1
|
Dong X, Yu J, Ye C, Liu D, Zou D, Han Z, Yu Q, Huang K, Li H, Wei X. Control of tobacco-specific nitrosamines by the Bacillus siamensis: Strain isolation, genome sequencing, mechanism analysis and genetic engineering. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133877. [PMID: 38452666 DOI: 10.1016/j.jhazmat.2024.133877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Nitrosamines are considered carcinogens that threaten human health and environment. Especially, high contents of Tobacco-specific nitrosamines (TSNAs) are generated during the fermentation process of cigar tobacco. To control the accumulation of TSNAs, one novel strain WD-32 was isolated by comprehensively evaluating the reduction characteristics of nitrate, nitrite, and TSNAs, and this strain was identified as Bacillus siamensis by 16 S rRNA gene analysis and MALDI-TOF MS evaluation. Subsequently, whole genome sequencing of B. siamensis WD-32 was carried out to excavate important genes and enzymes involved, and the possible reduction mechanism of TSNAs was explored. More importantly, the reduction of TSNAs by B. siamensis was significantly promoted by knockout of narG gene. During the practical agricultural fermentation process of the cigar tobacco leaves, the treatment by the WD-32∆narG cells resulted in a 60% reduction of the total TSNAs content compared with the control, and the concentrations of the NNN and NNK were decreased by 69% and 59%, respectively. In summary, this study offers efficient strains for reduction of the TSNAs in cigar tobacco, and provides new insights into the reduction mechanism of TSNAs, which will promote the application of microbial methods in control of TSNAs and nitrite.
Collapse
Affiliation(s)
- Xinyu Dong
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China; State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan 430062, China
| | - Changwen Ye
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China.
| | - Dandan Liu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenying Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingru Yu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kuo Huang
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China
| | - Hao Li
- Tobacco Research Institute of Hubei Province, Wuhan 430062, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Zhao C, Li X, Guo L, Gao C, Song W, Wei W, Wu J, Liu L, Chen X. Reprogramming Metabolic Flux in Escherichia Coli to Enhance Chondroitin Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307351. [PMID: 38145357 PMCID: PMC10933623 DOI: 10.1002/advs.202307351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Reprogramming metabolic flux is a promising approach for constructing efficient microbial cell factories (MCFs) to produce chemicals. However, how to boost the transmission efficiency of metabolic flux is still challenging in complex metabolic pathways. In this study, metabolic flux is systematically reprogrammed by regulating flux size, flux direction, and flux rate to build an efficient MCF for chondroitin production. The ammoniation pool for UDP-GalNAc synthesis and the carbonization pool for UDP-GlcA synthesis are first enlarged to increase flux size for providing enough precursors for chondroitin biosynthesis. Then, the ammoniation pool and the carbonization pool are rematched using molecular valves to shift flux direction from cell growth to chondroitin biosynthesis. Next, the adaptability of polymerization pool with the ammoniation and carbonization pools is fine-tuned by dynamic and static valve-based adapters to accelerate flux rate for polymerizing UDP-GalNAc and UDP-GlcA to produce chondroitin. Finally, the engineered strain E. coli F51 is able to produce 9.2 g L-1 chondroitin in a 5-L bioreactor. This strategy shown here provides a systematical approach for regulating metabolic flux in complex metabolic pathways for efficient biosynthesis of chemicals.
Collapse
Affiliation(s)
- Chunlei Zhao
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Xiaomin Li
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Liang Guo
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Cong Gao
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Wei Song
- School of Life Sciences and Health EngineeringJiangnan UniversityWuxi214122China
| | - Wanqing Wei
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Jing Wu
- School of Life Sciences and Health EngineeringJiangnan UniversityWuxi214122China
| | - Liming Liu
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Xiulai Chen
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| |
Collapse
|
3
|
Das S, Chowdhury C, Kumar SP, Roy D, Gosavi SW, Sen R. Microbial production of N-acetyl-D-glucosamine (GlcNAc) for versatile applications: Biotechnological strategies for green process development. Carbohydr Res 2024; 536:109039. [PMID: 38277719 DOI: 10.1016/j.carres.2024.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
N-acetyl-d-glucosamine (GlcNAc) is a commercially important amino sugar for its wide range of applications in pharmaceutical, food, cosmetics and biofuel industries. In nature, GlcNAc is polymerised into chitin biopolymer, which is one of the major constituents of fungal cell wall and outer shells of crustaceans. Sea food processing industries generate a large volume of chitin as biopolymeric waste. Because of its high abundance, chitinaceous shellfish wastes have been exploited as one of the major precursor substrates of GlcNAc production, both in chemical and enzymatic means. Nevertheless, the current process of GlcNAc extraction from shellfish wastes generates poor turnover and attracts environmental hazards. Moreover, GlcNAc isolated from shellfish could not be prescribed to certain groups of people because of the allergic nature of shell components. Therefore, an alternative route of GlcNAc production is advocated. With the advancement of metabolic construction and synthetic biology, microbial synthesis of GlcNAc is gaining much attention nowadays. Several new and cutting-edge technologies like substrate co-utilization strategy, promoter engineering, and CRISPR interference system were proposed in this fascinating area. The study would put forward the potential application of microbial engineering in the production of important pharmaceuticals. Very recently, autotrophic fermentation of GlcNAc synthesis has been proposed. The metabolic engineering approaches would offer great promise to mitigate the issues of low yield and high production cost, which are major challenges in microbial bio-processes industries. Further process optimization, optimising metabolic flux, and efficient recovery of GlcNAc from culture broth, should be investigated in order to achieve a high product titer. The current study presents a comprehensive review on microbe-based eco-friendly green methods that would pave the way towards the development of future research directions in this field for the designing of a cost-effective fermentation process on an industrial setup.
Collapse
Affiliation(s)
- Sancharini Das
- Department of Environmental Science, Savitribai Phule Pune University, Pune, MH, 411007, India; Department of Biotechnology, Indian Institute of Technology Kharagpur, WB, 721302, India.
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH, 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - S Pavan Kumar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN, 600 036, India
| | - Debasis Roy
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Suresh W Gosavi
- Department of Environmental Science, Savitribai Phule Pune University, Pune, MH, 411007, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, WB, 721302, India
| |
Collapse
|
4
|
Liu N, Dong W, Yang H, Li JH, Chiu TY. Application of artificial scaffold systems in microbial metabolic engineering. Front Bioeng Biotechnol 2023; 11:1328141. [PMID: 38188488 PMCID: PMC10771841 DOI: 10.3389/fbioe.2023.1328141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
In nature, metabolic pathways are often organized into complex structures such as multienzyme complexes, enzyme molecular scaffolds, or reaction microcompartments. These structures help facilitate multi-step metabolic reactions. However, engineered metabolic pathways in microbial cell factories do not possess inherent metabolic regulatory mechanisms, which can result in metabolic imbalance. Taking inspiration from nature, scientists have successfully developed synthetic scaffolds to enhance the performance of engineered metabolic pathways in microbial cell factories. By recruiting enzymes, synthetic scaffolds facilitate the formation of multi-enzyme complexes, leading to the modulation of enzyme spatial distribution, increased enzyme activity, and a reduction in the loss of intermediate products and the toxicity associated with harmful intermediates within cells. In recent years, scaffolds based on proteins, nucleic acids, and various organelles have been developed and employed to facilitate multiple metabolic pathways. Despite varying degrees of success, synthetic scaffolds still encounter numerous challenges. The objective of this review is to provide a comprehensive introduction to these synthetic scaffolds and discuss their latest research advancements and challenges.
