1
|
Miller ML, Nagarajan R, Thauland TJ, Butte MJ. Enhancing tumor-infiltrating T cells with an exclusive fuel source. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595053. [PMID: 38826342 PMCID: PMC11142041 DOI: 10.1101/2024.05.20.595053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Solid tumors harbor immunosuppressive microenvironments that inhibit tumor infiltrating lymphocytes (TILs) through the voracious consumption of glucose. We sought to restore TIL function by providing them with an exclusive fuel source. The glucose disaccharide cellobiose, which is a building block of cellulose, contains a β-1,4-glycosidic bond that cannot be hydrolyzed by animals (or their tumors), but fungal and bacterial organisms have evolved enzymes to catabolize cellobiose and use the resulting glucose. By equipping T cells with two proteins that enable import and hydrolysis of cellobiose, we demonstrate that supplementation of cellobiose during glucose withdrawal restores T cell cytokine production and cellular proliferation. Murine tumor growth is suppressed and survival is prolonged. Offering exclusive access to a natural disaccharide is a new tool that augments cancer immunotherapies. Beyond cancer, this approach could be used to answer questions about the regulation of glucose metabolism across many cell types, biological processes, and diseases.
Collapse
|
2
|
Vasylyshyn R, Dmytruk O, Sybirnyy A, Ruchała J. Engineering of Ogataea polymorpha strains with ability for high-temperature alcoholic fermentation of cellobiose. FEMS Yeast Res 2024; 24:foae007. [PMID: 38400543 PMCID: PMC10929770 DOI: 10.1093/femsyr/foae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024] Open
Abstract
Successful conversion of cellulosic biomass into biofuels requires organisms capable of efficiently utilizing xylose as well as cellodextrins and glucose. Ogataea (Hansenula) polymorpha is the natural xylose-metabolizing organism and is one of the most thermotolerant yeasts known, with a maximum growth temperature above 50°C. Cellobiose-fermenting strains, derivatives of an improved ethanol producer from xylose O. polymorpha BEP/cat8∆, were constructed in this work by the introduction of heterologous genes encoding cellodextrin transporters (CDTs) and intracellular enzymes (β-glucosidase or cellobiose phosphorylase) that hydrolyze cellobiose. For this purpose, the genes gh1-1 of β-glucosidase, CDT-1m and CDT-2m of cellodextrin transporters from Neurospora crassa and the CBP gene coding for cellobiose phosphorylase from Saccharophagus degradans, were successfully expressed in O. polymorpha. Through metabolic engineering and mutagenesis, strains BEP/cat8∆/gh1-1/CDT-1m and BEP/cat8∆/CBP-1/CDT-2mAM were developed, showing improved parameters for high-temperature alcoholic fermentation of cellobiose. The study highlights the need for further optimization to enhance ethanol yields and elucidate cellobiose metabolism intricacies in O. polymorpha yeast. This is the first report of the successful development of stable methylotrophic thermotolerant strains of O. polymorpha capable of coutilizing cellobiose, glucose, and xylose under high-temperature alcoholic fermentation conditions at 45°C.
Collapse
Affiliation(s)
- Roksolana Vasylyshyn
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Olena Dmytruk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Andriy Sybirnyy
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Justyna Ruchała
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
3
|
Zhang Y, Li M, Zhu R, Xin Y, Guo Z, Gu Z, Guo Z, Zhang L. Installing xylose assimilation and cellodextrin phosphorolysis pathways in obese Yarrowia lipolytica facilitates cost-effective lipid production from lignocellulosic hydrolysates. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:186. [PMID: 38031183 PMCID: PMC10688077 DOI: 10.1186/s13068-023-02434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Yarrowia lipolytica, one of the most charming chassis cells in synthetic biology, is unable to use xylose and cellodextrins. RESULTS Herein, we present work to tackle for the first time the engineering of Y. lipolytica to produce lipids from cellodextrins and xylose by employing rational and combinatorial strategies. This includes constructing a cellodextrin-phosphorolytic Y. lipolytica by overexpressing Neurospora crassa cellodextrin transporter, Clostridium thermocellum cellobiose/cellodextrin phosphorylase and Saccharomyces cerevisiae phosphoglucomutase. The effect of glucose repression on xylose consumption was relieved by installing a xylose uptake facilitator combined with enhanced PPP pathway and increased cytoplasmic NADPH supply. Further enhancing lipid production and interrupting its consumption conferred the obese phenotype to the engineered yeast. The strain is able to co-ferment glucose, xylose and cellodextrins efficiently, achieving a similar μmax of 0.19 h-1, a qs of 0.34 g-s/g-DCW/h and a YX/S of 0.54 DCW-g/g-s on these substrates, and an accumulation of up to 40% of lipids on the sugar mixture and on wheat straw hydrolysate. CONCLUSIONS Therefore, engineering Y. lipolytica capable of assimilating xylose and cellodextrins is a vital step towards a simultaneous saccharification and fermentation (SSF) process of LC biomass, allowing improved substrate conversion rate and reduced production cost due to low demand of external glucosidase.
Collapse
Affiliation(s)
- Yiran Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China
| | - Moying Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Rui Zhu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yu Xin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Zitao Guo
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Zhongpeng Guo
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China.
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China.
| | - Liang Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China
| |
Collapse
|
4
|
Zhang Y, Li Y, Lin H, Mao G, Long X, Liu X, Chen H. Broadening the Substrate Specificity of Cellobiose Phosphorylase from Clostridium thermocellum for Improved Transformation of Cellodextrin to Starch. Int J Mol Sci 2023; 24:14452. [PMID: 37833899 PMCID: PMC10572201 DOI: 10.3390/ijms241914452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Cellobiose phosphorylase (CBP) catalyzes the reversible phosphorolysis of cellobiose into α-glucose 1-phosphate and glucose. A CBP with a broadened substrate specificity would be more desirable when utilized to convert cellulose into amylose (PNAS, 110: 7182-7187, 2013) and to construct yeast that can phosphorolytically use cellodextrin to produce ethanol. Based on the structure differences in the catalytic loops of CBP and cellodextrin phosphorylase from Clostridium thermocellum (named CtCBP and CtCDP, respectively), CtCBP was mutated to change its substrate specificity. A single-site mutant S497G was identified to exhibit a 5.7-fold higher catalytic efficiency with cellotriose as a substrate in the phosphorolytic reaction compared to the wild type, without any loss of catalytic efficiency on its natural substrate, cellobiose. When the S497G variant was used in the transformation of mixed cellodextrin (cellobiose + cellotriose) to amylose, the amylose yield was significantly increased compared to that of wild-type CtCBP. A structure change in the substrate-binding pocket of the S497G variant accounted for its capacity to accept longer cellodextrins than cellobiose. Taken together, the modified CtCBP, S497G was confirmed to acquire a promising feature favorable to those application scenarios involving cellodextrin's phosphorolysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.L.); (H.L.); (G.M.); (X.L.); (X.L.)
