1
|
Zhong Y, Shang C, Tao H, Hou J, Cui Z, Qi Q. Boosting succinic acid production of Yarrowia lipolytica at low pH through enhancing product tolerance and glucose metabolism. Microb Cell Fact 2024; 23:291. [PMID: 39443950 DOI: 10.1186/s12934-024-02565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Succinic acid (SA) is an important bio-based C4 platform chemical with versatile applications, including the production of 1,4-butanediol, tetrahydrofuran, and γ-butyrolactone. The non-conventional yeast Yarrowia lipolytica has garnered substantial interest as a robust cell factory for SA production at low pH. However, the high concentrations of SA, especially under acidic conditions, can impose significant stress on microbial cells, leading to reduced glucose metabolism viability and compromised production performance. Therefore, it is important to develop Y. lipolytica strains with enhanced SA tolerance for industrial-scale SA production. RESULTS An SA-tolerant Y. lipolytica strain E501 with improved SA production was obtained through adaptive laboratory evolution (ALE). In a 5-L bioreactor, the evolved strain E501 produced 89.62 g/L SA, representing a 7.2% increase over the starting strain Hi-SA2. Genome resequencing and transcriptome analysis identified a mutation in the 26S proteasome regulatory subunit Rpn1, as well as genes involved in transmembrane transport, which may be associated with enhanced SA tolerance. By further fine-tuning the glycolytic pathway flux, the highest SA titer of 112.54 g/L to date at low pH was achieved, with a yield of 0.67 g/g glucose and a productivity of 2.08 g/L/h. CONCLUSION This study provided a robust engineered Y. lipolytica strain capable of efficiently producing SA at low pH, thereby reducing the cost of industrial SA fermentation.
Collapse
Affiliation(s)
- Yutao Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Changyu Shang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Huilin Tao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China.
| |
Collapse
|
2
|
Lee JM, Kim HB, Wang JJ, Zhou B, Seo DC, Park JH. Conversion of acidified lignin containing sulfur discharged from a biorefinery process into neutralized biochar: Characterization and metal adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176438. [PMID: 39307361 DOI: 10.1016/j.scitotenv.2024.176438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The objectives of this study were to produce biochars using sulfur-rich acidified lignin discharged from a biorefinery process and to evaluate their physicochemical properties and Pb adsorption capacity. As the pyrolysis temperature increased, the lignin acidified by the desulfurization process was converted to neutralized biochar (LBC), which exhibited high carbon content and stability. The carbon content of biochar manufactured at a pyrolysis temperature of 600 °C or higher was over 90 % and showed no significant difference, and their surface structures were found to be different, as revealed through XRD and FTIR analyses. The adsorption capacity of Pb by LBC increased with increasing pyrolysis temperature, and their adsorption capacity was well described by the pseudo-second-order model and the Langmuir isotherm adsorption model. In particular, the internal diffusion effect on the adsorption capacity of Pb was greater for LBC900 than for LBC600. In complex heavy metal solutions, LBC selectively exhibited high affinity for Pb, while the adsorption capacity of other metals was significantly reduced. The adsorption mechanism of Pb by LBC was verified through various analytical methods, and these results demonstrated that the adsorption of Pb by LBC was influenced by functional groups existing on the surface and inside of LBC and by some cation exchange.
Collapse
Affiliation(s)
- Jeong-Min Lee
- Department of Life Resources Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Hae-Been Kim
- Department of Life Resources Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Jim J Wang
- School of Plant, Environment & Soil Sciences, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA
| | - Baoyue Zhou
- School of Plant, Environment & Soil Sciences, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA
| | - Dong-Cheol Seo
- Department of Applied Life Chemistry (Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, South Korea.
| | - Jong-Hwan Park
- Department of Life Resources Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea.
| |
Collapse
|
3
|
Kim JY, Lee JA, Ahn JH, Lee SY. High-level succinic acid production by overexpressing a magnesium transporter in Mannheimia succiniciproducens. Proc Natl Acad Sci U S A 2024; 121:e2407455121. [PMID: 39240971 PMCID: PMC11406231 DOI: 10.1073/pnas.2407455121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/08/2024] [Indexed: 09/08/2024] Open
Abstract
Succinic acid (SA), a dicarboxylic acid of industrial importance, can be efficiently produced by metabolically engineered Mannheimia succiniciproducens. Although the importance of magnesium (Mg2+) ion on SA production has been evident from our previous studies, the role of Mg2+ ion remains largely unexplored. In this study, we investigated the impact of Mg2+ ion on SA production and developed a hyper-SA producing strain of M. succiniciproducens by reconstructing the Mg2+ ion transport system. To achieve this, optimal alkaline neutralizer comprising Mg2+ ion was developed and the physiological effect of Mg2+ ion was analyzed. Subsequently, the Mg2+ ion transport system was reconstructed by introducing an efficient Mg2+ ion transporter from Salmonella enterica. A high-inoculum fed-batch fermentation of the final engineered strain produced 152.23 ± 0.99 g/L of SA, with a maximum productivity of 39.64 ± 0.69 g/L/h. These findings highlight the importance of Mg2+ ions and transportation system optimization in succinic acid production by M. succiniciproducens.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jong An Lee
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- BioInformatics Research Center and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jung Ho Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- BioInformatics Research Center and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Xiao K, Fang Y, Wang Z, Ni N, Liu Z, Kim S, An Z, Lyu Z, Xu Y, Yang X. Bio-Sourced, High-Performance Carbon Fiber Reinforced Itaconic Acid-Based Epoxy Composites with High Hygrothermal Stability and Durability. Polymers (Basel) 2024; 16:1649. [PMID: 38931999 PMCID: PMC11207418 DOI: 10.3390/polym16121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Thermosetting polymers and composites are a class of high-performance materials with significant industrial applications. However, the widespread use of thermosets and their composites generates large quantities of waste and leads to serious economic and environmental problems, there is a critical need in the elaboration of sustainable composite materials. Here, we propose a method to prepare sustainable carbon fiber reinforced composites with different degrees of greenness by blending environmentally friendly EIA with DGEBA in different ratios, and the properties compared with a well-known commercial petroleum-based epoxy resin. The prepared carbon fiber reinforced polymer (CFRP) composites with different degrees of greenness had excellent dimensional stability under extreme hygrothermal aging. After aging, the green CFRP composite T700/EIA-30 has higher strength and performance retention than that of petroleum-based CFRP composites. The higher hygrothermal stability and durability of EIA-based epoxy resins as compared with BPA-based epoxy resins demonstrated significant evidence to design and develop a novel bio-based epoxy resin with high performance to substitute the petroleum-based epoxy resin.