Collapse
Affiliation(s)
- Nana Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Wei Dong
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Huanming Yang
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Jing-Hua Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Tsan-Yu Chiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| |
Collapse
|
5
|
Hari S, Ramaswamy K, Sivalingam U, Ravi A, Dhanraj S, Jagadeesan M. Progress and prospects of biopolymers production strategies. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Abstract
In recent decades, biopolymers have garnered significant attention owing to their aptitude as an environmentally approachable precursor for an extensive application. In addition, due to their alluring assets and widespread use, biopolymers have made significant strides in their production based on various sources and forms. This review focuses on the most recent improvements and breakthroughs that have been made in the manufacturing of biopolymers, via sections focusing the most frequented and preferred routes like micro-macro, algae apart from focusing on microbials routes with special attention to bacteria and the synthetic biology avenue of biopolymer production. For ensuring the continued growth of the global polymer industry, promising research trends must be pursued, as well as methods for overcoming obstacles that arise in exploiting the beneficial properties exhibited by a variety of biopolymers.
Collapse
|
6
|
Pham A, Bassett S, Chen W, Da Silva NA. Assembly of Metabolons in Yeast Using Cas6-Mediated RNA Scaffolding. ACS Synth Biol 2023; 12:1164-1174. [PMID: 36920425 DOI: 10.1021/acssynbio.2c00650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Cells often localize pathway enzymes in close proximity to reduce substrate loss via diffusion and to ensure that carbon flux is directed toward the desired product. To emulate this strategy for the biosynthesis of heterologous products in yeast, we have taken advantage of the highly specific Cas6-RNA interaction and the predictability of RNA hybridizations to demonstrate Cas6-mediated RNA-guided protein assembly within the yeast cytosol. The feasibility of this synthetic scaffolding technique for protein localization was first demonstrated using a split luciferase reporter system with each part fused to a different Cas6 protein. In Saccharomyces cerevisiae, the luminescence signal increased 3.6- to 20-fold when the functional RNA scaffold was also expressed. Expression of a trigger RNA, designed to prevent the formation of a functional scaffold by strand displacement, decreased the luminescence signal by nearly 2.3-fold. Temporal control was also possible, with induction of scaffold expression resulting in an up to 11.6-fold increase in luminescence after 23 h. Cas6-mediated assembly was applied to create a two-enzyme metabolon to redirect a branch of the violacein biosynthesis pathway. Localizing VioC and VioE together increased the amount of deoxyviolacein (desired) relative to prodeoxyviolacein (undesired) by 2-fold. To assess the generality of this colocalization method in other yeast systems, the split luciferase reporter system was evaluated in Kluyveromyces marxianus; RNA scaffold expression resulted in an increase in the luminescence signal of up to 1.9-fold. The simplicity and flexibility of the design suggest that this strategy can be used to create metabolons in a wide range of recombinant hosts of interest.
Collapse
Affiliation(s)
- Anhuy Pham
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697-2580, United States
| | - Shane Bassett
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697-2580, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Nancy A Da Silva
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697-2580, United States
| |
Collapse
|
7
|
Liu M, Wang Y, Jiang H, Han Y, Xia J. Synthetic Multienzyme Assemblies for Natural Product Biosynthesis. Chembiochem 2023; 24:e202200518. [PMID: 36625563 DOI: 10.1002/cbic.202200518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
In nature, enzymes that catalyze sequential reactions are often assembled as clusters or complexes. The formation of multienzyme complexes, or metabolons, brings the enzyme active sites into proximity to promote intermediate transfer, decrease intermediate leakage, and streamline the metabolic flux towards the desired products. We and others have developed synthetic versions of metabolons through various strategies to enhance the catalytic rates for synthesizing valuable chemicals inside microbes. Synthetic multienzyme complexes range from static enzyme nanostructures to dynamic enzyme coacervates. Enzyme complexation optimizes the metabolic fluxes inside microbes, increases the product titer, and supplies the field with high-yield microbe strains that are amenable to large-scale fermentation. Enzyme complexes constructed inside microbial cells can be separated as independent entities and catalyze biosynthetic reactions ex vivo; such a feature gains these complexes another name, "synthetic organelles" - new subcellular entities with independent structures and functions. Still, the field is seeking new strategies to better balance dynamicity and confinement and to achieve finer control of local compartmentalization in the cells, as the natural multienzyme complexes do. Industrial applications of synthetic multienzyme complexes for the large-scale production of valuable chemicals are yet to be realized. This review focuses on synthetic multienzyme complexes that are constructed and function inside microbial cells.
Collapse
Affiliation(s)
- Min Liu
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yue Wang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hao Jiang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yongxu Han
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
8
|
An update on the review of microbial synthesis of glucosamine and N-acetylglucosamine. World J Microbiol Biotechnol 2023; 39:93. [PMID: 36754899 DOI: 10.1007/s11274-023-03531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Glucosamine (GlcN) is a natural amino monosaccharide in which a hydroxyl group of glucose is substituted by an amino group. It belongs to functional amino sugar compounds. In the traditional preparation process, GlcN and GlcNAc are obtained by hydrolyzing the cell wall of shrimp and crab. There are many potential problems with this method, such as geographical and seasonal restrictions on the supply of raw materials, serious environmental pollution and potential allergic reactions. Microbial fermentation has the advantages of mild conditions, low environmental pollution, high production intensity, and product safety. It can effectively solve the problem of shrimp and crab hydrolysis process, attracting many researchers to participate in the research of microbial fermentation production of GlcN. This paper mainly summarizes the research on strain construction method, metabolic pathway design and fermentation condition optimization in microbial fermentation, which has certain guiding significance for the further production, research and production of glucosamine.
Collapse
|
9
|
Nucleic acid-based scaffold systems and application in enzyme cascade catalysis. Appl Microbiol Biotechnol 2022; 107:9-23. [DOI: 10.1007/s00253-022-12315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
|
10
|
Tolibia SEM, Pacheco AD, Balbuena SYG, Rocha J, López Y López VE. Engineering of global transcription factors in Bacillus, a genetic tool for increasing product yields: a bioprocess overview. World J Microbiol Biotechnol 2022; 39:12. [PMID: 36372802 DOI: 10.1007/s11274-022-03460-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
Abstract
Transcriptional factors are well studied in bacteria for their global interactions and the effects they produce at the phenotypic level. Particularly, Bacillus subtilis has been widely employed as a model Gram-positive microorganism used to characterize these network interactions. Bacillus species are currently used as efficient commercial microbial platforms to produce diverse metabolites such as extracellular enzymes, antibiotics, surfactants, industrial chemicals, heterologous proteins, among others. However, the pleiotropic effects caused by the genetic modification of specific genes that codify for global regulators (transcription factors) have not been implicated commonly from a bioprocess point of view. Recently, these strategies have attracted the attention in Bacillus species because they can have an application to increase production efficiency of certain commercial interest metabolites. In this review, we update the recent advances that involve this trend in the use of genetic engineering (mutations, deletion, or overexpression) performed to global regulators such as Spo0A, CcpA, CodY and AbrB, which can provide an advantage for the development or improvement of bioprocesses that involve Bacillus species as production platforms. Genetic networks, regulation pathways and their relationship to the development of growth stages are also discussed to correlate the interactions that occur between these regulators, which are important to consider for application in the improvement of commercial-interest metabolites. Reported yields from these products currently produced mostly under laboratory conditions and, in a lesser extent at bioreactor level, are also discussed to give valuable perspectives about their potential use and developmental level directed to process optimization at large-scale.