| |
Collapse
|
5
|
Zhang Y, Xu Z, Lu M, Ding B, Chen S, Wen Z, Yu Y, Zhou L, Jin M. Rapid evolution and mechanism elucidation for efficient cellobiose-utilizing Saccharomyces cerevisiae through Synthetic Chromosome Rearrangement and Modification by LoxPsym-mediated Evolution. BIORESOURCE TECHNOLOGY 2022; 356:127268. [PMID: 35533888 DOI: 10.1016/j.biortech.2022.127268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Lack of cellobiose utilization capability for many microorganisms results in carbon source waste in lignocellulosic biorefinery. In this study, genes for cellobiose transport and hydrolysis were introduced to Saccharomyces cerevisiae synV, a semi-synthetic yeast with an inducible SCRaMbLE (Synthetic Chromosome Rearrangement and Modification by LoxPsym-mediated Evolution) system incorporated into its chromosome V, endowing cellobiose utilization capability to this strain. Thereafter, two evolved strains with 98.1% and 79.2% improvement, respectively, in cellobiose utilization rate were obtained through induced SCRaMbLE. Further studies suggested that the enhanced cellobiose utilization capability directly correlated with copy number increases of introduced genes and some chromosome structural variations. In particular, it was experimentally demonstrated for the first time that deletion of redox stress related gene MXR1 and ATP conversion related gene ADK2 contributed to enhanced cellobiose conversion. Thereafter, the effectiveness of MXR1 and ADK2 deletions was demonstrated in artificial hydrolysate and rice straw hydrolysate, respectively.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yang Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Linlin Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| |
Collapse
|
6
|
Ylinen A, de Ruijter JC, Jouhten P, Penttilä M. PHB production from cellobiose with Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:124. [PMID: 35729556 PMCID: PMC9210708 DOI: 10.1186/s12934-022-01845-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Replacement of petrochemical-based materials with microbially produced biodegradable alternatives calls for industrially attractive fermentation processes. Lignocellulosic materials offer non-edible alternatives for cultivated sugars, but require often use of expensive sugar releasing enzymes, such as β-glucosidases. These cellulose treatment costs could be reduced if microbial production hosts could use short cellodextrins such as cellobiose directly as their substrates. In this study, we demonstrate production of poly(hydroxybutyrate) (PHB) in yeast Saccharomyces cerevisiae using cellobiose as a sole carbon source. Yeast strains expressing PHB pathway genes from Cupriavidus necator and cellodextrin transporter gene CDT-1 from Neurospora crassa were complemented either with β-glucosidase gene GH1-1 from N. crassa or with cellobiose phosphorylase gene cbp from Ruminococcus flavefaciens. These cellobiose utilization routes either with Gh1-1 or Cbp enzymes differ in energetics and dynamics. However, both routes enabled higher PHB production per consumed sugar and higher PHB accumulation % of cell dry weight (CDW) than use of glucose as a carbon source. As expected, the strains with Gh1-1 consumed cellobiose faster than the strains with Cbp, both in flask and bioreactor batch cultures. In shake flasks, higher final PHB accumulation % of CDW was reached with Cbp route (10.0 ± 0.3%) than with Gh1-1 route (8.1 ± 0.2%). However, a higher PHB accumulation was achieved in better aerated and pH-controlled bioreactors, in comparison to shake flasks, and the relative performance of strains switched. In bioreactors, notable PHB accumulation levels per CDW of 13.4 ± 0.9% and 18.5 ± 3.9% were achieved with Cbp and Gh1-1 routes, respectively. The average molecular weights of accumulated PHB were similar using both routes; approximately 500 kDa and 450 kDa for strains expressing either cbp or GH1-1 genes, respectively. The formation of PHB with high molecular weights, combined with efficient cellobiose conversion, demonstrates a highly potential solution for improving attractiveness of sustainable polymer production using microbial cells.
Collapse
Affiliation(s)
- Anna Ylinen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland.
| | - Jorg C de Ruijter
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland
| | - Paula Jouhten
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 00076, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 00076, Espoo, Finland
| |
Collapse
|
7
|
Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. Int J Mol Sci 2022; 23:ijms23063043. [PMID: 35328479 PMCID: PMC8950772 DOI: 10.3390/ijms23063043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Among carbohydrate active enzymes, glycoside phosphorylases (GPs) are valuable catalysts for white biotechnologies, due to their exquisite capacity to efficiently re-modulate oligo- and poly-saccharides, without the need for costly activated sugars as substrates. The reversibility of the phosphorolysis reaction, indeed, makes them attractive tools for glycodiversification. However, discovery of new GP functions is hindered by the difficulty in identifying them in sequence databases, and, rather, relies on extensive and tedious biochemical characterization studies. Nevertheless, recent advances in automated tools have led to major improvements in GP mining, activity predictions, and functional screening. Implementation of GPs into innovative in vitro and in cellulo bioproduction strategies has also made substantial advances. Herein, we propose to discuss the latest developments in the strategies employed to efficiently discover GPs and make the best use of their exceptional catalytic properties for glycoside bioproduction.
Collapse
|
8
|
Choi HJ, Jin YS, Lee WH. Effects of Engineered Saccharomyces cerevisiae Fermenting Cellobiose through Low-Energy-Consuming Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation. J Microbiol Biotechnol 2022; 32:117-125. [PMID: 34949751 PMCID: PMC9628822 DOI: 10.4014/jmb.2111.11047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Until recently, four types of cellobiose-fermenting Saccharomyces cerevisiae strains have been developed by introduction of a cellobiose metabolic pathway based on either intracellular β-glucosidase (GH1-1) or cellobiose phosphorylase (CBP), along with either an energy-consuming active cellodextrin transporter (CDT-1) or a non-energy-consuming passive cellodextrin facilitator (CDT-2). In this study, the ethanol production performance of two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-2 (N306I) with GH1-1 or CBP were compared with two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-1 (F213L) with GH1-1 or CBP in the simultaneous saccharification and fermentation (SSF) of cellulose under various conditions. It was found that, regardless of the SSF conditions, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the best ethanol production among the four strains. In addition, during SSF contaminated by lactic acid bacteria, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the highest ethanol production and the lowest lactate formation compared with those of other strains, such as the hydrolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-1 with GH1-1, and the glucose-fermenting S. cerevisiae with extracellular β-glucosidase. These results suggest that the cellobiose-fermenting yeast strain exhibiting low energy consumption can enhance the efficiency of the SSF of cellulosic biomass.
Collapse
Affiliation(s)
- Hyo-Jin Choi
- Department of Bioenergy Science and Technology, and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Corresponding authors Y.S. Jin Phone: +217-333-7981 Fax: +217-333-0508 E-mail:
| | - Won-Heong Lee
- Department of Bioenergy Science and Technology, and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea,Department of Food Science and Human Nutrition, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,
W.H. Lee Phone: +82-62-530-2046 Fax: +82-62-530-2047 E-mail:
| |
Collapse
|
9
|
Folch PL, Bisschops MM, Weusthuis RA. Metabolic energy conservation for fermentative product formation. Microb Biotechnol 2021; 14:829-858. [PMID: 33438829 PMCID: PMC8085960 DOI: 10.1111/1751-7915.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Microbial production of bulk chemicals and biofuels from carbohydrates competes with low-cost fossil-based production. To limit production costs, high titres, productivities and especially high yields are required. This necessitates metabolic networks involved in product formation to be redox-neutral and conserve metabolic energy to sustain growth and maintenance. Here, we review the mechanisms available to conserve energy and to prevent unnecessary energy expenditure. First, an overview of ATP production in existing sugar-based fermentation processes is presented. Substrate-level phosphorylation (SLP) and the involved kinase reactions are described. Based on the thermodynamics of these reactions, we explore whether other kinase-catalysed reactions can be applied for SLP. Generation of ion-motive force is another means to conserve metabolic energy. We provide examples how its generation is supported by carbon-carbon double bond reduction, decarboxylation and electron transfer between redox cofactors. In a wider perspective, the relationship between redox potential and energy conservation is discussed. We describe how the energy input required for coenzyme A (CoA) and CO2 binding can be reduced by applying CoA-transferases and transcarboxylases. The transport of sugars and fermentation products may require metabolic energy input, but alternative transport systems can be used to minimize this. Finally, we show that energy contained in glycosidic bonds and the phosphate-phosphate bond of pyrophosphate can be conserved. This review can be used as a reference to design energetically efficient microbial cell factories and enhance product yield.
