GSL Biosynthesis1.3 Functions and Biological Significance1.4 Overview of GSL Synthesis1.5 Scope of the Review2 Glycotransferases for GSL Synthesis3 Glycosynthases for GSL Synthesis4 Enzymatic Synthesis of Ceramide5 Conclusion
Collapse
|
3
|
Choi JY, Hwang HJ, Cho WY, Choi JI, Lee PC. Differences in the Fatty Acid Profile, Morphology, and Tetraacetylphytosphingosine-Forming Capability Between Wild-Type and Mutant Wickerhamomyces ciferrii. Front Bioeng Biotechnol 2021; 9:662979. [PMID: 34178960 PMCID: PMC8220092 DOI: 10.3389/fbioe.2021.662979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
One tetraacetylphytosphingosine (TAPS)-producing Wickerhamomyces ciferrii mutant was obtained by exposing wild-type W. ciferrii to γ-ray irradiation. The mutant named 736 produced up to 9.1 g/L of TAPS (218.7 mg-TAPS/g-DCW) during batch fermentation in comparison with 1.7 g/L of TAPS (52.2 mg-TAPS/g-DCW) for the wild type. The highest production, 17.7 g/L of TAPS (259.6 mg-TAPS/g-DCW), was obtained during fed-batch fermentation by mutant 736. Fatty acid (FA) analysis revealed an altered cellular FA profile of mutant 736: decrease in C16:0 and C16:1 FA levels, and increase in C18:1 and C18:2 FA levels. Although a significant change in the cellular FA profile was observed, scanning electron micrographs showed that morphology of wild-type and mutant 736 cells was similar. Genetic alteration analysis of eight TAPS biosynthesis-related genes revealed that there are no mutations in these genes in mutant 736; however, mRNA expression analysis indicated 30% higher mRNA expression of TCS10 among the eight genes in mutant 736 than that in the wild-type. Collectively, these results imply that the enhancement of TAPS biosynthesis in mutant 736 may be a consequence of system-level genetic and physiological alterations of a complicated metabolic network. Reverse metabolic engineering based on system-level omics analysis of mutant 736 can make the mutant more suitable for commercial production of TAPS.
Collapse
Affiliation(s)
- Jun Young Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Hee Jin Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Woo Yeon Cho
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
4
|
Selectable marker recycling in the nonconventional yeast Xanthophyllomyces dendrorhous by transient expression of Cre on a genetically unstable vector. Appl Microbiol Biotechnol 2018; 103:963-971. [DOI: 10.1007/s00253-018-9496-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
|
5
|
Yaguchi A, Spagnuolo M, Blenner M. Engineering yeast for utilization of alternative feedstocks. Curr Opin Biotechnol 2018; 53:122-129. [DOI: 10.1016/j.copbio.2017.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022]
|
6
|
Cell permeability and nuclear DNA staining by propidium iodide in basidiomycetous yeasts. Appl Microbiol Biotechnol 2018; 102:4183-4191. [DOI: 10.1007/s00253-018-8906-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
|
7
|
Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X. Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications-a review. Crit Rev Food Sci Nutr 2018; 58:2768-2778. [PMID: 28662355 DOI: 10.1080/10408398.2017.1341385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biomolecules like rare sugars and their derivatives are referred to as monosaccharides particularly uncommon in nature. Remarkably, many of them have various known physiological functions and biotechnological applications in cosmetics, nutrition, and pharmaceutical industries. Also, they can be exploited as starting materials for synthesizing fascinating natural bioproducts with significant biological activities. Regrettably, most of the rare sugars are quite expensive, and their synthetic chemical routes are both limited and economically unfeasible due to expensive raw materials. On the other hand, their production by enzymatic means often suffers from low space-time yields and high catalyst costs due to hasty enzyme denaturation/degradation. In this context, biosynthesis of rare sugars with industrial importance is receiving renowned scientific attention, across the globe. Moreover, the utilization of renewable resources as energy sources via microbial fermentation or microbial metabolic engineering has appeared a new tool. This article presents a comprehensive review of physiological functions and biotechnological applications of rare ketohexoses and aldohexoses, including D-psicose, D-tagatose, L-tagatose, D-sorbose, L-fructose, D-allose, L-glucose, D-gulose, L-talose, L-galactose, and L-fucose. Novel in-vivo recombination pathways based on aldolase and phosphatase for the biosynthesis of rare sugars, particularly D-psicose and D-sorbose using robust microbial strains are also deliberated.