Collapse
Affiliation(s)
- Shirlley Elizabeth Martínez Tolibia
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, CP 90000, Guillermo Valle, Tlaxcala, Mexico
| | - Sulem Yali Granados Balbuena
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Jorge Rocha
- CONACyT - Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo, A.C. Blvd. Santa Catarina, SN, C.P. 42163, San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Víctor Eric López Y López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico.
| |
Collapse
|
11
|
Deng A, Qiu Q, Sun Q, Chen Z, Wang J, Zhang Y, Liu S, Wen T. In silico-guided metabolic engineering of Bacillus subtilis for efficient biosynthesis of purine nucleosides by blocking the key backflow nodes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:82. [PMID: 35953809 PMCID: PMC9367096 DOI: 10.1186/s13068-022-02179-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Purine nucleosides play essential roles in cellular physiological processes and have a wide range of applications in the fields of antitumor/antiviral drugs and food. However, microbial overproduction of purine nucleosides by de novo metabolic engineering remains a great challenge due to their strict and complex regulatory machinery involved in biosynthetic pathways.
Results
In this study, we designed an in silico-guided strategy for overproducing purine nucleosides based on a genome-scale metabolic network model in Bacillus subtilis. The metabolic flux was analyzed to predict two key backflow nodes, Drm (purine nucleotides toward PPP) and YwjH (PPP–EMP), to resolve the competitive relationship between biomass and purine nucleotide synthesis. In terms of the purine synthesis pathway, the first backflow node Drm was inactivated to block the degradation of purine nucleotides, which greatly increased the inosine production to 13.98–14.47 g/L without affecting cell growth. Furthermore, releasing feedback inhibition of the purine operon by promoter replacement enhanced the accumulation of purine nucleotides. In terms of the central carbon metabolic pathways, the deletion of the second backflow node YwjH and overexpression of Zwf were combined to increase inosine production to 22.01 ± 1.18 g/L by enhancing the metabolic flow of PPP. By switching on the flux node of the glucose-6-phosphate to PPP or EMP, the final inosine engineered strain produced up to 25.81 ± 1.23 g/L inosine by a pgi-based metabolic switch with a yield of 0.126 mol/mol glucose, a productivity of 0.358 g/L/h and a synthesis rate of 0.088 mmol/gDW/h, representing the highest yield in de novo engineered inosine bacteria. Under the guidance of this in silico-designed strategy, a general chassis bacterium was generated, for the first time, to efficiently synthesize inosine, adenosine, guanosine, IMP and GMP, which provides sufficient precursors for the synthesis of various purine intermediates.
Conclusions
Our study reveals that in silico-guided metabolic engineering successfully optimized the purine synthesis pathway by exploring efficient targets, which could be applied as a superior strategy for efficient biosynthesis of biotechnological products.
Collapse
|
12
|
Zhang Q, Chen Y, Gao L, Chen J, Ma X, Cai D, Wang D, Chen S. Enhanced production of poly-γ-glutamic acid via optimizing the expression cassette of Vitreoscilla hemoglobin in Bacillus licheniformis. Synth Syst Biotechnol 2022; 7:567-573. [PMID: 35155838 PMCID: PMC8801620 DOI: 10.1016/j.synbio.2022.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/16/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural polymer with various applications, and its high-viscosity hinders oxygen transmission and improvement of synthesis level. Vitreoscilla hemoglobin (VHB) has been introduced into various hosts as oxygen carrier, however, its expression strength and contact efficiency with oxygen hindered efficient oxygen transfer and metabolite synthesis. Here, we want to optimize the expression cassette of VHB for γ-PGA production. Firstly, our results implied that γ-PGA yields were enhanced when introducing twin-arginine translocation (Tat) signal peptides (SPYwbN, SPPhoD and SPTorA) into VHB expression cassette, and the best performance was attained by SPYwbN from Bacillus subtilis, the γ-PGA yield of which was 18.53% higher than that of control strain, and intracellular ATP content and oxygen transfer coefficient (KLa) were increased by 29.71% and 73.12%, respectively, indicating that VHB mediated by SPYwbN benefited oxygen transfer and ATP generation for γ-PGA synthesis. Furthermore, four promoters were screened, and Pvgb was proven as the more suitable promoter for VHB expression and γ-PGA synthesis, and γ-PGA yield of attaining strain WX/pPvgb-YwbN-Vgb was further increased to 40.59 g/L by 10.18%. Finally, WX/pPvgb-YwbN-Vgb was cultivated in 3 L fermentor for fed-batch fermentation, and 46.39 g/L γ-PGA was attained by glucose feeding, increased by 49.26% compared with the initial yield (31.01 g/L). Taken together, this study has attained an efficient VHB expression cassette for oxygen transfer and γ-PGA synthesis, which could also be applied in the production of other metabolites.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yaozhong Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Lin Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jian'gang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Wuhan Junan Biotechnology Co. Ltd., Wuhan, China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, PR China.
| |
Collapse
|
13
|
Zhu G, Song P, Wu J, Luo M, Chen Z, Chen T. Application of Nucleic Acid Frameworks in the Construction of Nanostructures and Cascade Biocatalysts: Recent Progress and Perspective. Front Bioeng Biotechnol 2022; 9:792489. [PMID: 35071205 PMCID: PMC8777461 DOI: 10.3389/fbioe.2021.792489] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids underlie the storage and retrieval of genetic information literally in all living organisms, and also provide us excellent materials for making artificial nanostructures and scaffolds for constructing multi-enzyme systems with outstanding performance in catalyzing various cascade reactions, due to their highly diverse and yet controllable structures, which are well determined by their sequences. The introduction of unnatural moieties into nucleic acids dramatically increased the diversity of sequences, structures, and properties of the nucleic acids, which undoubtedly expanded the toolbox for making nanomaterials and scaffolds of multi-enzyme systems. In this article, we first introduce the molecular structures and properties of nucleic acids and their unnatural derivatives. Then we summarized representative artificial nanomaterials made of nucleic acids, as well as their properties, functions, and application. We next review recent progress on constructing multi-enzyme systems with nucleic acid structures as scaffolds for cascade biocatalyst. Finally, we discuss the future direction of applying nucleic acid frameworks in the construction of nanomaterials and multi-enzyme molecular machines, with the potential contribution that unnatural nucleic acids may make to this field highlighted.
Collapse
Affiliation(s)
- Gan Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ping Song
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jing Wu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Minglan Luo
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhipeng Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Tong T, Chen X, Hu G, Wang XL, Liu GQ, Liu L. Engineering microbial metabolic energy homeostasis for improved bioproduction. Biotechnol Adv 2021; 53:107841. [PMID: 34610353 DOI: 10.1016/j.biotechadv.2021.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Metabolic energy (ME) homeostasis is essential for the survival and proper functioning of microbial cell factories. However, it is often disrupted during bioproduction because of inefficient ME supply and excessive ME consumption. In this review, we propose strategies, including reinforcement of the capacity of ME-harvesting systems in autotrophic microorganisms; enhancement of the efficiency of ME-supplying pathways in heterotrophic microorganisms; and reduction of unessential ME consumption by microbial cells, to address these issues. This review highlights the potential of biotechnology in the engineering of microbial ME homeostasis and provides guidance for the higher efficient bioproduction of microbial cell factories.