Collapse
Affiliation(s)
- Kaixuan Xiao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Yuan Fang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Zhaodi Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Nannan Ni
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Ziqian Liu
- Yangtze River Delta Carbon Fiber and Composites Innovation Center, Changzhou 213000, China;
| | - Soochan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (Z.A.)
| | - Zongfu An
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (Z.A.)
| | - Zhiyi Lyu
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea;
| | - Yahong Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| | - Xin Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (K.X.); (Y.F.); (Z.W.); (N.N.)
| |
Collapse
|
5
|
Lee YG, Kang NK, Kim C, Tran VG, Cao M, Yoshikuni Y, Zhao H, Jin YS. Self-Buffering system for Cost-Effective production of lactic acid from glucose and xylose using Acid-Tolerant Issatchenkia orientalis. BIORESOURCE TECHNOLOGY 2024; 399:130641. [PMID: 38552861 DOI: 10.1016/j.biortech.2024.130641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
This study presents a cost-effective strategy for producing organic acids from glucose and xylose using the acid-tolerant yeast, Issatchenkia orientalis. I. orientalis was engineered to produce lactic acid from xylose, and the resulting strain, SD108XL, successfully converted sorghum hydrolysates into lactic acid. In order to enable low-pH fermentation, a self-buffering strategy, where the lactic acid generated by the SD108XL strain during fermentation served as a buffer, was developed. As a result, the SD108 strain produced 67 g/L of lactic acid from 73 g/L of glucose and 40 g/L of xylose, simulating a sugar composition of sorghum biomass hydrolysates. Moreover, techno-economic analysis underscored the efficiency of the self-buffering strategy in streamlining the downstream process, thereby reducing production costs. These results demonstrate the potential of I. orientalis as a platform strain for the cost-effective production of organic acids from cellulosic hydrolysates.
Collapse
Affiliation(s)
- Ye-Gi Lee
- Department of Bio and Fermentation Convergence Technology and Center for Bioconvergence, Kookmin University, Seoul 02707, Korea; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nam Kyu Kang
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Chanwoo Kim
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vinh G Tran
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mingfeng Cao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Parmaki S, Vasquez MI, Patsalou M, Gomes RFA, Simeonov SP, Afonso CAM, Koutinas M. Ecotoxicological assessment of biomass-derived furan platform chemicals using aquatic and terrestrial bioassays. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:686-699. [PMID: 38372577 DOI: 10.1039/d3em00552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
An environmental toxicological assessment of fourteen furanic compounds serving as valuable building blocks produced from biomass was performed. The molecules selected included well studied compounds serving as control examples to compare the toxicity exerted against a variety of highly novel furans which have been additionally targeted as potential or current alternatives to biofuels, building blocks and polymer monomers. The impact of the furan platform chemicals targeted on widely applied ecotoxicity model organisms was determined employing the marine bioluminescent bacterium Aliivibrio fischeri and the freshwater green microalgae Raphidocelis subcapitata, while their ecotoxicity effects on plants were assessed using dicotyledonous plants Sinapis alba and Lepidium sativum. Regarding the specific endpoints evaluated, the furans tested were slightly toxic or practically nontoxic for A. fischeri following 5 and 15 min of exposure. Moreover, most of the building blocks did not affect the growth of L. sativum and S. alba at 150 mg L-1 for 72 h of exposure. Specifically, 9 and 11 out of the 14 furan platform chemicals tested were non-effective or stimulant for L. sativum and S. alba respectively. Given that furans comprise common inhibitors in biorefinery fermentations, the growth inhibition of the specific building blocks was studied using the industrial workhorse yeast Saccharomyces cerevisiae, demonstrating insignificant inhibition on eukaryotic cell growth following 6, 12 and 16 h of exposure at a concentration of 500 mg L-1. The study provides baseline information to unravel the ecotoxic effects and to confirm the green aspects of a range of versatile biobased platform molecules.
Collapse
Affiliation(s)
- Stella Parmaki
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus.
| | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus.
- European University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| | - Maria Patsalou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus.
| | - Rafael F A Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Svilen P Simeonov
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113, Sofia, Bulgaria
| | - Carlos A M Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Michalis Koutinas
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus.
| |
Collapse
|
7
|
Jiang J, Luo Y, Fei P, Zhu Z, Peng J, Lu J, Zhu D, Wu H. Effect of adaptive laboratory evolution of engineered Escherichia coli in acetate on the biosynthesis of succinic acid from glucose in two-stage cultivation. BIORESOUR BIOPROCESS 2024; 11:34. [PMID: 38647614 PMCID: PMC10997558 DOI: 10.1186/s40643-024-00749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Escherichia coli MLB (MG1655 ΔpflB ΔldhA), which can hardly grow on glucose with little succinate accumulation under anaerobic conditions. Two-stage fermentation is a fermentation in which the first stage is used for cell growth and the second stage is used for product production. The ability of glucose consumption and succinate production of MLB under anaerobic conditions can be improved significantly by using acetate as the solo carbon source under aerobic condition during the two-stage fermentation. Then, the adaptive laboratory evolution (ALE) of growing on acetate was applied here. We assumed that the activities of succinate production related enzymes might be further improved in this study. E. coli MLB46-05 evolved from MLB and it had an improved growth phenotype on acetate. Interestingly, in MLB46-05, the yield and tolerance of succinic acid in the anaerobic condition of two-stage fermentation were improved significantly. According to transcriptome analysis, upregulation of the glyoxylate cycle and the activity of stress regulatory factors are the possible reasons for the elevated yield. And the increased tolerance to acetate made it more tolerant to high concentrations of glucose and succinate. Finally, strain MLB46-05 produced 111 g/L of succinic acid with a product yield of 0.74 g/g glucose. SYNOPSIS.