Collapse
Affiliation(s)
- Muhammad Bilal
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Hafiz M N Iqbal
- b School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey , Ave. Eugenio Garza Sada 2501, Monterrey , N.L., CP , Mexico
| | - Hongbo Hu
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
- c National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Wei Wang
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Xuehong Zhang
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
8
|
Yang J, Zhu Y, Men Y, Sun S, Zeng Y, Zhang Y, Sun Y, Ma Y. Pathway Construction in Corynebacterium glutamicum and Strain Engineering To Produce Rare Sugars from Glycerol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9497-9505. [PMID: 27998065 DOI: 10.1021/acs.jafc.6b03423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rare sugars are valuable natural products widely used in pharmaceutical and food industries. In this study, we expected to synthesize rare ketoses from abundant glycerol using dihydroxyacetone phosphate (DHAP)-dependent aldolases. First, a new glycerol assimilation pathway was constructed to synthesize DHAP. The enzymes which convert glycerol to 3-hydroxypropionaldehyde and l-glyceraldehyde were selected, and their corresponding aldehyde synthesis pathways were constructed in vivo. Four aldol pathways based on different aldolases and phosphorylase were gathered. Next, three pathways were assembled and the resulting strains synthesized 5-deoxypsicose, 5-deoxysorbose, and 5-deoxyfructose from glucose and glycerol and produce l-fructose, l-tagatose, l-sorbose, and l-psicose with glycerol as the only carbon source. To achieve higher product titer and yield, the recombinant strains were further engineered and fermentation conditions were optimized. Fed-batch culture of engineered strains obtained 38.1 g/L 5-deoxypsicose with a yield of 0.91 ± 0.04 mol product per mol of glycerol and synthesized 20.8 g/L l-fructose, 10.3 g/L l-tagatose, 1.2 g/L l-sorbose, and 0.95 g/L l-psicose.
Collapse
Affiliation(s)
- Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yueming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Shangshang Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Ying Zhang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| |
Collapse
|
9
|
Tomàs-Gamisans M, Ferrer P, Albiol J. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism. PLoS One 2016; 11:e0148031. [PMID: 26812499 PMCID: PMC4734642 DOI: 10.1371/journal.pone.0148031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/12/2016] [Indexed: 01/21/2023] Open
Abstract
Motivation Genome-scale metabolic models (GEMs) are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented. Results In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In these simulations, the iMT1026 model has shown a better performance than the previous existing models.
Collapse
Affiliation(s)
- Màrius Tomàs-Gamisans
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Pau Ferrer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Joan Albiol
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- * E-mail:
| |
Collapse
|
10
|
Abstract
Ceramide 3 is used mainly as a moisturizer in various cosmetic products. Although several safety studies on formulations containing pseudo-ceramide or ceramide have been conducted at the preclinical and clinical levels for regulatory approval, no studies have evaluated the systemic toxicity of ceramide 3. To address this issue, we conducted a risk assessment and comprehensive toxicological review of ceramide and pseudo-ceramide. We assumed that ceramide 3 is present in various personal and cosmetic products at concentrations of 0.5-10%. Based on previously reported exposure data, the margin of safety (MOS) was calculated for product type, use pattern, and ceramide 3 concentration. Lipsticks with up to 10% ceramide 3 (MOS = 4111) are considered safe, while shampoos containing 0.5% ceramide 3 (MOS = 148) are known to be safe. Reported MOS values for body lotion applied to the hands (1% ceramide 3) and back (5% ceramide 3) were 103 and 168, respectively. We anticipate that face cream would be safe up to a ceramide 3 concentration of 3% (MOS = 149). Collectively, the MOS approach indicated no safety concerns for cosmetic products containing less than 1% ceramide 3.
Collapse
Affiliation(s)
- Seul Min Choi
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Changan-ku, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Changan-ku, Suwon, Gyeonggi-do, 440-746, Republic of Korea.
| |
Collapse
|
11
|
Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng 2014; 24:18-29. [DOI: 10.1016/j.ymben.2014.04.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 11/18/2022]
|
12
|
Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol 2013; 24:1023-30. [DOI: 10.1016/j.copbio.2013.03.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 01/09/2023]
|
13
|
Abstract
Wickerhamomyces ciferrii is a microorganism characterized by the production and secretion of large amounts of acetylated sphingoid bases, in particular tetraacetyl phytosphingosine. Here, we present the 15.90-Mbp draft genome sequence of W. ciferrii NRRL Y-1031 F-60-10 generated by pyrosequencing and de novo assembly. The draft genome sequence comprising 364 contigs in 150 scaffolds was annotated and covered 6,702 protein-coding sequences. This information will contribute to the metabolic engineering of this yeast to improve the yield and spectrum of acetylated sphingoid bases in biotechnological production.