Collapse
Affiliation(s)
- Tian Tong
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Dong H, Zhang W, Zhou S, Huang J, Wang P. Engineering bioscaffolds for enzyme assembly. Biotechnol Adv 2021; 53:107721. [PMID: 33631185 DOI: 10.1016/j.biotechadv.2021.107721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022]
Abstract
With the demand for green, safe, and continuous biocatalysis, bioscaffolds, compared with synthetic scaffolds, have become a desirable candidate for constructing enzyme assemblages because of their biocompatibility and regenerability. Biocompatibility makes bioscaffolds more suitable for safe and green production, especially in food processing, production of bioactive agents, and diagnosis. The regenerability can enable the engineered biocatalysts regenerate through simple self-proliferation without complex re-modification, which is attractive for continuous biocatalytic processes. In view of the unique biocompatibility and regenerability of bioscaffolds, they can be classified into non-living (polysaccharide, nucleic acid, and protein) and living (virus, bacteria, fungi, spore, and biofilm) bioscaffolds, which can fully satisfy these two unique properties, respectively. Enzymes assembled onto non-living bioscaffolds are based on single or complex components, while enzymes assembled onto living bioscaffolds are based on living bodies. In terms of their unique biocompatibility and regenerability, this review mainly covers the current advances in the research and application of non-living and living bioscaffolds with focus on engineering strategies for enzyme assembly. Finally, the future development of bioscaffolds for enzyme assembly is also discussed. Hopefully, this review will attract the interest of researchers in various fields and empower the development of biocatalysis, biomedicine, environmental remediation, therapy, and diagnosis.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
16
|
Park SA, Bhatia SK, Park HA, Kim SY, Sudheer PDVN, Yang YH, Choi KY. Bacillus subtilis as a robust host for biochemical production utilizing biomass. Crit Rev Biotechnol 2021; 41:827-848. [PMID: 33622141 DOI: 10.1080/07388551.2021.1888069] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacillus subtilis is regarded as a suitable host for biochemical production owing to its excellent growth and bioresource utilization characteristics. In addition, the distinct endogenous metabolic pathways and the suitability of the heterologous pathways have made B. subtilis a robust and promising host for producing biochemicals, such as: bioalcohols; bioorganic acids (lactic acids, α-ketoglutaric acid, and γ-aminobutyric acid); biopolymers (poly(γ-glutamic acid, polyhydroxyalkanoates (PHA), and polysaccharides and monosaccharides (N-acetylglucosamine, xylooligosaccharides, and hyaluronic acid)); and bioflocculants. Also for producing oligopeptides and functional peptides, owing to its efficient protein secretion system. Several metabolic and genetic engineering techniques, such as target gene overexpression and inactivation of bypass pathways, have led to the improvement in production titers and product selectivity. In this review article, recent progress in the utilization of robust B. subtilis-based host systems for biomass conversion and biochemical production has been highlighted, and the prospects of such host systems are suggested.
Collapse
Affiliation(s)
- Seo A Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.,Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Hyun A Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Seo Yeong Kim
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | | | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.,Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea.,Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
17
|
Zhang Y, Yu J, Wu Y, Li M, Zhao Y, Zhu H, Chen C, Wang M, Chen B, Tan T. Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Jung H, Han J, Oh M. Improved production of 2,3-butanediol and isobutanol by engineering electron transport chain in Escherichia coli. Microb Biotechnol 2021; 14:213-226. [PMID: 32954676 PMCID: PMC7888471 DOI: 10.1111/1751-7915.13669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
The electron transport chain (ETC) is one of the major energy generation pathways in microorganisms under aerobic condition. Higher yield of ATP can be achieved through oxidative phosphorylation with consumption of NADH than with substrate level phosphorylation. However, most value-added metabolites are in an electrochemically reduced state, which requires reducing equivalent NADH as a cofactor. Therefore, optimal production of value-added metabolites should be balanced with ETC in terms of energy production. In this study, we attempted to reduce the activity of ETC to secure availability of NADH. The ETC mutants exhibited poor growth rate and production of fermentative metabolites compared to parental strain. Introduction of heterologous pathways for synthesis of 2,3-butanediol and isobutanol to ETC mutants resulted in increased titres and yields of the metabolites. ETC mutants yielded higher NADH/NAD+ ratio but similar ATP content than that by the parental strain. Furthermore, ETC mutants operated fermentative metabolism pathways independent of oxygen supply in large-scale fermenter, resulting in increased yield and titre of 2,3-butanediol. Thus, engineering of ETC is a useful metabolic engineering approach for production of reduced metabolites.
Collapse
Affiliation(s)
- Hwi‐Min Jung
- Department of Chemical and Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Korea
| | - Jae‐Ho Han
- Department of Chemical and Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Korea
| | - Min‐Kyu Oh
- Department of Chemical and Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Korea
| |
Collapse
|
19
|
Wang M, Yu H, Li X, Shen Z. Single-gene regulated non-spore-forming Bacillus subtilis: Construction, transcriptome responses, and applications for producing enzymes and surfactin. Metab Eng 2020; 62:235-248. [DOI: 10.1016/j.ymben.2020.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
|
20
|
Niu T, Lv X, Liu Y, Li J, Du G, Ledesma-Amaro R, Liu L. The elucidation of phosphosugar stress response in Bacillus subtilis guides strain engineering for high N-acetylglucosamine production. Biotechnol Bioeng 2020; 118:383-396. [PMID: 32965679 DOI: 10.1002/bit.27577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022]
Abstract
Bacillus subtilis is a preferred microbial host for the industrial production of nutraceuticals and a promising candidate for the synthesis of functional sugars, such as N-acetylglucosamine (GlcNAc). Previously, a GlcNAc-overproducer B. subtilis SFMI was constructed using glmS ribozyme dual-regulatory tool. Herein, we further engineered to enhance carbon flux from glucose towards GlcNAc synthesis. As a result, the increased flux towards GlcNAc synthesis triggered phosphosugar stress response, which caused abnormal cell growth. Unfortunately, the mechanism of phosphosugar stress response had not been elucidated in B. subtilis. To reveal the stress mechanism and overcome its negative effect in bioproduction, we performed comparative transcriptome analysis. The results indicate that cells slow glucose utilization by repression of glucose import and accelerate catabolic reactions of phosphosugar. To verify these results, we overexpressed the phosphatase YwpJ, which relieved phosphosugar stress and allowed us to identify the enzyme responsible for GlcNAc synthesis from GlcNAc 6-phosphate. In addition, the deletion of nagBB and murQ, responsible for GlcNAc precursor degradation, further improved GlcNAc synthesis. The best engineered strain, B. subtilis FMIP34, increased GlcNAc titer from 11.5 to 26.1 g/L in shake flasks and produced 87.5 g/L GlcNAc in 30-L fed-batch bioreactor. Our results not only elucidate, for the first time, the phosphosugar stress response mechanism in B. subtilis, but also demonstrate how the combination of rational metabolic engineering with novel insights into physiology and metabolism allows the construction of highly efficient microbial cell factories for the production of high-value chemicals.
Collapse
Affiliation(s)
- Tengfei Niu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Man Z, Guo J, Zhang Y, Cai Z. Regulation of intracellular ATP supply and its application in industrial biotechnology. Crit Rev Biotechnol 2020; 40:1151-1162. [PMID: 32862717 DOI: 10.1080/07388551.2020.1813071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Efficient cell factories are the core of industrial biotechnology. In recent years, synthetic biology develops rapidly, and more and more modified microbial cell factories are employed in industrial biotechnology. ATP plays vital roles in biosynthesis, metabolism regulation, and cellular maintenance. Regulating cellular ATP supply can effectively modify cellular metabolism. This paper presents a review of recent studies on the regulation of the intracellular ATP supply and its application in industrial biotechnology. Detailed strategies for regulating the ATP supply and the resulting impact on bioproduction are introduced. It is observed that regulating the cellular ATP supply can provide great possibilities for making microbial cells into efficient factories. Future perspectives for further understanding the function of ATP are also discussed.