Collapse
Affiliation(s)
- Jiaping Jiang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhengtong Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jing Peng
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Juefeng Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Du Zhu
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
8
|
Phan ANT, Prigolovkin L, Blank LM. Unlocking the potentials of Ustilago trichophora for up-cycling polyurethane-derived monomer 1,4-butanediol. Microb Biotechnol 2024; 17:e14384. [PMID: 38454531 PMCID: PMC10920939 DOI: 10.1111/1751-7915.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 03/09/2024] Open
Abstract
Plastic usage by microbes as a carbon source is a promising strategy to increase the recycling quota. 1,4-butanediol (BDO) is a common monomer derived from polyesters and polyurethanes. In this study, Ustilago trichophora was found to be an efficient cell-factory to valorize BDO. To investigate product formation by U. trichophora, we refined the traditional ion exclusion liquid chromatography method by examining eluent, eluent concentrations, oven temperatures, and organic modifiers to make the chromatography compatible with mass spectrometry. An LC-UV/RI-MS2 method is presented here to identify and quantify extracellular metabolites in the cell cultures. With this method, we successfully identified that U. trichophora secreted malic acid, succinic acid, erythritol, and mannitol into the culture medium. Adaptive laboratory evolution followed by medium optimization significantly improved U. trichophora growth on BDO and especially malic acid production. Overall, the carbon yield on the BDO substrate was approximately 33% malic acid. This study marks the first report of a Ustilaginaceae fungus capable of converting BDO into versatile chemical building blocks. Since U. trichophora is not genetically engineered, it is a promising microbial host to produce malic acid from BDO, thereby contributing to the development of the envisaged sustainable bioeconomy.
Collapse
Affiliation(s)
- An N. T. Phan
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityAachenGermany
| | - Lisa Prigolovkin
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityAachenGermany
| |
Collapse
|
9
|
Das S, T C, Selvasembian R, Prabhu AA. Mixed food waste valorization using a thermostable glucoamylase enzyme produced by a newly isolated filamentous fungus: A sustainable biorefinery approach. CHEMOSPHERE 2024; 352:141480. [PMID: 38401866 DOI: 10.1016/j.chemosphere.2024.141480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Food waste is a lucrative source of complex nutrients, which can be transformed into a multitude of bioproducts by the aid of microbial cell factories. The current study emphasizes isolating Glucoamylase enzyme (GA) producing strains that can effectively break down mixed food waste (MW), which serves as a substrate for biomanufacturing. The screening procedure relied heavily on the growth of isolated fungi on starch agar media, to specifically identify the microbes with the highest starch hydrolysis potential. A strain displayed the highest GA activity of 2.9 ± 0.14 U/ml which was selected and identified as Aspergillus fumigatus via molecular methods of identification. Exposure of the A. fumigatus with 200 mM Ethyl methanesulphonate (EMS) led to a 23.79% increase compared to the wild-type GA. The growth conditions like cultivation temperature or the number of spores in the inoculum were investigated. Further, maximum GA activity was exhibited at pH 5, 55 °C, and at 5 mM Ca2+ concentration. The GA showed thermostability, retaining activity even after long periods of exposure to temperatures as high as 95 °C. The improvement of hydrolysis of MW was achieved by Taguchi design where a maximum yield of 0.57 g g-1 glucose was obtained in the hydrolysate. This study puts forth the possibility that mixed food waste, despite containing spices and other microbial growth-inhibitory substances, can be efficiently hydrolyzed to release glucose units, by robust fungal cell factories. The glucose released can then be utilized as a carbon source for the production of value-added products.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chandukishore T
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Ashish A Prabhu
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
10
|
Kacanski M, Stelzer F, Walsh M, Kenny S, O'Connor K, Neureiter M. Pilot-scale production of mcl-PHA by Pseudomonas citronellolis using acetic acid as the sole carbon source. N Biotechnol 2023; 78:68-75. [PMID: 37827242 DOI: 10.1016/j.nbt.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHA) are biobased materials with promising properties for environmentally friendly applications. Due to high production costs, which are related to the cost of the carbon sources combined with conversion insufficiencies, currently only small quantities are produced. This results in a lack of reliable data on properties and application potential for the variety of polymers from different types of production strains. This study investigated the potential for the production of mcl-PHA from volatile fatty acids (VFA) at a larger scale, given their potential as low-cost and sustainable raw material within a carboxylate-platform based biorefinery. Pseudomonas citronellolis (DSMZ 50332) was chosen as the production strain, and acetic acid was selected as the main carbon and energy source. Nitrogen was limited to trigger polymer production, and a fed-batch process using a pH-stat feeding regime with concentrated acid was established. We report successful production, extraction, and characterization of mcl PHA, obtaining a total of 1.76 kg from two 500-litre scale fermentations. The produced polymer was identified as a copolymer of 3-hydroxydecanoate (60.7%), 3-hydroxyoctanoate (37.3%), and 3-hydroxyhexanoate (2.0%) with a weight average molecular weight (Mw) of 536 kDa. NMR analysis indicates the presence of unsaturated side chains, which may offer additional possibilities for modification. The results confirm that there is a potential to produce significant amounts of mcl-PHA with interesting rubber-like properties from waste-derived VFA.