Collapse
|
14
|
Biotechnological production of sphingoid bases and their applications. Appl Microbiol Biotechnol 2013; 97:4301-8. [DOI: 10.1007/s00253-013-4878-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 12/14/2022]
|
15
|
Wolff D, ter Veld F, Köhler T, Poetsch A. Combined application of targeted and untargeted proteomics identifies distinct metabolic alterations in the tetraacetylphytosphingosine (TAPS) producing yeast Wickerhamomyces ciferrii. J Proteomics 2013; 82:274-87. [PMID: 23500128 DOI: 10.1016/j.jprot.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
UNLABELLED The Wickerhamomyces ciferrii strain NRRL Y-1031 F-60-10A is a well-known producer of tetraacetylphytosphingosine (TAPS) and used for the biotechnological production of sphingolipids and ceramides. It was our aim to gain new biological insights into the sphingolipid metabolism by employing a dual platform mass spectrometry strategy. The first step comprised metabolic (15)N-labeling in combination with label-free proteomics using high resolution LTQ Orbitrap mass spectrometry. Then selected reaction monitoring tandem mass spectrometry served for the targeted quantification of sphingoid base biosynthesis enzymes. The non-producer strain NRRL Y-1031-27 served as a reference strain. In total, 1697 proteins were identified, and 123 enzymes of main metabolic pathways were observed as differentially expressed. Major findings were: 1) the likely presence of higher carbon flux in NRRL Y-1031 F-60-10A, resulting in higher availability of pyruvate and acetyl-CoA; 2) indications of oleaginous yeast-like behavior in NRRL Y-1031 F-60-10A; and 3) approx. 2-fold higher abundance of eight sphingolipid biosynthesis enzymes in NRRL Y-1031 F-60-10A. Taken together, in NRRL Y-1031 F-60-10A, the levels of glycolytic enzymes apparently gear carbon flux towards higher acetyl-CoA synthesis rates, while simultaneously reducing protein biosynthesis in the process. Thereby, C2 building blocks for acyl-moieties and downstream sphingoid base acetylation are provided to maintain TAPS production. BIOLOGICAL SIGNIFICANCE First quantitative proteome study for a phytosphingosine-producing yeast.
Collapse
Affiliation(s)
- Daniel Wolff
- Dept. of Plant Biochemistry, Ruhr-University Bochum, D-44801 Bochum, Germany
| | | | | | | |
Collapse
|
16
|
Production of tetraacetyl phytosphingosine (TAPS) in Wickerhamomyces ciferrii is catalyzed by acetyltransferases Sli1p and Atf2p. Appl Microbiol Biotechnol 2013; 97:8537-46. [PMID: 23318835 DOI: 10.1007/s00253-012-4670-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/03/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
Wickerhamomyces ciferrii secretes tetraacetyl phytosphingosine (TAPS), and in this study, the catalyzing acetyltransferases were identified using mass spectrometry-based proteomics. The proteome of wild-type strain NRRL Y-1031 served as control and was compared to the tetraacetyl phytosphingosine defective mating type NRRL Y-1031-27. Acetylation of phytosphingosine in W. ciferrii is catalyzed by acetyltransferases Sli1p and Atf2p, encoded by genes similar to Saccharomyces cerevisiae YGR212W and YGR177C, respectively. Ablation of SLI1 resulted in an almost complete loss of tri- and tetraacetyl phytosphingosines, whereas the loss ATF2 resulted in an 15-fold increase in triacetyl phytosphingosine. Most likely, it is the concerted action of these two acetyltransferases that yields tetraacetyl phytosphingosine, in which Sli1p catalyzes initial O- and N-acetylation, producing triacetyl phytosphingosine. Finally, Atf2p catalyzes final O-acetylation to yield tetraacetyl phytosphingosine. The current study demonstrates that mass spectrometry-based proteomics can be employed to identify key steps in ill-explored metabolite biosynthesis pathways of nonconventional microorganisms. Furthermore, the identification of phytosphingosine as substrate for alcohol acetyltransferase Atf2p broadens the known substrate range of this enzyme. This interesting property of Atf2p may be exploited to enhance the secretion of heterologous compounds.
Collapse
|