Collapse
Affiliation(s)
- Zaiwei Man
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, China.,Zaozhuang Key Laboratory of Corn Bioengineering, Zaozhuang Science and Technology Collaborative Innovation Center of Enzyme, Shandong Hengren Gongmao Co. Ltd, Zaozhuang, China
| | - Jing Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, China.,School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Yingyang Zhang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Zhiqiang Cai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, China.,School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| |
Collapse
|
22
|
Enhancement of Production of D-Glucosamine in Escherichia coli by Blocking Three Pathways Involved in the Consumption of GlcN and GlcNAc. Mol Biotechnol 2020; 62:387-399. [PMID: 32572810 DOI: 10.1007/s12033-020-00257-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
D-Glucosamine is a commonly used dietary supplement that promotes cartilage health in humans. Metabolic flux analysis showed that D-glucosamine production could be increased by blocking three pathways involved in the consumption of glucosamine-6-phosphate and acetylglucosamine-6-phosphate. By homologous single-exchange, two key genes (nanE and murQ) of Escherichia coli BL21 were knocked out, respectively. The D-glucosamine yields of the engineered strains E. coli BL21ΔmurQ and E. coli BL21ΔnanE represented increases by factors of 2.14 and 1.79, respectively. Meanwhile, for bifunctional gene glmU, we only knocked out its glucosamine-1-phosphate acetyltransferase domain by 3D structural analysis to keep the engineered strain E. coli BL21glmU-Δgpa survival, which resulted in an increase in the production of D-glucosamine by a factor of 2.16. Moreover, for further increasing D-glucosamine production, two genes encoding rate-limiting enzymes, named glmS and gna1, were coexpressed by an RBS sequence in those engineered strains. The total concentrations of D-glucosamine in E. coli BL21 glmU-Δgpa', E. coli BL21ΔmurQ', and E. coli BL21ΔnanE' were 2.65 g/L, 1.73 g/L, and 1.38 g/L, which represented increases by factors of 8.83, 5.76, and 3.3, respectively.
Collapse
|
23
|
Coussement P, Bauwens D, Peters G, Maertens J, De Mey M. Mapping and refactoring pathway control through metabolic and protein engineering: The hexosamine biosynthesis pathway. Biotechnol Adv 2020; 40:107512. [DOI: 10.1016/j.biotechadv.2020.107512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/07/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023]
|
24
|
Geissinger SE, Schreiber A, Huber MC, Stühn LG, Schiller SM. Adjustable Bioorthogonal Conjugation Platform for Protein Studies in Live Cells Based on Artificial Compartments. ACS Synth Biol 2020; 9:827-842. [PMID: 32130855 DOI: 10.1021/acssynbio.9b00494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The investigation of complex biological processes in vivo often requires defined multiple bioconjugation and positioning of functional entities on 3D structures. Prominent examples include spatially defined protein complexes in nature, facilitating efficient biocatalysis of multistep reactions. Mimicking natural strategies, synthetic scaffolds should comprise bioorthogonal conjugation reactions and allow for absolute stoichiometric quantification as well as facile scalability through scaffold reproduction. Existing in vivo scaffolding strategies often lack covalent conjugations on geometrically confined scaffolds or precise quantitative characterization. Addressing these shortcomings, we present a bioorthogonal dual conjugation platform based on genetically encoded artificial compartments in vivo, comprising two distinct genetically encoded covalent conjugation reactions and their precise stoichiometric quantification. The SpyTag/SpyCatcher (ST/SC) bioconjugation and the controllable strain-promoted azide-alkyne cycloaddition (SPAAC) were implemented on self-assembled protein membrane-based compartments (PMBCs). The SPAAC reaction yield was quantified to be 23% ± 3% and a ST/SC surface conjugation yield of 82% ± 9% was observed, while verifying the compatibility of both chemical reactions as well as enhanced proteolytic stability. Using tandem mass spectrometry, absolute concentrations of the proteinaceous reactants were calculated to be 0.11 ± 0.05 attomol/cell for PMBC surface-tethered mCherry-ST-His and 0.22 ± 0.09 attomol/cell for PMBC-constituting pAzF-SC-E20F20-His. The established in vivo conjugation platform enables quantifiable protein-protein interaction studies on geometrically defined scaffolds and paves the road to investigate effects of scaffold-tethering on enzyme activity.
Collapse
Affiliation(s)
- Süreyya E. Geissinger
- Zentrum für Biosystemanalyse (ZBSA), University of Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Andreas Schreiber
- Zentrum für Biosystemanalyse (ZBSA), University of Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Matthias C. Huber
- Zentrum für Biosystemanalyse (ZBSA), University of Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Lara G. Stühn
- Zentrum für Biosystemanalyse (ZBSA), University of Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Stefan M. Schiller
- Zentrum für Biosystemanalyse (ZBSA), University of Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
25
|
Mindt M, Walter T, Kugler P, Wendisch VF. Microbial Engineering for Production of N-Functionalized Amino Acids and Amines. Biotechnol J 2020; 15:e1900451. [PMID: 32170807 DOI: 10.1002/biot.201900451] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/04/2020] [Indexed: 01/04/2023]
Abstract
N-functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine-chemical industries N-functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N-alkylated, N-hydroxylated, N-acylated, or other N-functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N-functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N-hydroxylases, N-acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany.,BU Bioscience, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Tatjana Walter
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Pierre Kugler
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
26
|
Lv X, Cui S, Gu Y, Li J, Du G, Liu L. Enzyme Assembly for Compartmentalized Metabolic Flux Control. Metabolites 2020; 10:E125. [PMID: 32224973 PMCID: PMC7241084 DOI: 10.3390/metabo10040125] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Enzyme assembly by ligand binding or physically sequestrating enzymes, substrates, or metabolites into isolated compartments can bring key molecules closer to enhance the flux of a metabolic pathway. The emergence of enzyme assembly has provided both opportunities and challenges for metabolic engineering. At present, with the development of synthetic biology and systems biology, a variety of enzyme assembly strategies have been proposed, from the initial direct enzyme fusion to scaffold-free assembly, as well as artificial scaffolds, such as nucleic acid/protein scaffolds, and even some more complex physical compartments. These assembly strategies have been explored and applied to the synthesis of various important bio-based products, and have achieved different degrees of success. Despite some achievements, enzyme assembly, especially in vivo, still has many problems that have attracted significant attention from researchers. Here, we focus on some selected examples to review recent research on scaffold-free strategies, synthetic artificial scaffolds, and physical compartments for enzyme assembly or pathway sequestration, and we discuss their notable advances. In addition, the potential applications and challenges in the applications are highlighted.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shixiu Cui
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yang Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
27
|
Efficient production of surfactin from xylose-rich corncob hydrolysate using genetically modified Bacillus subtilis 168. Appl Microbiol Biotechnol 2020; 104:4017-4026. [DOI: 10.1007/s00253-020-10528-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/28/2020] [Accepted: 03/05/2020] [Indexed: 01/04/2023]
|
28
|