Collapse
Affiliation(s)
- Milos Kacanski
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Tulln, Austria
| | - Franz Stelzer
- Graz University of Technology, Institute for Chemistry and Technology of Materials, Graz, Austria
| | | | | | | | - Markus Neureiter
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Tulln, Austria.
| |
Collapse
|
11
|
Cui Z, Zhong Y, Sun Z, Jiang Z, Deng J, Wang Q, Nielsen J, Hou J, Qi Q. Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica. Nat Commun 2023; 14:8480. [PMID: 38123538 PMCID: PMC10733433 DOI: 10.1038/s41467-023-44245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Succinic acid (SA) is an important C4-dicarboxylic acid. Microbial production of SA at low pH results in low purification costs and hence good overall process economics. However, redox imbalances limited SA biosynthesis from glucose via the reductive tricarboxylic acid (TCA) cycle in yeast. Here, we engineer the strictly aerobic yeast Yarrowia lipolytica for efficient SA production without pH control. Introduction of the reductive TCA cycle into the cytosol of a succinate dehydrogenase-disrupted yeast strain causes arrested cell growth. Although adaptive laboratory evolution restores cell growth, limited NADH supply restricts SA production. Reconfiguration of the reductive SA biosynthesis pathway in the mitochondria through coupling the oxidative and reductive TCA cycle for NADH regeneration results in improved SA production. In pilot-scale fermentation, the engineered strain produces 111.9 g/L SA with a yield of 0.79 g/g glucose within 62 h. This study paves the way for industrial production of biobased SA.
Collapse
Affiliation(s)
- Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, P. R. China
| | - Yutao Zhong
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, P. R. China
| | - Zhijie Sun
- Marine Biology Institute, Shantou University, 515063, Shantou, P. R. China
| | - Zhennan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, P. R. China
| | - Jingyu Deng
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, P. R. China
| | - Qian Wang
- National Glycoengineering Research Center, Shandong University, 266237, Qingdao, P. R. China
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE41296, Sweden
- BioInnovation Institute, Copenhagen N, DK2200, Denmark
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, P. R. China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, P. R. China.
| |
Collapse
|
12
|
Gao J, Yu W, Li Y, Jin M, Yao L, Zhou YJ. Engineering co-utilization of glucose and xylose for chemical overproduction from lignocellulose. Nat Chem Biol 2023; 19:1524-1531. [PMID: 37620399 DOI: 10.1038/s41589-023-01402-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Bio-refining lignocellulose could provide a sustainable supply of fuels and fine chemicals; however, the challenges associated with the co-utilization of xylose and glucose typically compromise the efficiency of lignocellulose conversion. Here we engineered the industrial yeast Ogataea polymorpha (Hansenula polymorpha) for lignocellulose biorefinery by facilitating the co-utilization of glucose and xylose to optimize the production of free fatty acids (FFAs) and 3-hydroxypropionic acid (3-HP) from lignocellulose. We rewired the central metabolism for the enhanced supply of acetyl-coenzyme A and nicotinamide adenine dinucleotide phosphate hydrogen, obtaining 30.0 g l-1 of FFAs from glucose, with productivity of up to 0.27 g l-1 h-1. Strengthening xylose uptake and catabolism promoted the synchronous utilization of glucose and xylose, which enabled the production of 38.2 g l-1 and 7.0 g l-1 FFAs from the glucose-xylose mixture and lignocellulosic hydrolysates, respectively. Finally, this efficient cell factory was metabolically transformed for 3-HP production with the highest titer of 79.6 g l-1 in fed-batch fermentation in mixed glucose and xylose.
Collapse
Affiliation(s)
- Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yunxia Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
| |
Collapse
|
13
|
Pentjuss A, Bolmanis E, Suleiko A, Didrihsone E, Suleiko A, Dubencovs K, Liepins J, Kazaks A, Vanags J. Pichia pastoris growth-coupled heme biosynthesis analysis using metabolic modelling. Sci Rep 2023; 13:15816. [PMID: 37739976 PMCID: PMC10516909 DOI: 10.1038/s41598-023-42865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023] Open
Abstract
Soy leghemoglobin is one of the most important and key ingredients in plant-based meat substitutes that can imitate the colour and flavour of the meat. To improve the high-yield production of leghemoglobin protein and its main component-heme in the yeast Pichia pastoris, glycerol and methanol cultivation conditions were studied. Additionally, in-silico metabolic modelling analysis of growth-coupled enzyme quantity, suggests metabolic gene up/down-regulation strategies for heme production. First, cultivations and metabolic modelling analysis of P. pastoris were performed on glycerol and methanol in different growth media. Glycerol cultivation uptake and production rates can be increased by 50% according to metabolic modelling results, but methanol cultivation-is near the theoretical maximum. Growth-coupled metabolic optimisation results revealed the best feasible upregulation (33 reactions) (1.47% of total reactions) and 66 downregulation/deletion (2.98% of total) reaction suggestions. Finally, we describe reaction regulation suggestions with the highest potential to increase heme production yields.
Collapse
Affiliation(s)
- Agris Pentjuss
- Microbiology and Biotechnology Institute, University of Latvia, Jelgavas Street 1, Riga, 1004, Latvia.