Collapse
Affiliation(s)
- Pauline L. Folch
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Markus M.M. Bisschops
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| |
Collapse
|
10
|
Wang H, Sun T, Zhao Z, Gu S, Liu Q, Wu T, Wang D, Tian C, Li J. Transcriptional Profiling of Myceliophthora thermophila on Galactose and Metabolic Engineering for Improved Galactose Utilization. Front Microbiol 2021; 12:664011. [PMID: 33995328 PMCID: PMC8113861 DOI: 10.3389/fmicb.2021.664011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Efficient biological conversion of all sugars from lignocellulosic biomass is necessary for the cost-effective production of biofuels and commodity chemicals. Galactose is one of the most abundant sugar in many hemicelluloses, and it will be important to capture this carbon for an efficient bioconversion process of plant biomass. Thermophilic fungus Myceliophthora thermophila has been used as a cell factory to produce biochemicals directly from renewable polysaccharides. In this study, we draw out the two native galactose utilization pathways, including the Leloir pathway and oxido-reductive pathway, and identify the significance and contribution of them, through transcriptional profiling analysis of M. thermophila and its mutants on galactose. We find that galactokinase was necessary for galactose transporter expression, and disruption of galK resulted in decreased galactose utilization. Through metabolic engineering, both galactokinase deletion and galactose transporter overexpression can activate internal the oxido-reductive pathway and improve the consumption rate of galactose. Finally, the heterologous galactose-degradation pathway, De Ley–Doudoroff (DLD) pathway, was successfully integrated into M. thermophila, and the consumption rate of galactose in the engineered strain was increased by 57%. Our study focuses on metabolic engineering for accelerating galactose utilization in a thermophilic fungus that will be beneficial for the rational design of fungal strains to produce biofuels and biochemicals from a variety of feedstocks with abundant galactose.
Collapse
Affiliation(s)
- Hanyu Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tao Sun
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhen Zhao
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shuying Gu
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qian Liu
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Taju Wu
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Chaoguang Tian
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jingen Li
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
11
|
Oh EJ, Jin YS. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Res 2021; 20:5698803. [PMID: 31917414 DOI: 10.1093/femsyr/foz089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.
Collapse
Affiliation(s)
- Eun Joong Oh
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, 4001 Discovery Dr., CO 80303, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, 905 S. Goodwin Ave., IL 61801, USA.,1105 Carl R. Woese Institute for Genomic Biology, 1206 W. Gregory Dr. Urbana, IL 61801. USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr. Urbana, IL 61801, USA
| |
Collapse
|
12
|
Bermejo PM, Raghavendran V, Gombert AK. Neither 1G nor 2G fuel ethanol: setting the ground for a sugarcane-based biorefinery using an iSUCCELL yeast platform. FEMS Yeast Res 2020; 20:5836716. [PMID: 32401320 DOI: 10.1093/femsyr/foaa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/11/2020] [Indexed: 11/12/2022] Open
Abstract
First-generation (1G) fuel ethanol production in sugarcane-based biorefineries is an established economic enterprise in Brazil. Second-generation (2G) fuel ethanol from lignocellulosic materials, though extensively investigated, is currently facing severe difficulties to become economically viable. Some of the challenges inherent to these processes could be resolved by efficiently separating and partially hydrolysing the cellulosic fraction of the lignocellulosic materials into the disaccharide cellobiose. Here, we propose an alternative biorefinery, where the sucrose-rich stream from the 1G process is mixed with a cellobiose-rich stream in the fermentation step. The advantages of mixing are 3-fold: (i) decreased concentrations of metabolic inhibitors that are typically produced during pretreatment and hydrolysis of lignocellulosic materials; (ii) decreased cooling times after enzymatic hydrolysis prior to fermentation; and (iii) decreased availability of free glucose for contaminating microorganisms and undesired glucose repression effects. The iSUCCELL platform will be built upon the robust Saccharomyces cerevisiae strains currently present in 1G biorefineries, which offer competitive advantage in non-aseptic environments, and into which intracellular hydrolyses of sucrose and cellobiose will be engineered. It is expected that high yields of ethanol can be achieved in a process with cell recycling, lower contamination levels and decreased antibiotic use, when compared to current 2G technologies.
Collapse
Affiliation(s)
| | - Vijayendran Raghavendran
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | |
Collapse
|
13
|
de Ruijter JC, Igarashi K, Penttilä M. The Lipomyces starkeyi gene Ls120451 encodes a cellobiose transporter that enables cellobiose fermentation in Saccharomyces cerevisiae. FEMS Yeast Res 2020; 20:foaa019. [PMID: 32310262 PMCID: PMC7204792 DOI: 10.1093/femsyr/foaa019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Processed lignocellulosic biomass is a source of mixed sugars that can be used for microbial fermentation into fuels or higher value products, like chemicals. Previously, the yeast Saccharomyces cerevisiae was engineered to utilize its cellodextrins through the heterologous expression of sugar transporters together with an intracellular expressed β-glucosidase. In this study, we screened a selection of eight (putative) cellodextrin transporters from different yeast and fungal hosts in order to extend the catalogue of available cellobiose transporters for cellobiose fermentation in S. cerevisiae. We confirmed that several in silico predicted cellodextrin transporters from Aspergillus niger were capable of transporting cellobiose with low affinity. In addition, we found a novel cellobiose transporter from the yeast Lipomyces starkeyi, encoded by the gene Ls120451. This transporter allowed efficient growth on cellobiose, while it also grew on glucose and lactose, but not cellotriose nor cellotetraose. We characterized the transporter more in-depth together with the transporter CdtG from Penicillium oxalicum. CdtG showed to be slightly more efficient in cellobiose consumption than Ls120451 at concentrations below 1.0 g/L. Ls120451 was more efficient in cellobiose consumption at higher concentrations and strains expressing this transporter grew slightly slower, but produced up to 30% more ethanol than CdtG.
Collapse
Affiliation(s)
- Jorg C de Ruijter
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
| | - Kiyohiko Igarashi
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yajoi, Bunkyo, Tokyo 113–8657, Japan
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
| |
Collapse
|
14
|
Li J, Zhang Y, Li J, Sun T, Tian C. Metabolic engineering of the cellulolytic thermophilic fungus Myceliophthora thermophila to produce ethanol from cellobiose. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:23. [PMID: 32021654 PMCID: PMC6995234 DOI: 10.1186/s13068-020-1661-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/21/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cellulosic biomass is a promising resource for bioethanol production. However, various sugars in plant biomass hydrolysates including cellodextrins, cellobiose, glucose, xylose, and arabinose, are poorly fermented by microbes. The commonly used ethanol-producing microbe Saccharomyces cerevisiae can usually only utilize glucose, although metabolically engineered strains that utilize xylose have been developed. Direct fermentation of cellobiose could avoid glucose repression during biomass fermentation, but applications of an engineered cellobiose-utilizing S. cerevisiae are still limited because of its long lag phase. Bioethanol production from biomass-derived sugars by a cellulolytic filamentous fungus would have many advantages for the biorefinery industry. RESULTS We selected Myceliophthora thermophila, a cellulolytic thermophilic filamentous fungus for metabolic engineering to produce ethanol from glucose and cellobiose. Ethanol production was increased by 57% from glucose but not cellobiose after introduction of ScADH1 into the wild-type (WT) strain. Further overexpression of a glucose transporter GLT-1 or the cellodextrin transport system (CDT-1/CDT-2) from N. crassa increased ethanol production by 131% from glucose or by 200% from cellobiose, respectively. Transcriptomic analysis of the engineered cellobiose-utilizing strain and WT when grown on cellobiose showed that genes involved in oxidation-reduction reactions and the stress response were downregulated, whereas those involved in protein biosynthesis were upregulated in this effective ethanol production strain. Turning down the expression of pyc gene results the final engineered strain with the ethanol production was further increased by 23%, reaching up to 11.3 g/L on cellobiose. CONCLUSIONS This is the first attempt to engineer the cellulolytic fungus M. thermophila to produce bioethanol from biomass-derived sugars such as glucose and cellobiose. The ethanol production can be improved about 4 times up to 11 grams per liter on cellobiose after a couple of genetic engineering. These results show that M. thermophila is a promising platform for bioethanol production from cellulosic materials in the future.