Zhang Q, Hou Z, Ma Q, Mo X, Sun Q, Tan M, Xia L, Lin G, Yang M, Zhang Y, Xu Q, Li Y, Chen N, Xie X. CRISPRi-Based Dynamic Control of Carbon Flow for Efficient N-Acetyl Glucosamine Production and Its Metabolomic Effects in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3203-3213. [PMID: 32101421 DOI: 10.1021/acs.jafc.9b07896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon competition between cell growth and product synthesis is the bottleneck in efficient N-acetyl glucosamine (GlcNAc) production in microbial cell factories. In this study, a xylose-induced T7 RNA polymerase-PT7 promoter system was introduced in Escherichia coli W3110 to control the GlcNAc synthesis. Meanwhile, an arabinose-induced CRISPR interference (CRISPRi) system was applied to adjust cell growth by attenuating the transcription of key growth-related genes. By designing proper sgRNAs, followed by elaborate adjustment of the addition time and concentration of the two inducers, the carbon flux between cell growth and GlcNAc synthesis was precisely redistributed. Comparative metabolomics analysis results confirmed that the repression of pfkA and zwf significantly attenuated the TCA cycle and the synthesis of related amino acids, saving more carbon for the GlcNAc synthesis. Finally, the simultaneous repression of pfkA and zwf in strain GLA-14 increased the GlcNAc titer by 47.6% compared with that in E. coli without the CRISPRi system in a shake flask. GLA-14 could produce 90.9 g/L GlcNAc within 40 h in a 5 L bioreactor, with a high productivity of 2.27 g/L/h. This dynamic strategy for rebalancing cell growth and product synthesis could be applied in the fermentative production of other chemicals derived from precursors synthesized via central carbon metabolism.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengjie Hou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Xiaolin Mo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Quanwei Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Miao Tan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Xia
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Gaoyang Lin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengya Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Xixian Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| |
Collapse
|
29
|
Niu T, Lv X, Liu Z, Li J, Du G, Liu L. Synergetic engineering of central carbon and nitrogen metabolism for the production ofN‐acetylglucosamine inBacillus subtilis. Biotechnol Appl Biochem 2020; 67:123-132. [DOI: 10.1002/bab.1845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Tengfei Niu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
| | - Zhenmin Liu
- State Key Laboratory of Dairy BiotechnologyShanghai Engineering Research Center of Dairy BiotechnologyDairy Research InstituteBright Dairy & Food Co., Ltd. Shanghai People's Republic of China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University Wuxi People's Republic of China
| |
Collapse
|
30
|
Xu X, Tian L, Tang S, Xie C, Xu J, Jiang L. Design and tailoring of an artificial DNA scaffolding system for efficient lycopene synthesis using zinc-finger-guided assembly. J Ind Microbiol Biotechnol 2019; 47:209-222. [PMID: 31853777 DOI: 10.1007/s10295-019-02255-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/30/2019] [Indexed: 01/03/2023]
Abstract
A highly efficient lycopene production system was constructed by assembling enzymes fused to zinc-finger motifs on DNA scaffolds in vitro and in vivo. Three key enzymes of the lycopene synthesis pathway, geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, were fused with zinc-finger proteins, expressed and purified. Recombinant plasmids of the pS series containing DNA scaffolds that the zinc-finger proteins can specifically bind to were constructed. In the in vitro system, the production efficiency of lycopene was improved greatly after the addition of the scaffold plasmid pS231. Subsequently, the plasmid pET-AEBI was constructed and introduced into recombinant Escherichia coli BL21 (DE3) for expression, together with plasmids of the pS series. The lycopene production rate and content of the recombinant strain pp231 were higher than that of all strains carrying the DNA scaffold and the control. With the addition of cofactors and substrates in the lycopene biosynthesis pathway, the lycopene yield of pp231 reached 632.49 mg/L at 40 h, representing a 4.7-fold increase compared to the original recombinant strain pA1A3. This DNA scaffold system can be used as a platform for the construction and production of many biochemicals synthesized via multi-enzyme cascade reactions.
Collapse
Affiliation(s)
- Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Liqing Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu Province, China
| | - Susu Tang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, 225127, Jiangsu Province, China
| | - Jiali Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu Province, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu Province, China.
| |
Collapse
|
31
|
Kalnenieks U, Balodite E, Rutkis R. Metabolic Engineering of Bacterial Respiration: High vs. Low P/O and the Case of Zymomonas mobilis. Front Bioeng Biotechnol 2019; 7:327. [PMID: 31781557 PMCID: PMC6861446 DOI: 10.3389/fbioe.2019.00327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/28/2019] [Indexed: 11/13/2022] Open
Abstract
Respiratory chain plays a pivotal role in the energy and redox balance of aerobic bacteria. By engineering respiration, it is possible to alter the efficiency of energy generation and intracellular redox state, and thus affect the key bioprocess parameters: cell yield, productivity and stress resistance. Here we summarize the current metabolic engineering and synthetic biology approaches to bacterial respiratory metabolism, with a special focus on the respiratory chain of the ethanologenic bacterium Zymomonas mobilis. Electron transport in Z. mobilis can serve as a model system of bacterial respiration with low oxidative phosphorylation efficiency. Its application for redox balancing and relevance for improvement of stress tolerance are analyzed.
Collapse
Affiliation(s)
- Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | | | | |
Collapse
|
32
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
33
|
Tian R, Liu Y, Chen J, Li J, Liu L, Du G, Chen J. Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis. Metab Eng 2019; 55:131-141. [DOI: 10.1016/j.ymben.2019.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/22/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
|
34
|
Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives. Biotechnol Adv 2019; 37:787-800. [DOI: 10.1016/j.biotechadv.2019.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
|
35
|
Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends Biotechnol 2019; 37:817-837. [DOI: 10.1016/j.tibtech.2019.01.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
|
36
|
Cai D, Rao Y, Zhan Y, Wang Q, Chen S. EngineeringBacillusfor efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol 2019; 126:1632-1642. [DOI: 10.1111/jam.14192] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- D. Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Q. Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - S. Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| |
Collapse
|
37
|
Ma W, Liu Y, Lv X, Li J, Du G, Liu L. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis. Microb Cell Fact 2019; 18:1. [PMID: 30609921 PMCID: PMC6318901 DOI: 10.1186/s12934-018-1049-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glucosamine-6-phosphate N-acetyltransferase (GNA1) is the key enzyme that causes overproduction of N-acetylglucosamine in Bacillus subtilis. Previously, we increased GlcNAc production by promoting the expression of GNA1 from Caenorhabditis elegans (CeGNA1) in an engineered B. subtilis strain BSGN12. In this strain overflow metabolism to by-products acetoin and acetate had been blocked by mutations, however pyruvate accumulated as an overflow metabolite. Although overexpression of CeGNA1 drove carbon flux from pyruvate to the GlcNAc synthesis pathway and decreased pyruvate accumulation, the residual pyruvate reduced the intracellular pH, resulting in inhibited CeGNA1 activity and limited GlcNAc production. RESULTS In this study, we attempted to further overcome pyruvate overflow by enzyme engineering and host engineering for enhanced GlcNAc production. To this end, the key enzyme CeGNA1 was evolved through error-prone PCR under pyruvate stress to enhance its catalytic activity. Then, the urease from Bacillus paralicheniformis was expressed intracellularly to neutralize the intracellular pH, making it more robust in growth and more efficient in GlcNAc production. It was found that the activity of mutant CeGNA1 increased by 11.5% at pH 6.5-7.5, with the catalytic efficiency increasing by 27.5% to 1.25 s-1 µM-1. Modulated expression of urease increased the intracellular pH from 6.0 to 6.8. The final engineered strain BSGN13 overcame pyruvate overflow, produced 25.6 g/L GlcNAc with a yield of 0.43 g GlcNAc/g glucose in a shake flask fermentation and produced 82.5 g/L GlcNAc with a yield of 0.39 g GlcNAc/g glucose by fed-batch fermentation, which was 1.7- and 1.2-times, respectively, of the yield achieved previously. CONCLUSIONS This study highlights a strategy that combines pathway enzyme engineering and host engineering to resolve overflow metabolism in B. subtilis for the overproduction of GlcNAc. By means of modulated expression of urease reduced pyruvate burden, conferred bacterial survival fitness, and enhanced GlcNAc production, all of which improved our understanding of co-regulation of cell growth and metabolism to construct more efficient B. subtilis cell factories.