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia.
| | - Emils Bolmanis
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1 K-1, Riga, 1067, Latvia
| | - Anastasija Suleiko
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Elina Didrihsone
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Arturs Suleiko
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Konstantins Dubencovs
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Janis Liepins
- Microbiology and Biotechnology Institute, University of Latvia, Jelgavas Street 1, Riga, 1004, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1 K-1, Riga, 1067, Latvia
| | - Juris Vanags
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| |
Collapse
|
14
|
Cho EJ, Lee YG, Song Y, Kim HY, Nguyen DT, Bae HJ. Converting textile waste into value-added chemicals: An integrated bio-refinery process. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100238. [PMID: 36785801 PMCID: PMC9918418 DOI: 10.1016/j.ese.2023.100238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
The rate of textile waste generation worldwide has increased dramatically due to a rise in clothing consumption and production. Here, conversion of cotton-based, colored cotton-based, and blended cotton-polyethylene terephthalate (PET) textile waste materials into value-added chemicals (bioethanol, sorbitol, lactic acid, terephthalic acid (TPA), and ethylene glycol (EG)) via enzymatic hydrolysis and fermentation was investigated. In order to enhance the efficiency of enzymatic saccharification, effective pretreatment methods for each type of textile waste were developed, respectively. A high glucose yield of 99.1% was obtained from white cotton-based textile waste after NaOH pretreatment. Furthermore, the digestibility of the cellulose in colored cotton-based textile wastes was increased 1.38-1.75 times because of the removal of dye materials by HPAC-NaOH pretreatment. The blended cotton-PET samples showed good hydrolysis efficiency following PET removal via NaOH-ethanol pretreatment, with a glucose yield of 92.49%. The sugar content produced via enzymatic hydrolysis was then converted into key platform chemicals (bioethanol, sorbitol, and lactic acid) via fermentation or hydrogenation. The maximum ethanol yield was achieved with the white T-shirt sample (537 mL/kg substrate), which was 3.2, 2.1, and 2.6 times higher than those obtained with rice straw, pine wood, and oak wood, respectively. Glucose was selectively converted into sorbitol and LA at a yield of 70% and 83.67%, respectively. TPA and EG were produced from blended cotton-PET via NaOH-ethanol pretreatment. The integrated biorefinery process proposed here demonstrates significant potential for valorization of textile waste.
Collapse
Affiliation(s)
- Eun Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Yoon Gyo Lee
- Bio-Energy Research Center, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Younho Song
- Bio-Energy Research Center, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Ha Yeon Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | | | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju, 500-757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Republic of Korea
| |
Collapse
|
15
|
Grausa K, Siddiqui SA, Lameyer N, Wiesotzki K, Smetana S, Pentjuss A. Metabolic Modeling of Hermetia illucens Larvae Resource Allocation for High-Value Fatty Acid Production. Metabolites 2023; 13:724. [PMID: 37367882 DOI: 10.3390/metabo13060724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
All plant and animal kingdom organisms use highly connected biochemical networks to facilitate sustaining, proliferation, and growth functions. While the biochemical network details are well known, the understanding of the intense regulation principles is still limited. We chose to investigate the Hermetia illucens fly at the larval stage because this stage is a crucial period for the successful accumulation and allocation of resources for the subsequent organism's developmental stages. We combined iterative wet lab experiments and innovative metabolic modeling design approaches to simulate and explain the H. illucens larval stage resource allocation processes and biotechnology potential. We performed time-based growth and high-value chemical compound accumulation wet lab chemical analysis experiments on larvae and the Gainesville diet composition. We built and validated the first H. illucens medium-size, stoichiometric metabolic model to predict the effects of diet-based alterations on fatty acid allocation potential. Using optimization methods such as flux balance and flux variability analysis on the novel insect metabolic model, we predicted that doubled essential amino acid consumption increased the growth rate by 32%, but pure glucose consumption had no positive impact on growth. In the case of doubled pure valine consumption, the model predicted a 2% higher growth rate. In this study, we describe a new framework for researching the impact of dietary alterations on the metabolism of multi-cellular organisms at different developmental stages for improved, sustainable, and directed high-value chemicals.
Collapse
Affiliation(s)
- Kristina Grausa
- Department of Computer Systems, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
- Institute of Microbiology and Biotechnology, University of Latvia, LV-1050 Riga, Latvia
| | - Shahida A Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, D-94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), 49610 Quakenbrück, Germany
| | - Norbert Lameyer
- German Institute of Food Technologies (DIL e.V.), 49610 Quakenbrück, Germany
| | - Karin Wiesotzki
- German Institute of Food Technologies (DIL e.V.), 49610 Quakenbrück, Germany
| | - Sergiy Smetana
- German Institute of Food Technologies (DIL e.V.), 49610 Quakenbrück, Germany
| | - Agris Pentjuss
- Department of Computer Systems, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
- Institute of Microbiology and Biotechnology, University of Latvia, LV-1050 Riga, Latvia
| |
Collapse
|
16
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
17
|
Yu W, Gao J, Yao L, Zhou YJ. Bioconversion of methanol to 3-hydroxypropionate by engineering Ogataea polymorpha. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
18
|
Lignocellulosic Biorefinery Technologies: A Perception into Recent Advances in Biomass Fractionation, Biorefineries, Economic Hurdles and Market Outlook. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Lignocellulosic biomasses (LCB) are sustainable and abundantly available feedstocks for the production of biofuel and biochemicals via suitable bioconversion processing. The main aim of this review is to focus on strategies needed for the progression of viable lignocellulosic biomass-based biorefineries (integrated approaches) to generate biofuels and biochemicals. Processing biomass in a sustainable manner is a major challenge that demands the accomplishment of basic requirements relating to cost effectiveness and environmental sustainability. The challenges associated with biomass availability and the bioconversion process have been explained in detail in this review. Limitations associated with biomass structural composition can obstruct the feasibility of biofuel production, especially in mono-process approaches. In such cases, biorefinery approaches and integrated systems certainly lead to improved biofuel conversion. This review paper provides a summary of mono and integrated approaches, their limitations and advantages in LCB bioconversion to biofuel and biochemicals.