Collapse
Affiliation(s)
- Jinyang Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yongli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Tao Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
15
|
Li J, Gu S, Zhao Z, Chen B, Liu Q, Sun T, Sun W, Tian C. Dissecting cellobiose metabolic pathway and its application in biorefinery through consolidated bioprocessing in Myceliophthora thermophila. Fungal Biol Biotechnol 2019; 6:21. [PMID: 31754437 PMCID: PMC6852783 DOI: 10.1186/s40694-019-0083-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background Lignocellulosic biomass has long been recognized as a potential sustainable source for industrial applications. The costs associated with conversion of plant biomass to fermentable sugar represent a significant barrier to the production of cost-competitive biochemicals. Consolidated bioprocessing (CBP) is considered a potential breakthrough for achieving cost-efficient production of biomass-based fuels and commodity chemicals. During the degradation of cellulose, cellobiose (major end-product of cellulase activity) is catabolized by hydrolytic and phosphorolytic pathways in cellulolytic organisms. However, the details of the two intracellular cellobiose metabolism pathways in cellulolytic fungi remain to be uncovered. Results Using the engineered malic acid production fungal strain JG207, we demonstrated that the hydrolytic pathway by β-glucosidase and the phosphorolytic pathway by phosphorylase are both used for intracellular cellobiose metabolism in Myceliophthora thermophila, and the yield of malic acid can benefit from the energy advantages of phosphorolytic cleavage. There were obvious differences in regulation of the two cellobiose catabolic pathways depending on whether M. thermophila JG207 was grown on cellobiose or Avicel. Disruption of Mtcpp in strain JG207 led to decreased production of malic acid under cellobiose conditions, while expression levels of all three intracellular β-glucosidase genes were significantly up-regulated to rescue the impairment of the phosphorolytic pathway under Avicel conditions. When the flux of the hydrolytic pathway was reduced, we found that β-glucosidase encoded by bgl1 was the dominant enzyme in the hydrolytic pathway and deletion of bgl1 resulted in significant enhancement of protein secretion but reduction of malate production. Combining comprehensive manipulation of both cellobiose utilization pathways and enhancement of cellobiose uptake by overexpression of a cellobiose transporter, the final strain JG412Δbgl2Δbgl3 produced up to 101.2 g/L and 77.4 g/L malic acid from cellobiose and Avicel, respectively, which corresponded to respective yields of 1.35 g/g and 1.03 g/g, representing significant improvement over the starting strain JG207. Conclusions This is the first report of detailed investigation of intracellular cellobiose catabolism in cellulolytic fungus M. thermophila. These results provide insights that can be applied to industrial fungi for production of biofuels and biochemicals from cellobiose and cellulose.
Collapse
Affiliation(s)
- Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Shuying Gu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Zhen Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Bingchen Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Tao Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
16
|
Liu N, Fosses A, Kampik C, Parsiegla G, Denis Y, Vita N, Fierobe HP, Perret S. In vitro and in vivo exploration of the cellobiose and cellodextrin phosphorylases panel in Ruminiclostridium cellulolyticum: implication for cellulose catabolism. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:208. [PMID: 31497068 PMCID: PMC6720390 DOI: 10.1186/s13068-019-1549-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/24/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND In anaerobic cellulolytic micro-organisms, cellulolysis results in the action of several cellulases gathered in extracellular multi-enzyme complexes called cellulosomes. Their action releases cellobiose and longer cellodextrins which are imported and further degraded in the cytosol to fuel the cells. In Ruminiclostridium cellulolyticum, an anaerobic and cellulolytic mesophilic bacteria, three cellodextrin phosphorylases named CdpA, CdpB, and CdpC, were identified in addition to the cellobiose phosphorylase (CbpA) previously characterized. The present study aimed at characterizing them, exploring their implication during growth on cellulose to better understand the life-style of cellulolytic bacteria on such substrate. RESULTS The three cellodextrin phosphorylases from R. cellulolyticum displayed marked different enzymatic characteristics. They are specific for cellodextrins of different lengths and present different k cat values. CdpC is the most active enzyme before CdpA, and CdpB is weakly active. Modeling studies revealed that a mutation of a conserved histidine residue in the phosphate ion-binding pocket in CdpB and CdpC might explain their activity-level differences. The genes encoding these enzymes are scattered over the chromosome of R. cellulolyticum and only the expression of the gene encoding the cellobiose phosphorylase and the gene cdpA is induced during cellulose growth. Characterization of four independent mutants constructed in R. cellulolyticum for each of the cellobiose and cellodextrin phosphorylases encoding genes indicated that only the cellobiose phosphorylase is essential for growth on cellulose. CONCLUSIONS Unexpectedly, the cellobiose phosphorylase but not the cellodextrin phosphorylases is essential for the growth of the model bacterium on cellulose. This suggests that the bacterium adopts a "short" dextrin strategy to grow on cellulose, even though the use of long cellodextrins might be more energy-saving. Our results suggest marked differences in the cellulose catabolism developed among cellulolytic bacteria, which is a result that might impact the design of future engineered strains for biomass-to-biofuel conversion.
Collapse
Affiliation(s)
- Nian Liu
- Aix-Marseille Univ, CNRS, LCB UMR 7283, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Aurélie Fosses
- Aix-Marseille Univ, CNRS, LCB UMR 7283, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Clara Kampik
- Aix-Marseille Univ, CNRS, LCB UMR 7283, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | - Yann Denis
- Aix-Marseille Univ, CNRS, Plateforme Transcriptome, Marseille, France
| | - Nicolas Vita
- Aix-Marseille Univ, CNRS, LCB UMR 7283, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Henri-Pierre Fierobe
- Aix-Marseille Univ, CNRS, LCB UMR 7283, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Stéphanie Perret
- Aix-Marseille Univ, CNRS, LCB UMR 7283, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
17
|
Cellobiose fermentation by Saccharomyces cerevisiae: Comparative analysis of intra versus extracellular sugar hydrolysis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Lane S, Dong J, Jin YS. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2018; 260:380-394. [PMID: 29655899 DOI: 10.1016/j.biortech.2018.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 05/26/2023]
Abstract
The substantial research efforts into lignocellulosic biofuels have generated an abundance of valuable knowledge and technologies for metabolic engineering. In particular, these investments have led to a vast growth in proficiency of engineering the yeast Saccharomyces cerevisiae for consuming lignocellulosic sugars, enabling the simultaneous assimilation of multiple carbon sources, and producing a large variety of value-added products by introduction of heterologous metabolic pathways. While microbial conversion of cellulosic sugars into large-volume low-value biofuels is not currently economically feasible, there may still be opportunities to produce other value-added chemicals as regulation of cellulosic sugar metabolism is quite different from glucose metabolism. This review summarizes these recent advances with an emphasis on employing engineered yeast for the bioconversion of lignocellulosic sugars into a variety of non-ethanol value-added products.
Collapse
Affiliation(s)
- Stephan Lane
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jia Dong
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
19
|
Kim H, Oh EJ, Lane ST, Lee WH, Cate JH, Jin YS. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase. J Biotechnol 2018; 275:53-59. [DOI: 10.1016/j.jbiotec.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/28/2017] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
20
|
Hara KY, Kobayashi J, Yamada R, Sasaki D, Kuriya Y, Hirono-Hara Y, Ishii J, Araki M, Kondo A. Transporter engineering in biomass utilization by yeast. FEMS Yeast Res 2018; 17:4097189. [PMID: 28934416 DOI: 10.1093/femsyr/fox061] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
Biomass resources are attractive carbon sources for bioproduction because of their sustainability. Many studies have been performed using biomass resources to produce sugars as carbon sources for cell factories. Expression of biomass hydrolyzing enzymes in cell factories is an important approach for constructing biomass-utilizing bioprocesses because external addition of these enzymes is expensive. In particular, yeasts have been extensively engineered to be cell factories that directly utilize biomass because of their manageable responses to many genetic engineering tools, such as gene expression, deletion and editing. Biomass utilizing bioprocesses have also been developed using these genetic engineering tools to construct metabolic pathways. However, sugar input and product output from these cells are critical factors for improving bioproduction along with biomass utilization and metabolic pathways. Transporters are key components for efficient input and output activities. In this review, we focus on transporter engineering in yeast to enhance bioproduction from biomass resources.
Collapse
Affiliation(s)
- Kiyotaka Y Hara
- Division of Environmental and Life Sciences, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.,School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Jyumpei Kobayashi
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yuki Kuriya
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yoko Hirono-Hara
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Jun Ishii
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Michihiro Araki
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.,Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Syogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
21
|
Turner TL, Kim H, Kong II, Liu JJ, Zhang GC, Jin YS. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:175-215. [PMID: 27913828 DOI: 10.1007/10_2016_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.