Collapse
Affiliation(s)
- Wenlong Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
38
|
Calero P, Nikel PI. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol 2019; 12:98-124. [PMID: 29926529 PMCID: PMC6302729 DOI: 10.1111/1751-7915.13292] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The last few years have witnessed an unprecedented increase in the number of novel bacterial species that hold potential to be used for metabolic engineering. Historically, however, only a handful of bacteria have attained the acceptance and widespread use that are needed to fulfil the needs of industrial bioproduction - and only for the synthesis of very few, structurally simple compounds. One of the reasons for this unfortunate circumstance has been the dearth of tools for targeted genome engineering of bacterial chassis, and, nowadays, synthetic biology is significantly helping to bridge such knowledge gap. Against this background, in this review, we discuss the state of the art in the rational design and construction of robust bacterial chassis for metabolic engineering, presenting key examples of bacterial species that have secured a place in industrial bioproduction. The emergence of novel bacterial chassis is also considered at the light of the unique properties of their physiology and metabolism, and the practical applications in which they are expected to outperform other microbial platforms. Emerging opportunities, essential strategies to enable successful development of industrial phenotypes, and major challenges in the field of bacterial chassis development are also discussed, outlining the solutions that contemporary synthetic biology-guided metabolic engineering offers to tackle these issues.
Collapse
Affiliation(s)
- Patricia Calero
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| |
Collapse
|
39
|
Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metab Eng 2018; 50:109-121. [DOI: 10.1016/j.ymben.2018.05.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 01/29/2023]
|
40
|
Niu T, Liu Y, Li J, Koffas M, Du G, Alper HS, Liu L. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine. ACS Synth Biol 2018; 7:2423-2435. [PMID: 30138558 DOI: 10.1021/acssynbio.8b00196] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus subtilis is a typical industrial microorganism and is widely used in industrial biotechnology, particularly for nutraceutical production. There are many studies on the static metabolic engineering of B. subtilis, whereas there are few reports on dynamic metabolic engineering due to the lack of appropriate elements. Here, we established a dynamic reprogramming strategy for reconstructing metabolic networks in B. subtilis, using a typical nutraceutical, N-acetylglucosamine (GlcNAc), as a model product and the glmS (encoding glucosamine-6-phosphate synthase) ribozyme as an engineering element. First, a trp terminator was introduced to effectively release the glmS ribozyme feedback inhibition. Further, we engineered the native glucosamine-6-phosphate (GlcN6P) responsive glmS ribozyme switch to dynamically control the metabolic flux in B. subtilis for overproduction of GlcNAc. With GlcN6P as a ligand, the native sensor glmS ribozyme is integrated at the 5'- of phosphoglucosamine mutase and 6-phosphofructokinase genes to decrease the flux dynamically toward the peptidoglycan synthesis and glycolysis pathway, respectively. The glmS ribozyme mutant M5 ( glmS ribozyme cleavage site AG → GG) with decreased ribozyme activity is integrated at the 5'- of glucose-6-phosphate isomerase gene to increase the flux dynamically toward the GlcNAc synthesis pathway. This strategy increased the GlcNAc titer from 9.24 to 18.45 g/L, and the specific GlcNAc productivity from 0.53 to 1.21 g GlcNAc/g cell. Since GlcN6P is involved in the biosynthesis of various products, here the developed strategy for multiple target dynamic engineering of metabolic pathways can be generally used in B. subtilis and other industrial microbes for chemical production.
Collapse
Affiliation(s)
- Tengfei Niu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
41
|
Gu Y, Lv X, Liu Y, Li J, Du G, Chen J, Rodrigo LA, Liu L. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metab Eng 2018; 51:59-69. [PMID: 30343048 DOI: 10.1016/j.ymben.2018.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 01/06/2023]
Abstract
One of the primary goals of microbial metabolic engineering is to achieve high titer, yield and productivity (TYP) of engineered strains. This TYP index requires optimized carbon flux toward desired molecule with minimal by-product formation. De novo redesign of central carbon and redox metabolism holds great promise to alleviate pathway bottleneck and improve carbon and energy utilization efficiency. The engineered strain, with the overexpression or deletion of multiple genes, typically can't meet the TYP index, due to overflow of central carbon and redox metabolism that compromise the final yield, despite a high titer or productivity might be achieved. To solve this challenge, we reprogramed the central carbon and redox metabolism of Bacillus subtilis and achieved high TYP production of N-acetylglucosamine. Specifically, a "push-pull-promote" approach efficiently reduced the overflown acetyl-CoA flux and eliminated byproduct formation. Four synthetic NAD(P)-independent metabolic routes were introduced to rewire the redox metabolism to minimize energy loss. Implementation of these genetic strategies led us to obtain a B. subtilis strain with superior TYP index. GlcNAc titer in shake flask was increased from 6.6 g L-1 to 24.5 g L-1, the yield was improved from 0.115 to 0.468 g GlcNAc g-1 glucose, and the productivity was increased from 0.274 to 0.437 g L-1 h-1. These titer and yield are the highest levels ever reported and, the yield reached 98% of the theoretical pathway yield (0.478 g g-1 glucose). The synthetic redesign of carbon metabolism and redox metabolism represent a novel and general metabolic engineering strategy to improve the performance of microbial cell factories.
Collapse
Affiliation(s)
- Yang Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | | | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
42
|
Badri A, Williams A, Linhardt RJ, Koffas MAG. The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. Curr Opin Biotechnol 2018; 53:85-92. [DOI: 10.1016/j.copbio.2017.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
|
43
|
Metabolic engineering of capsular polysaccharides. Emerg Top Life Sci 2018; 2:337-348. [DOI: 10.1042/etls20180003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/11/2018] [Accepted: 06/27/2018] [Indexed: 11/17/2022]
Abstract
With rising concerns about sustainable practices, environmental complications, and declining resources, metabolic engineers are transforming microorganisms into cellular factories for producing capsular polysaccharides (CPSs). This review provides an overview of strategies employed for the metabolic engineering of heparosan, chondroitin, hyaluronan, and polysialic acid — four CPSs that are of interest for manufacturing a variety of biomedical applications. Methods described include the exploitation of wild-type and engineered native CPS producers, as well as genetically engineered heterologous hosts developed through the improvement of naturally existing pathways or newly (de novo) designed ones. The implementation of methodologies like gene knockout, promoter engineering, and gene expression level control has resulted in multiple-fold improvements in CPS fermentation titers compared with wild-type strains, and substantial increases in productivity, reaching as high as 100% in some cases. Optimization of these biotechnological processes can permit the adoption of industrially competitive engineered microorganisms to replace traditional sources that are generally toxic, unreliable, and inconsistent in product quality.