Collapse
|
19
|
Daboussi F, Lindley ND. Challenges to Ensure a Better Translation of Metabolic Engineering for Industrial Applications. Methods Mol Biol 2023; 2553:1-20. [PMID: 36227536 DOI: 10.1007/978-1-0716-2617-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic engineering has evolved towards creating cell factories with increasingly complex pathways as economic criteria push biotechnology to higher value products to provide a sustainable source of speciality chemicals. Optimization of such pathways often requires high combinatory exploration of best pathway balance, and this has led to increasing use of high-throughput automated strain construction platforms or novel optimization techniques. In addition, the low catalytic efficiency of such pathways has shifted emphasis from gene expression strategies towards novel protein engineering to increase specific activity of the enzymes involved so as to limit the metabolic burden associated with excessively high pressure on ribosomal machinery when using massive overexpression systems. Metabolic burden is now generally recognized as a major hurdle to be overcome with consequences on genetic stability but also on the intensified performance needed industrially to attain the economic targets for successful product launch. Increasing awareness of the need to integrate novel genetic information into specific sites within the genome which not only enhance genetic stability (safe harbors) but also enable maximum expression profiles has led to genome-wide assessment of best integration sites, and bioinformatics will facilitate the identification of most probable landing pads within the genome.To facilitate the transfer of novel biotechnological potential to industrial-scale production, more attention, however, has to be paid to engineering metabolic fitness adapted to the specific stress conditions inherent to large-scale fermentation and the inevitable heterogeneity that will occur due to mass transfer limitations and the resulting deviation away from ideal conditions as seen in laboratory-scale validation of the engineered cells. To ensure smooth and rapid transfer of novel cell lines to industry with an accelerated passage through scale-up, better coordination is required form the onset between the biochemical engineers involved in process technology and the genetic engineers building the new strain so as to have an overall strategy able to maximize innovation at all levels. This should be one of our key objectives when building fermentation-friendly chassis organisms.
Collapse
Affiliation(s)
- Fayza Daboussi
- Toulouse White Biotechnology, Toulouse cedex 4, France
- Toulouse Biotechnology Institute, Toulouse cedex 4, France
| | - Nic D Lindley
- Toulouse White Biotechnology, Toulouse cedex 4, France.
- Toulouse Biotechnology Institute, Toulouse cedex 4, France.
- ASTAR Singapore Institute of Food and Biotechnology Innovation (SIFBI), Singapore, Singapore.
| |
Collapse
|
20
|
Matsumoto T, Higuma K, Yamada R, Ogino H. Mevalonate production by Electro-fermentation in Escherichia coli via Mtr-based electron transfer system. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Kumar N, Kar S, Shukla P. Role of regulatory pathways and multi-omics approaches for carbon capture and mitigation in cyanobacteria. BIORESOURCE TECHNOLOGY 2022; 366:128104. [PMID: 36257524 DOI: 10.1016/j.biortech.2022.128104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria are known for their metabolic potential and carbon capture and sequestration capabilities. These cyanobacteria are not only an effective source for carbon minimization and resource mobilization into value-added products for biotechnological gains. The present review focuses on the detailed description of carbon capture mechanisms exerted by the various cyanobacterial strains, the role of important regulatory pathways, and their subsequent genes responsible for such mechanisms. Moreover, this review will also describe effectual mechanisms of central carbon metabolism like isoprene synthesis, ethylene production, MEP pathway, and the role of Glyoxylate shunt in the carbon sequestration mechanisms. This review also describes some interesting facets of using carbon assimilation mechanisms for valuable bio-products. The role of regulatory pathways and multi-omics approaches in cyanobacteria will not only be crucial towards improving carbon utilization but also will give new insights into utilizing cyanobacterial bioresource for carbon neutrality.
Collapse
Affiliation(s)
- Niwas Kumar
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Navrangapura, Ahmedabad 380009, India
| | - Srabani Kar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
22
|
Cen X, Dong Y, Liu D, Chen Z. New pathways and metabolic engineering strategies for microbial synthesis of diols. Curr Opin Biotechnol 2022; 78:102845. [PMID: 36403537 DOI: 10.1016/j.copbio.2022.102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application.
Collapse
Affiliation(s)
- Xuecong Cen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Dong
- College of Arts & Sciences, University of Pennsylvania, Philadelphia 19104, USA
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Wu N, Zhang J, Chen Y, Xu Q, Song P, Li Y, Li K, Liu H. Recent advances in microbial production of L-malic acid. Appl Microbiol Biotechnol 2022; 106:7973-7992. [PMID: 36370160 DOI: 10.1007/s00253-022-12260-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2022]
Abstract
Over the last few decades, increasing concerns regarding fossil fuel depletion and excessive CO2 emissions have led to extensive fundamental studies and industrial trials regarding microbial chemical production. As an additive or precursor, L-malic acid has been shown to exhibit distinctive properties in the food, pharmaceutical, and daily chemical industries. L-malic acid is currently mainly fabricated through a fumarate hydratase-based biocatalytic conversion route, wherein petroleum-derived fumaric acid serves as a substrate. In this review, for the first time, we comprehensively describe the methods of malic acid strain transformation, raw material utilization, malic acid separation, etc., especially recent progress and remaining challenges for industrial applications. First, we summarize the various pathways involved in L-malic acid biosynthesis using different microorganisms. We also discuss several strain engineering strategies for improving the titer, yield, and productivity of L-malic acid. We illustrate the currently available alternatives for reducing production costs and the existing strategies for optimizing the fermentation process. Finally, we summarize the present challenges and future perspectives regarding the development of microbial L-malic acid production. KEY POINTS: • A range of wild-type, mutant, laboratory-evolved, and metabolically engineered strains which could produce L-malic acid were comprehensively described. • Alternative raw materials for reducing production costs and the existing strategies for optimizing the fermentation were sufficiently summarized. • The present challenges and future perspectives regarding the development of microbial L-malic acid production were elaboratively discussed.