Collapse
Affiliation(s)
- Timothy L Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Heejin Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - In Iok Kong
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Guo-Chang Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
22
|
Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity. Appl Environ Microbiol 2018; 84:AEM.02348-17. [PMID: 29101202 DOI: 10.1128/aem.02348-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 01/16/2023] Open
Abstract
Members of the genus Caldicellulosiruptor have the ability to deconstruct and grow on lignocellulosic biomass without conventional pretreatment. A genetically tractable species, Caldicellulosiruptor bescii, was recently engineered to produce ethanol directly from switchgrass. C. bescii contains more than 50 glycosyl hydrolases and a suite of extracellular enzymes for biomass deconstruction, most prominently CelA, a multidomain cellulase that uses a novel mechanism to deconstruct plant biomass. Accumulation of cellobiose, a product of CelA during growth on biomass, inhibits cellulase activity. Here, we show that heterologous expression of a cellobiose phosphorylase from Thermotoga maritima improves the phosphorolytic pathway in C. bescii and results in synergistic activity with endogenous enzymes, including CelA, to increase cellulolytic activity and growth on crystalline cellulose.IMPORTANCE CelA is the only known cellulase to function well on highly crystalline cellulose and it uses a mechanism distinct from those of other cellulases, including fungal cellulases. Also unlike fungal cellulases, it functions at high temperature and, in fact, outperforms commercial cellulase cocktails. Factors that inhibit CelA during biomass deconstruction are significantly different than those that impact the performance of fungal cellulases and commercial mixtures. This work contributes to understanding of cellulase inhibition and enzyme function and will suggest a rational approach to engineering optimal activity.
Collapse
|
23
|
Parisutham V, Chandran SP, Mukhopadhyay A, Lee SK, Keasling JD. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. BIORESOURCE TECHNOLOGY 2017; 239:496-506. [PMID: 28535986 DOI: 10.1016/j.biortech.2017.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 05/28/2023]
Abstract
Complete hydrolysis of cellulose has been a key characteristic of biomass technology because of the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by β-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less challenging is to engineer microbes with the abilities to hydrolyze and assimilate the cellulosic-hydrolysate cellodextrin. Microorganisms engineered to metabolize cellobiose rather than the monomeric glucose can provide several advantages for lignocellulose-based biorefineries. This review describes the recent advances and challenges in engineering efficient intracellular cellobiose metabolism in industrial hosts. This review also describes the limitations of and future prospectives in engineering intracellular cellobiose metabolism.
Collapse
Affiliation(s)
- Vinuselvi Parisutham
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sathesh-Prabu Chandran
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sung Kuk Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering, UC Berkeley, Berkeley, CA 94720, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, KogleAllé, DK2970 Hørsholm, Denmark; Synthetic Biology Engineering Research Center (Synberc), Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Wu Y, Mao G, Fan H, Song A, Zhang YHP, Chen H. Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity. Sci Rep 2017; 7:4849. [PMID: 28687766 PMCID: PMC5501786 DOI: 10.1038/s41598-017-05289-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/26/2017] [Indexed: 11/10/2022] Open
Abstract
A hypothetic gene (THA_1941) encoding a putative cellobiose phosphorylase (CBP) from Thermosipho africanus TCF52B has very low amino acid identities (less than 12%) to all known GH94 enzymes. This gene was cloned and over-expressed in Escherichia coli BL21(DE3). The recombinant protein was hypothesized to be a CBP enzyme and it showed an optimum temperature of 75 °C and an optimum pH of 7.5. Beyond its CBP activity, this enzyme can use cellobiose and long-chain cellodextrins with a degree of polymerization of greater than two as a glucose acceptor, releasing phosphate from glucose 1-phosphate. The catalytic efficiencies (kcat/Km) indicated that cellotetraose and cellopentaose were the best substrates for the phosphorolytic and reverse synthetic reactions, respectively. These results suggested that this enzyme was the first enzyme having both cellodextrin and cellobiose phosphorylases activities. Because it preferred cellobiose and cellodextrins to glucose in the synthetic direction, it was categorized as a cellodextrin phosphorylase (CDP). Due to its unique ability of the reverse synthetic reaction, this enzyme could be a potential catalyst for the synthesis of various oligosaccharides. The speculative function of this CDP in the carbohydrate metabolism of T. africanus TCF52B was also discussed.
Collapse
Affiliation(s)
- Yuanyuan Wu
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Guotao Mao
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Haiyan Fan
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Andong Song
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Yi-Heng Percival Zhang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061, USA
| | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| |
Collapse
|
25
|
Lee WH, Jin YS. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. J Biotechnol 2017; 245:1-8. [DOI: 10.1016/j.jbiotec.2017.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/30/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
|
26
|
Chomvong K, Lin E, Blaisse M, Gillespie AE, Cate JHD. Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation. ACS Synth Biol 2017; 6:206-210. [PMID: 27676450 DOI: 10.1021/acssynbio.6b00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks only a single hydroxymethyl group relative to glucose, from binding to the CBP active site poses a spatial challenge for protein engineering, since simple steric occlusion cannot be used to block xylose binding without also preventing glucose binding. Using CRISPR-based chromosomal library selection, we identified a distal mutation in CBP, Y47H, responsible for improved cellobiose consumption in the presence of xylose. In silico analysis suggests this mutation may alter the conformation of the cellobiose phosphorylase dimer complex to reduce xylose binding to the active site. These results may aid in engineering carbohydrate phosphorylases for improved specificity in biofuel production, and also in the production of industrially important oligosaccharides.
Collapse
Affiliation(s)
- Kulika Chomvong
- Department
of Plant and Microbial Biology, University of California, Berkeley, California 94720, United States
| | - Eric Lin
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Michael Blaisse
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Abigail E. Gillespie
- Department
of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Jamie H. D. Cate
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
27
|
Fosses A, Maté M, Franche N, Liu N, Denis Y, Borne R, de Philip P, Fierobe HP, Perret S. A seven-gene cluster in Ruminiclostridium cellulolyticum is essential for signalization, uptake and catabolism of the degradation products of cellulose hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:250. [PMID: 29093754 PMCID: PMC5663094 DOI: 10.1186/s13068-017-0933-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/19/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Like a number of anaerobic and cellulolytic Gram-positive bacteria, the model microorganism Ruminiclostridium cellulolyticum produces extracellular multi-enzymatic complexes called cellulosomes, which efficiently degrade the crystalline cellulose. Action of the complexes on cellulose releases cellobiose and longer cellodextrins but to date, little is known about the transport and utilization of the produced cellodextrins in the bacterium. A better understanding of the uptake systems and fermentation of sugars derived from cellulose could have a major impact in the field of biofuels production. RESULTS We characterized a putative ABC transporter devoted to cellodextrins uptake, and a cellobiose phosphorylase (CbpA) in R. cellulolyticum. The genes encoding the components of the ABC transporter (a binding protein CuaA and two integral membrane proteins) and CbpA are expressed as a polycistronic transcriptional unit induced in the presence of cellobiose. Upstream, another polycistronic transcriptional unit encodes a two-component system (sensor and regulator), and a second binding protein CuaD, and is constitutively expressed. The products might form a three-component system inducing the expression of cuaABC and cbpA since we showed that CuaR is able to recognize the region upstream of cuaA. Biochemical analysis showed that CbpA is a strict cellobiose phosphorylase inactive on longer cellodextrins; CuaA binds to all cellodextrins (G2-G5) tested, whereas CuaD is specific to cellobiose and presents a higher affinity to this sugar. This results are in agreement with their function in transport and signalization, respectively. Characterization of a cuaD mutant, and its derivatives, indicated that the ABC transporter and CbpA are essential for growth on cellobiose and cellulose. CONCLUSIONS For the first time in a Gram-positive strain, we identified a three-component system and a conjugated ABC transporter/cellobiose phosphorylase system which was shown to be essential for the growth of the model cellulolytic bacterium R. cellulolyticum on cellobiose and cellulose. This efficient and energy-saving system of transport and phosphorolysis appears to be the major cellobiose utilization pathway in R. cellulolyticum, and seems well adapted to cellulolytic life-style strain. It represents a new way to enable engineered strains to utilize cellodextrins for the production of biofuels or chemicals of interest from cellulose.