Collapse
|
44
|
Wu Y, Chen T, Liu Y, Lv X, Li J, Du G, Ledesma-Amaro R, Liu L. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metab Eng 2018; 49:232-241. [DOI: 10.1016/j.ymben.2018.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
|
45
|
Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol Bioeng 2018; 115:2541-2553. [PMID: 29940069 DOI: 10.1002/bit.26774] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 11/07/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is an important multifunctional biopolymer with various applications, for which adenosine triphosphate (ATP) supply plays a vital role in biosynthesis. In this study, the enhancement of γ-PGA production was attempted through various approaches of improving ATP supply in the engineered strains of Bacillus licheniformis. The first approach is to engineer respiration chain branches of B. licheniformis, elimination of cytochrome bd oxidase branch reduced the maintenance coefficient, leading to a 19.27% increase of γ-PGA yield. The second approach is to introduce Vitreoscilla hemoglobin (VHB) into recombinant B. licheniformis, led to a 13.32% increase of γ-PGA yield. In the third approach, the genes purB and adK in ATP-biosynthetic pathway were respectively overexpressed, with the AdK overexpressed strain increased γ-PGA yield by 14.69%. Our study also confirmed that the respiratory nitrate reductase, NarGHIJ, is responsible for the conversion of nitrate to nitrite, and assimilatory nitrate reductase NasBC is for conversion of nitrite to ammonia. Both NarGHIJ and NasBC were positively regulated by the two-component system ResD-ResE, and overexpression of NarG, NasC, and ResD also improved the ATP supply and the consequent γ-PGA yield. Based on the above individual methods, a method of combining the deletion of cydBC gene and overexpression of genes vgB, adK, and resD were used to enhance ATP content of the cells to 3.53 μmol/g of DCW, the mutant WX-BCVAR with this enhancement produced 43.81 g/L of γ-PGA, a 38.64% improvement compared to wild-type strain WX-02. Collectively, our results demonstrate that improving ATP content in B. licheniformis is an efficient strategy to improve γ-PGA production.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Penghui He
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shiyi Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Fei Mo
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, School of food and biological engineering, Hubei University of Technology, Wuhan, China
| | - Qin Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Christopher T Nomura
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
- Department of Chemistry, The State University of New York, College of Environmental Science and Forestry (SUNY ESF), Iowa State University, Syracuse, New York
| | - Zhiyou Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
46
|
Zhang X, Liu Y, Liu L, Wang M, Li J, Du G, Chen J. Modular pathway engineering of key carbon‐precursor supply‐pathways for improved
N
‐acetylneuraminic acid production in
Bacillus subtilis. Biotechnol Bioeng 2018; 115:2217-2231. [DOI: 10.1002/bit.26743] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/23/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaolong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan UniversityWuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan UniversityWuxi China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan UniversityWuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan UniversityWuxi China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan UniversityWuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan UniversityWuxi China
| | - Miao Wang
- School of Food Science and Technology, Jiangnan UniversityWuxi China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan UniversityWuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan UniversityWuxi China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan UniversityWuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan UniversityWuxi China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan UniversityWuxi China
- State Key Laboratory of Food Science and Technology, Jiangnan UniversityWuxi China
| |
Collapse
|
47
|
Anderson LA, Islam MA, Prather KLJ. Synthetic biology strategies for improving microbial synthesis of "green" biopolymers. J Biol Chem 2018; 293:5053-5061. [PMID: 29339554 PMCID: PMC5892568 DOI: 10.1074/jbc.tm117.000368] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polysaccharide-based biopolymers have many material properties relevant to industrial and medical uses, including as drug delivery agents, wound-healing adhesives, and food additives and stabilizers. Traditionally, polysaccharides are obtained from natural sources. Microbial synthesis offers an attractive alternative for sustainable production of tailored biopolymers. Here, we review synthetic biology strategies for select "green" biopolymers: cellulose, alginate, chitin, chitosan, and hyaluronan. Microbial production pathways, opportunities for pathway yield improvements, and advances in microbial engineering of biopolymers in various hosts are discussed. Taken together, microbial engineering has expanded the repertoire of green biological chemistry by increasing the diversity of biobased materials.
Collapse
Affiliation(s)
- Lisa A Anderson
- From the Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - M Ahsanul Islam
- From the Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Kristala L J Prather
- From the Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
48
|
Ma W, Liu Y, Shin HD, Li J, Chen J, Du G, Liu L. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production. BIORESOURCE TECHNOLOGY 2018; 250:642-649. [PMID: 29220808 DOI: 10.1016/j.biortech.2017.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 05/09/2023]
Abstract
Bacillus subtilis is widely used as cell factories for the production of important industrial biochemicals. Although many studies have demonstrated the effects of organic acidic byproducts, such as acetate, on microbial fermentation, little is known about the effects of blocking the neutral byproduct overflow, such as acetoin, on bioproduction. In this study, we focused on the influences of modulating overflow metabolism on the production of N-acetyl-d-glucosamine (GlcNAc) in engineered B. subtilis. We found that acetoin overflow competes with GlcNAc production, and blocking acetoin overflow increased GlcNAc titer and yield by 1.38- and 1.39-fold, reaching 48.9 g/L and 0.32 g GlcNAc/g glucose, respectively. Further blocking acetate overflow inhibited cell growth and GlcNAc production may be induced by inhibiting glucose uptake. Taken together, our results show that blocking acetoin overflow is a promising strategy for enhancing GlcNAc production. The strategies developed in this work may be useful for engineering strains of B. subtilis for producing other important biochemicals.
Collapse
Affiliation(s)
- Wenlong Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
49
|
Cai D, Hu S, Chen Y, Liu L, Yang S, Ma X, Chen S. Enhanced Production of Poly-γ-glutamic acid by Overexpression of the Global Anaerobic Regulator Fnr in Bacillus licheniformis WX-02. Appl Biochem Biotechnol 2018; 185:958-970. [PMID: 29388009 DOI: 10.1007/s12010-018-2693-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Poly-γ-glutamic acid is a multi-functional biopolymer with various applications. ATP supply plays an important role in poly-γ-glutamic acid (γ-PGA) synthesis. Global anaerobic regulator Fnr plays a key role in anaerobic adaptation and nitrate respiration, which might affect ATP generation during γ-PGA synthesis. In this study, we have improved γ-PGA production by overexpression of Fnr in Bacillus licheniformis WX-02. First, the gene fnr was knocked out in WX-02, and the γ-PGA yields have no significant differences between WX-02 and the fnr-deficient strain WXΔfnr in the medium without nitrate (BFC medium). However, the γ-PGA yield of 8.95 g/L, which was produced by WXΔfnr in the medium with nitrate addition (BFCN medium), decreased by 74% compared to WX-02 (34.53 g/L). Then, the fnr complementation strain WXΔfnr/pHY-fnr restored the γ-PGA synthesis capability, and γ-PGA yield was increased by 13% in the Fnr overexpression strain WX/pHY-fnr (39.96 g/L) in BFCN medium, compared to WX/pHY300 (35.41 g/L). Furthermore, the transcriptional levels of narK, narG, and hmp were increased by 5.41-, 4.93-, and 3.93-fold in WX/pHY-fnr, respectively, which led to the increases of nitrate consumption rate and ATP supply for γ-PGA synthesis. Collectively, Fnr affects γ-PGA synthesis mainly through manipulating the expression level of nitrate metabolism, and this study provides a novel strategy to improve γ-PGA production by overexpression of Fnr.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shiying Hu
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Li Liu
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shihui Yang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
50
|
Chae TU, Choi SY, Kim JW, Ko YS, Lee SY. Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 2017; 47:67-82. [DOI: 10.1016/j.copbio.2017.06.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
|