Collapse
Affiliation(s)
- Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jiahui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yaru Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yingfeng Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China. .,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China.
| |
Collapse
|
24
|
Calvo-Flores FG, Martin-Martinez FJ. Biorefineries: Achievements and challenges for a bio-based economy. Front Chem 2022; 10:973417. [PMID: 36438874 PMCID: PMC9686847 DOI: 10.3389/fchem.2022.973417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/05/2022] [Indexed: 12/07/2023] Open
Abstract
Climate change, socioeconomical pressures, and new policy and legislation are driving a decarbonization process across industries, with a critical shift from a fossil-based economy toward a biomass-based one. This new paradigm implies not only a gradual phasing out of fossil fuels as a source of energy but also a move away from crude oil as a source of platform chemicals, polymers, drugs, solvents and many other critical materials, and consumer goods that are ubiquitous in our everyday life. If we are to achieve the United Nations' Sustainable Development Goals, crude oil must be substituted by renewable sources, and in this evolution, biorefineries arise as the critical alternative to traditional refineries for producing fuels, chemical building blocks, and materials out of non-edible biomass and biomass waste. State-of-the-art biorefineries already produce cost-competitive chemicals and materials, but other products remain challenging from the economic point of view, or their scaled-up production processes are still not sufficiently developed. In particular, lignin's depolymerization is a required milestone for the success of integrated biorefineries, and better catalysts and processes must be improved to prepare bio-based aromatic simple molecules. This review summarizes current challenges in biorefinery systems, while it suggests possible directions and goals for sustainable development in the years to come.
Collapse
Affiliation(s)
- Francisco G. Calvo-Flores
- Grupo de Modelizacion y Diseño Molecular, Departamento de Quimica Organica, Universidad de Granada, Granada, Spain
| | - Francisco J. Martin-Martinez
- Department of Chemistry, Swansea University, Swansea, United Kingdom
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
25
|
New biodegradable polyesters synthesized from 2,5-thiophenedicarboxylic acid with excellent gas barrier properties. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Yu W, Cao X, Gao J, Zhou YJ. Overproduction of 3-hydroxypropionate in a super yeast chassis. BIORESOURCE TECHNOLOGY 2022; 361:127690. [PMID: 35901866 DOI: 10.1016/j.biortech.2022.127690] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
3-Hydroxypropionate (3-HP) is a platform chemical for production of acrylic acid, acrylamide and biodegradable polymers. Several microbial cell factories have been constructed for production of 3-HP from malonyl-CoA by using a malonyl-CoA reductase, which however suffer from inadequate supply of precursor and cofactor. Here 3-HP biosynthesis was optimized in a super yeast chassis with sufficient supply of precursor malonyl-CoA and cofactor NADPH, which had a 3-fold higher 3-HP (1.4 g/L) than that of wild-type background. The instability of the engineered strain was observed in fed-batch fermentation due to the plasmid loss, which may be caused by the toxic intermediate malonate semialdehyde. Genome integration of MCR-C encoding C-terminal of MCR enabled stable gene expression and much higher 3-HP production of 4.4 g/L under batch fermentation and 56.5 g/L under fed-batch fermentation with a yield of 0.31 g/g glucose. This was the highest 3-HP production reported from glucose in engineered microbes.
Collapse
Affiliation(s)
- Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
27
|
Mohmad M, Agnihotri N, Kumar V. Fumaric acid: fermentative production, applications and future perspectives. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The rising prices of petroleum-based chemicals and the growing apprehension about food safety and dairy supplements have reignited interest in fermentation process to produce fumaric acid. This article reviews the main issues associated with industrial production of fumaric acid. Different approaches such as strain modulation, morphological control, selection of substrate and fermentative separation have been addressed and discussed followed by their potential towards production of fumaric acid at industrial scale is highlighted. The employment of biodegradable wastes as substrates for the microorganisms involved in fumaric acid synthesis has opened an economic and green route for production of the later on a commercial scale. Additionally, the commercial potential and technological approaches to the augmented fumaric acid derivatives have been discussed. Conclusion of the current review reveals future possibilities for microbial fumaric acid synthesis.
Collapse
Affiliation(s)
- Masrat Mohmad
- Department of Chemistry , Maharishi Markandeshwar (Deemed to be University) , Mullana , Ambala 133207 , India
| | - Nivedita Agnihotri
- Department of Chemistry , Maharishi Markandeshwar (Deemed to be University) , Mullana , Ambala 133207 , India
| | - Vikas Kumar
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana , Ambala 133207 , India
| |
Collapse
|
28
|
Extraction, Isolation, and Purification of Value-Added Chemicals from Lignocellulosic Biomass. Processes (Basel) 2022. [DOI: 10.3390/pr10091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review covers the operating conditions for extracting top value-added chemicals, such as levulinic acid, lactic acid, succinic acid, vanillic acid, 3-hydroxypropionic acid, xylitol, 2,5-furandicarboxylic acid, 5-hydroxymethyl furfural, chitosan, 2,3-butanediol, and xylo-oligosaccharides, from common lignocellulosic biomass. Operating principles of novel extraction methods, beyond pretreatments, such as Soxhlet extraction, ultrasound-assisted extraction, and enzymatic extraction, are also presented and reviewed. Post extraction, high-value biochemicals need to be isolated, which is achieved through a combination of one or more isolation and purification steps. The operating principles, as well as a review of isolation methods, such as membrane filtration and liquid–liquid extraction and purification using preparative chromatography, are also discussed.
Collapse
|
29
|
Roa DA, Garcia JJ. Hydrogenation of levulinic acid to γ-valerolactone using a homogeneous titanium catalyst at mild conditions. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
30
|
Ling C, Peabody GL, Salvachúa D, Kim YM, Kneucker CM, Calvey CH, Monninger MA, Munoz NM, Poirier BC, Ramirez KJ, St John PC, Woodworth SP, Magnuson JK, Burnum-Johnson KE, Guss AM, Johnson CW, Beckham GT. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Nat Commun 2022; 13:4925. [PMID: 35995792 PMCID: PMC9395534 DOI: 10.1038/s41467-022-32296-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L−1 muconate at 0.18 g L−1 h−1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars. Muconic acid is a platform chemical with wide industrial applicability. Here, the authors report efficient muconate production from glucose and xylose by engineered Pseudomonas putida strain using adaptive laboratory evolution, metabolic modeling, and rational strain engineering strategies.