Collapse
Affiliation(s)
| | - Maria Maté
- Aix Marseille Univ, CNRS, AFMB, Marseille, France
| | | | - Nian Liu
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - Yann Denis
- Aix Marseille Univ, CNRS, Plateforme Transcriptome, Marseille, France
| | - Romain Borne
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | | | | | | |
Collapse
|
28
|
Seppälä S, Solomon KV, Gilmore SP, Henske JK, O'Malley MA. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters. Microb Cell Fact 2016; 15:212. [PMID: 27998268 PMCID: PMC5168858 DOI: 10.1186/s12934-016-0611-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms. Here, we mined the transcriptome of three recently isolated strains of anaerobic fungi to identify membrane proteins responsible for sensing and transporting biomass hydrolysates within a competitive and rather extreme environment. RESULTS Using sequence analyses and homology, we identified membrane protein-coding sequences from assembled transcriptomes from three strains of anaerobic gut fungi: Neocallimastix californiae, Anaeromyces robustus, and Piromyces finnis. We identified nearly 2000 transporter components: about half of these are involved in the general secretory pathway and intracellular sorting of proteins; the rest are predicted to be small-solute transporters. Unexpectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains. CONCLUSIONS We report the first comprehensive characterization of the membrane protein machinery of biotechnologically relevant anaerobic gut fungi. Apart from identifying conserved machinery for protein sorting and secretion, we identify a large number of putative solute transporters that are of interest for biotechnological applications. Notably, our data suggests that the fungi display a plethora of carbohydrate binding domains at their surface, perhaps as a means to sense and sequester some of the sugars that their biomass degrading, extracellular enzymes produce.
Collapse
Affiliation(s)
- Susanna Seppälä
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800, Kgs. Lyngby, Denmark.,Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Kevin V Solomon
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.,Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sean P Gilmore
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - John K Henske
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
29
|
Chomvong K, Bauer S, Benjamin DI, Li X, Nomura DK, Cate JHD. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose. PLoS One 2016; 11:e0158111. [PMID: 27336308 PMCID: PMC4918971 DOI: 10.1371/journal.pone.0158111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/12/2016] [Indexed: 12/22/2022] Open
Abstract
The efficient use of hemicellulose in the plant cell wall is critical for the economic conversion of plant biomass to renewable fuels and chemicals. Previously, the yeast Saccharomyces cerevisiae has been engineered to convert the hemicellulose-derived pentose sugars xylose and arabinose to d-xylulose-5-phosphate for conversion via the pentose phosphate pathway (PPP). However, efficient pentose utilization requires PPP optimization and may interfere with its roles in NADPH and pentose production. Here, we developed an alternative xylose utilization pathway that largely bypasses the PPP. In the new pathway, d-xylulose is converted to d-xylulose-1-phosphate, a novel metabolite to S. cerevisiae, which is then cleaved to glycolaldehyde and dihydroxyacetone phosphate. This synthetic pathway served as a platform for the biosynthesis of ethanol and ethylene glycol. The use of d-xylulose-1-phosphate as an entry point for xylose metabolism opens the way for optimizing chemical conversion of pentose sugars in S. cerevisiae in a modular fashion.
Collapse
Affiliation(s)
- Kulika Chomvong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States of America
| | - Stefan Bauer
- Energy Biosciences Institute, Berkeley, CA, United States of America
| | - Daniel I. Benjamin
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, United States of America
| | - Xin Li
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
| | - Daniel K. Nomura
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, United States of America
| | - Jamie H. D. Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
- Department of Chemistry, University of California, Berkeley, CA, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
30
|
Hu ML, Zha J, He LW, Lv YJ, Shen MH, Zhong C, Li BZ, Yuan YJ. Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization. Front Microbiol 2016; 7:241. [PMID: 26973619 PMCID: PMC4776165 DOI: 10.3389/fmicb.2016.00241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/15/2016] [Indexed: 01/26/2023] Open
Abstract
Cellobiose accumulation and the compromised temperature for yeast fermentation are the main limiting factors of enzymatic hydrolysis process during simultaneous saccharification and fermentation (SSF). In this study, genes encoding cellobiose transporter and β-glucosidase were introduced into an industrial Saccharomyces cerevisiae strain, and evolution engineering was carried out to improve the cellobiose utilization of the engineered yeast strain. The evolved strain exhibited significantly higher cellobiose consumption rate (2.8-fold) and ethanol productivity (4.9-fold) compared with its parent strain. Besides, the evolved strain showed a high cellobiose consumption rate of 3.67 g/L/h at 34°C and 3.04 g/L/h at 38°C. Moreover, little cellobiose was accumulated during SSF of Avicel using the evolved strain at 38°C, and the ethanol yield from Avicel increased by 23% from 0.34 to 0.42 g ethanol/g cellulose. Overexpression of the genes encoding cellobiose transporter and β-glucosidase accelerated cellobiose utilization, and the improvement depended on the strain background. The results proved that fast cellobiose utilization enhanced ethanol production by reducing cellobiose accumulation during SSF at high temperature.
Collapse
Affiliation(s)
- Meng-Long Hu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Jian Zha
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Lin-Wei He
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Ya-Jin Lv
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Ming-Hua Shen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology Tianjin, China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| |
Collapse
|
31
|
The Renaissance of Neurospora crassa: How a Classical Model System is Used for Applied Research. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr Opin Chem Biol 2015; 29:49-57. [DOI: 10.1016/j.cbpa.2015.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 11/18/2022]
|
33
|
Shen Y, Jarboe L, Brown R, Wen Z. A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 2015; 33:1799-813. [DOI: 10.1016/j.biotechadv.2015.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022]
|
34
|
Kitaoka M. Diversity of phosphorylases in glycoside hydrolase families. Appl Microbiol Biotechnol 2015; 99:8377-90. [PMID: 26293338 DOI: 10.1007/s00253-015-6927-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 01/02/2023]
Abstract
Phosphorylases are useful catalysts for the practical preparation of various sugars. The number of known specificities was 13 in 2002 and is now 30. The drastic increase in available genome sequences has facilitated the discovery of novel activities. Most of these novel phosphorylase activities have been identified through the investigations of glycoside hydrolase families containing known phosphorylases. Here, the diversity of phosphorylases in each family is described in detail.
Collapse
Affiliation(s)
- Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| |
Collapse
|
35
|
Li X, Chomvong K, Yu VY, Liang JM, Lin Y, Cate JHD. Cellobionic acid utilization: from Neurospora crassa to Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:120. [PMID: 26279678 PMCID: PMC4537572 DOI: 10.1186/s13068-015-0303-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/31/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Economical production of fuels and chemicals from plant biomass requires the efficient use of sugars derived from the plant cell wall. Neurospora crassa, a model lignocellulosic degrading fungus, is capable of breaking down the complex structure of the plant cell wall. In addition to cellulases and hemicellulases, N. crassa secretes lytic polysaccharide monooxygenases (LPMOs), which cleave cellulose by generating oxidized sugars-particularly aldonic acids. However, the strategies N. crassa employs to utilize these sugars are unknown. RESULTS We identified an aldonic acid utilization pathway in N. crassa, comprised of an extracellular hydrolase (NCU08755), cellobionic acid transporter (CBT-1, NCU05853) and cellobionic acid phosphorylase (CAP, NCU09425). Extracellular cellobionic acid could be imported directly by CBT-1 or cleaved to gluconic acid and glucose by a β-glucosidase (NCU08755) outside the cells. Intracellular cellobionic acid was further cleaved to glucose 1-phosphate and gluconic acid by CAP. However, it remains unclear how N. crassa utilizes extracellular gluconic acid. The aldonic acid pathway was successfully implemented in Saccharomyces cerevisiae when N. crassa gluconokinase was co-expressed, resulting in cellobionic acid consumption in both aerobic and anaerobic conditions. CONCLUSIONS We successfully identified a branched aldonic acid utilization pathway in N. crassa and transferred its essential components into S. cerevisiae, a robust industrial microorganism.
Collapse
Affiliation(s)
- Xin Li
- />Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | - Kulika Chomvong
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Vivian Yaci Yu
- />Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | - Julie M Liang
- />Department of Chemistry, University of California, Berkeley, CA USA
| | - Yuping Lin
- />Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | - Jamie H D Cate
- />Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
- />Department of Chemistry, University of California, Berkeley, CA USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
36
|
Petrovič U. Next-generation biofuels: a new challenge for yeast. Yeast 2015; 32:583-93. [DOI: 10.1002/yea.3082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
- Uroš Petrovič
- Jožef Stefan Institute; Department of Molecular and Biomedical Sciences; Ljubljana Slovenia
| |
Collapse
|
37
|
Wei N, Oh EJ, Million G, Cate JHD, Jin YS. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. ACS Synth Biol 2015; 4:707-13. [PMID: 25587748 DOI: 10.1021/sb500364q] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inability of fermenting microorganisms to use mixed carbon components derived from lignocellulosic biomass is a major technical barrier that hinders the development of economically viable cellulosic biofuel production. In this study, we integrated the fermentation pathways of both hexose and pentose sugars and an acetic acid reduction pathway into one Saccharomyces cerevisiae strain for the first time using synthetic biology and metabolic engineering approaches. The engineered strain coutilized cellobiose, xylose, and acetic acid to produce ethanol with a substantially higher yield and productivity than the control strains, and the results showed the unique synergistic effects of pathway coexpression. The mixed substrate coutilization strategy is important for making complete and efficient use of cellulosic carbon and will contribute to the development of consolidated bioprocessing for cellulosic biofuel. The study also presents an innovative metabolic engineering approach whereby multiple substrate consumption pathways can be integrated in a synergistic way for enhanced bioconversion.
Collapse
Affiliation(s)
- Na Wei
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | | | | | - Jamie H. D. Cate
- Departments
of Molecular and Cell Biology and Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | |
Collapse
|
38
|
Tokuda G, Tsuboi Y, Kihara K, Saitou S, Moriya S, Lo N, Kikuchi J. Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: insights into gut symbiont function. Proc Biol Sci 2015; 281:20140990. [PMID: 25009054 PMCID: PMC4100516 DOI: 10.1098/rspb.2014.0990] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Termites consume an estimated 3–7 billion tonnes of lignocellulose annually, a role in nature which is unique for a single order of invertebrates. Their food is digested with the help of microbial symbionts, a relationship that has been recognized for 200 years and actively researched for at least a century. Although DNA- and RNA-based approaches have greatly refined the details of the process and the identities of the participants, the allocation of roles in space and time remains unclear. To resolve this issue, a pioneer study is reported using metabolomics to chart the in situ catabolism of 13C-cellulose fed to the dampwood species Hodotermopsis sjostedti. The results confirm that the secretion of endogenous cellulases by the host may be significant to the digestive process and indicate that a major contribution by hindgut bacteria is phosphorolysis of cellodextrins or cellobiose. This study provides evidence that essential amino acid acquisition by termites occurs following the lysis of microbial tissue obtained via proctodaeal trophallaxis.
Collapse
Affiliation(s)
- Gaku Tokuda
- Tropical Biosphere Research Center, COMB, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Yuuri Tsuboi
- RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kumiko Kihara
- RIKEN Antibiotics Laboratory, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Seikou Saitou
- Tropical Biosphere Research Center, COMB, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Sigeharu Moriya
- RIKEN Antibiotics Laboratory, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Nathan Lo
- School of Biological Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| |
Collapse
|
39
|
Puchart V. Glycoside phosphorylases: Structure, catalytic properties and biotechnological potential. Biotechnol Adv 2015; 33:261-76. [DOI: 10.1016/j.biotechadv.2015.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 12/20/2022]
|
40
|
Tsai CS, Kwak S, Turner TL, Jin YS. Yeast synthetic biology toolbox and applications for biofuel production. FEMS Yeast Res 2015; 15:1-15. [PMID: 25195615 DOI: 10.1111/1567-1364.12206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/16/2014] [Accepted: 08/31/2014] [Indexed: 01/04/2023] Open
Abstract
Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains.
Collapse
Affiliation(s)
- Ching-Sung Tsai
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Suryang Kwak
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy L Turner
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA .,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
41
|
Comparative engineering of Escherichia coli for cellobiose utilization: Hydrolysis versus phosphorolysis. Metab Eng 2014; 24:9-17. [DOI: 10.1016/j.ymben.2014.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/01/2014] [Accepted: 04/14/2014] [Indexed: 11/20/2022]
|
42
|
Nan H, Seo SO, Oh EJ, Seo JH, Cate JHD, Jin YS. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2014; 98:5757-64. [PMID: 24743979 DOI: 10.1007/s00253-014-5683-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 01/04/2023]
Abstract
Production of renewable fuels and chemicals from cellulosic biomass is a critical step towards energy sustainability and reduced greenhouse gas emissions. Microbial cells have been engineered for producing chemicals from cellulosic sugars. Among these chemicals, 2,3-butanediol (2,3-BDO) is a compound of interest due to its diverse applications. While microbial production of 2,3-BDO with high yields and productivities has been reported, there are concerns associated with utilization of potential pathogenic bacteria and inefficient utilization of cellulosic sugars. To address these problems, we engineered 2,3-BDO production in Saccharomyces cerevisiae, especially from cellobiose, a prevalent sugar in cellulosic hydrolysates. Specifically, we overexpressed alsS and alsD from Bacillus subtilis to convert pyruvate into 2,3-BDO via α-acetolactate and acetoin in an engineered cellobiose fermenting S. cerevisiae. Under oxygen-limited conditions, the resulting strain was able to produce 2,3-BDO. Still, major carbon flux went to ethanol, resulting in substantial amounts of ethanol produced as a byproduct. To enhance pyruvate flux to 2,3-BDO through elimination of the pyruvate decarboxylation reaction, we employed a deletion mutant of both PDC1 and PDC5 for producing 2,3-BDO. When a cellobiose utilization pathway, consisting of a cellobiose transporter and intracellular β-glucosidase, and the 2,3-BDO producing pathway were introduced in a pyruvate decarboxylase deletion mutant, the resulting strain produced 2,3-BDO without ethanol production from cellobiose under oxygen-limited conditions. A titer of 5.29 g/l 2,3-BDO with a productivity of 0.22 g/l h and yield of 0.29 g 2,3-BDO/g cellobiose was attained. These results suggest the possibility of producing 2,3-BDO safely and sustainably from cellulosic hydrolysates.
Collapse
Affiliation(s)
- Hong Nan
- Department of Food Science and Human Nutrition and Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
| | | | | | | | | | | |
Collapse
|
43
|
Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions inSaccharomyces cerevisiae. Biotechnol Bioeng 2014; 111:1521-31. [DOI: 10.1002/bit.25214] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/06/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
|
44
|
Lian J, Chao R, Zhao H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab Eng 2014; 23:92-9. [PMID: 24525332 DOI: 10.1016/j.ymben.2014.02.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 11/18/2022]
Abstract
2,3-Butanediol (BDO) is an important chemical with broad industrial applications and can be naturally produced by many bacteria at high levels. However, the pathogenicity of these native producers is a major obstacle for large scale production. Here we report the engineering of an industrially friendly host, Saccharomyces cerevisiae, to produce BDO at high titer and yield. By inactivation of pyruvate decarboxylases (PDCs) followed by overexpression of MTH1 and adaptive evolution, the resultant yeast grew on glucose as the sole carbon source with ethanol production completely eliminated. Moreover, the pdc- strain consumed glucose and galactose simultaneously, which to our knowledge is unprecedented in S. cerevisiae strains. Subsequent introduction of a BDO biosynthetic pathway consisting of the cytosolic acetolactate synthase (cytoILV2), Bacillus subtilis acetolactate decarboxylase (BsAlsD), and the endogenous butanediol dehydrogenase (BDH1) resulted in the production of enantiopure (2R,3R)-butanediol (R-BDO). In shake flask fermentation, a yield over 70% of the theoretical value was achieved. Using fed-batch fermentation, more than 100g/L R-BDO (1100mM) was synthesized from a mixture of glucose and galactose, two major carbohydrate components in red algae. The high titer and yield of the enantiopure R-BDO produced as well as the ability to co-ferment glucose and galactose make our engineered yeast strain a superior host for cost-effective production of bio-based BDO from renewable resources.
Collapse
Affiliation(s)
- Jiazhang Lian
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Energy Biosciences Institute, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Ran Chao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Energy Biosciences Institute, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Energy Biosciences Institute, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
45
|
Chomvong K, Kordić V, Li X, Bauer S, Gillespie AE, Ha SJ, Oh EJ, Galazka JM, Jin YS, Cate JHD. Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:85. [PMID: 24944578 PMCID: PMC4061319 DOI: 10.1186/1754-6834-7-85] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/21/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Cellobiose and xylose co-fermentation holds promise for efficiently producing biofuels from plant biomass. Cellobiose phosphorylase (CBP), an intracellular enzyme generally found in anaerobic bacteria, cleaves cellobiose to glucose and glucose-1-phosphate, providing energetic advantages under the anaerobic conditions required for large-scale biofuel production. However, the efficiency of CBP to cleave cellobiose in the presence of xylose is unknown. This study investigated the effect of xylose on anaerobic CBP-mediated cellobiose fermentation by Saccharomyces cerevisiae. RESULTS Yeast capable of fermenting cellobiose by the CBP pathway consumed cellobiose and produced ethanol at rates 61% and 42% slower, respectively, in the presence of xylose than in its absence. The system generated significant amounts of the byproduct 4-O-β-d-glucopyranosyl-d-xylose (GX), produced by CBP from glucose-1-phosphate and xylose. In vitro competition assays identified xylose as a mixed-inhibitor for cellobiose phosphorylase activity. The negative effects of xylose were effectively relieved by efficient cellobiose and xylose co-utilization. GX was also shown to be a substrate for cleavage by an intracellular β-glucosidase. CONCLUSIONS Xylose exerted negative impacts on CBP-mediated cellobiose fermentation by acting as a substrate for GX byproduct formation and a mixed-inhibitor for cellobiose phosphorylase activity. Future efforts will require efficient xylose utilization, GX cleavage by a β-glucosidase, and/or a CBP with improved substrate specificity to overcome the negative impacts of xylose on CBP in cellobiose and xylose co-fermentation.
Collapse
Affiliation(s)
- Kulika Chomvong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Vesna Kordić
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Xin Li
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Stefan Bauer
- Energy Biosciences Institute, University of California, Berkeley, CA, USA
| | - Abigail E Gillespie
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Suk-Jin Ha
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Joong Oh
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Jonathan M Galazka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Jamie H D Cate
- Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
46
|
Bae YH, Kang KH, Jin YS, Seo JH. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. J Biotechnol 2014; 169:34-41. [DOI: 10.1016/j.jbiotec.2013.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
|
47
|
Lin Y, Chomvong K, Acosta-Sampson L, Estrela R, Galazka JM, Kim SR, Jin YS, Cate JHD. Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:126. [PMID: 25435910 PMCID: PMC4243952 DOI: 10.1186/s13068-014-0126-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/06/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison with those of glucose. Systems biology methods, used to understand biological networks, hold promise for rational microbial strain development in metabolic engineering. Here, we present a systematic strategy for optimizing non-native sugar fermentation by recombinant S. cerevisiae, using cellobiose as a model. RESULTS Differences in gene expression between cellobiose and glucose metabolism revealed by RNA deep sequencing indicated that cellobiose metabolism induces mitochondrial activation and reduces amino acid biosynthesis under fermentation conditions. Furthermore, glucose-sensing and signaling pathways and their target genes, including the cAMP-dependent protein kinase A pathway controlling the majority of glucose-induced changes, the Snf3-Rgt2-Rgt1 pathway regulating hexose transport, and the Snf1-Mig1 glucose repression pathway, were at most only partially activated under cellobiose conditions. To separate correlations from causative effects, the expression levels of 19 transcription factors perturbed under cellobiose conditions were modulated, and the three strongest promoters under cellobiose conditions were applied to fine-tune expression of the heterologous cellobiose-utilizing pathway. Of the changes in these 19 transcription factors, only overexpression of SUT1 or deletion of HAP4 consistently improved cellobiose fermentation. SUT1 overexpression and HAP4 deletion were not synergistic, suggesting that SUT1 and HAP4 may regulate overlapping genes important for improved cellobiose fermentation. Transcription factor modulation coupled with rational tuning of the cellobiose consumption pathway significantly improved cellobiose fermentation. CONCLUSIONS We used systems-level input to reveal the regulatory mechanisms underlying suboptimal metabolism of the non-glucose sugar cellobiose. By identifying key transcription factors that cause suboptimal cellobiose fermentation in engineered S. cerevisiae, and by fine-tuning the expression of a heterologous cellobiose consumption pathway, we were able to greatly improve cellobiose fermentation by engineered S. cerevisiae. Our results demonstrate a powerful strategy for applying systems biology methods to rapidly identify metabolic engineering targets and overcome bottlenecks in performance of engineered strains.
Collapse
Affiliation(s)
- Yuping Lin
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Kulika Chomvong
- />Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Ligia Acosta-Sampson
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Raíssa Estrela
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Jonathan M Galazka
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Soo Rin Kim
- />Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- />Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Yong-Su Jin
- />Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- />Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Jamie HD Cate
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
- />Chemistry, University of California, Berkeley, CA 94720 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
48
|
Ha SJ, Kim SR, Kim H, Du J, Cate JHD, Jin YS. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2013; 149:525-31. [PMID: 24140899 DOI: 10.1016/j.biortech.2013.09.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 05/18/2023]
Abstract
Simultaneous fermentation of cellobiose and xylose by an engineered Saccharomyces cerevisiae has been demonstrated in batch fermentation, suggesting the feasibility of continuous co-fermentation of cellulosic sugars. As industrial S. cerevisiae strains have known to possess higher ethanol productivity and robustness compared to laboratory S. cerevisiae strains, xylose and cellobiose metabolic pathways were introduced into a haploid strain derived from an industrial S. cerevisiae. The resulting strain (JX123-BTT) was able to ferment a mixture of cellobiose and xylose simultaneously in batch fermentation with a high ethanol yield (0.38 g/g) and productivity (2.00 g/L · h). Additionally, the JX123-BTT strain co-consumed glucose, cellobiose, and xylose under continuous culture conditions at a dilution rate of 0.05 h(-1) and produced ethanol resulting in 0.38 g/g of ethanol yield and 0.96 g/L · h of productivity. This is the first demonstration of co-fermentation of cellobiose and xylose by an engineered S. cerevisiae under continuous culture conditions.
Collapse
Affiliation(s)
- Suk-Jin Ha
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
49
|
Kim SR, Park YC, Jin YS, Seo JH. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 2013; 31:851-61. [DOI: 10.1016/j.biotechadv.2013.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/23/2013] [Accepted: 03/04/2013] [Indexed: 12/27/2022]
|
50
|
Zha J, Li BZ, Shen MH, Hu ML, Song H, Yuan YJ. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS One 2013; 8:e68317. [PMID: 23844185 PMCID: PMC3699558 DOI: 10.1371/journal.pone.0068317] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter) and gh1-1 (encoding an intracellular β-glucosidase) from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol) from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates). We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1), which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h) and xylose (0.162 g/L/h) at similar rates to co-produce ethanol (0.36 g/g) and xylitol (1.00 g/g).
Collapse
Affiliation(s)
- Jian Zha
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
| | - Ming-Hua Shen
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
| | - Meng-Long Hu
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|