Collapse
Affiliation(s)
- Chen Ling
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - George L Peabody
- Agile BioFoundry, Emeryville, CA, 94608, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Young-Mo Kim
- Agile BioFoundry, Emeryville, CA, 94608, USA.,Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Colin M Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Christopher H Calvey
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Michela A Monninger
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Nathalie Munoz Munoz
- Agile BioFoundry, Emeryville, CA, 94608, USA.,Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Brenton C Poirier
- Agile BioFoundry, Emeryville, CA, 94608, USA.,Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Peter C St John
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Sean P Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Jon K Magnuson
- Agile BioFoundry, Emeryville, CA, 94608, USA.,Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristin E Burnum-Johnson
- Agile BioFoundry, Emeryville, CA, 94608, USA.,Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adam M Guss
- Agile BioFoundry, Emeryville, CA, 94608, USA. .,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA. .,Agile BioFoundry, Emeryville, CA, 94608, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA. .,Agile BioFoundry, Emeryville, CA, 94608, USA.
| |
Collapse
|
31
|
Pangestu R, Kahar P, Kholida LN, Perwitasari U, Thontowi A, Fahrurrozi, Lisdiyanti P, Yopi, Ogino C, Prasetya B, Kondo A. Harnessing originally robust yeast for rapid lactic acid bioproduction without detoxification and neutralization. Sci Rep 2022; 12:13645. [PMID: 35953496 PMCID: PMC9372150 DOI: 10.1038/s41598-022-17737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Acidic and chemical inhibitor stresses undermine efficient lactic acid bioproduction from lignocellulosic feedstock. Requisite coping treatments, such as detoxification and neutralizing agent supplementation, can be eliminated if a strong microbial host is employed in the process. Here, we exploited an originally robust yeast, Saccharomyces cerevisiae BTCC3, as a production platform for lactic acid. This wild-type strain exhibited a rapid cell growth in the presence of various chemical inhibitors compared to laboratory and industrial strains, namely BY4741 and Ethanol-red. Pathway engineering was performed on the strain by introducing an exogenous LDH gene after disrupting the PDC1 and PDC5 genes. Facilitated by this engineered strain, high cell density cultivation could generate lactic acid with productivity at 4.80 and 3.68 g L−1 h−1 under semi-neutralized and non-neutralized conditions, respectively. Those values were relatively higher compared to other studies. Cultivation using real lignocellulosic hydrolysate was conducted to assess the performance of this engineered strain. Non-neutralized fermentation using non-detoxified hydrolysate from sugarcane bagasse as a medium could produce lactic acid at 1.69 g L−1 h−1, which was competitive to the results from other reports that still included detoxification and neutralization steps in their experiments. This strategy could make the overall lactic acid bioproduction process simpler, greener, and more cost-efficient.
Collapse
Affiliation(s)
- Radityo Pangestu
- Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.,National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Prihardi Kahar
- Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - Lutfi Nia Kholida
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Urip Perwitasari
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Ahmad Thontowi
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Fahrurrozi
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Puspita Lisdiyanti
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Yopi
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia.,National Standardization Agency of Indonesia (BSN), Gedung Badan Pengkajian Dan Penerapan Teknologi (BPPT), Jl. M.H. Thamrin No. 8, Jakarta, 10340, Indonesia
| | - Chiaki Ogino
- Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.
| | - Bambang Prasetya
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia.,National Standardization Agency of Indonesia (BSN), Gedung Badan Pengkajian Dan Penerapan Teknologi (BPPT), Jl. M.H. Thamrin No. 8, Jakarta, 10340, Indonesia
| | - Akihiko Kondo
- Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.,Graduate School of Science, Technology, and Innovation (STIN), Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
32
|
Zhantlessova S, Savitskaya I, Kistaubayeva A, Ignatova L, Talipova A, Pogrebnjak A, Digel I. Advanced "Green" Prebiotic Composite of Bacterial Cellulose/Pullulan Based on Synthetic Biology-Powered Microbial Coculture Strategy. Polymers (Basel) 2022; 14:3224. [PMID: 35956737 PMCID: PMC9371109 DOI: 10.3390/polym14153224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 01/29/2023] Open
Abstract
Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for "grafting" of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.
Collapse
Affiliation(s)
- Sirina Zhantlessova
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Irina Savitskaya
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Aida Kistaubayeva
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Ludmila Ignatova
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Aizhan Talipova
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Alexander Pogrebnjak
- Department of Nanoelectronics and Surface Modification, Sumy State University, Ryms’koho-Korsakova St. 2, 40000 Sumy, Ukraine
| | - Ilya Digel
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany
| |
Collapse
|
33
|
Baptista M, Domingues L. Kluyveromyces marxianus as a microbial cell factory for lignocellulosic biomass valorisation. Biotechnol Adv 2022; 60:108027. [PMID: 35952960 DOI: 10.1016/j.biotechadv.2022.108027] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
The non-conventional yeast Kluyveromyces marxianus is widely used for several biotechnological applications, mainly due to its thermotolerance, high growth rate, and ability to metabolise a wide range of sugars. These cell traits are strategic for lignocellulosic biomass valorisation and strain diversity prompts the development of robust chassis, either with improved tolerance to lignocellulosic inhibitors or ethanol. This review summarises bioethanol and value-added chemicals production by K. marxianus from different lignocellulosic biomasses. Moreover, metabolic engineering and process optimization strategies developed to expand K. marxianus potential are also compiled, as well as studies reporting cell mechanisms to cope with lignocellulosic-derived inhibitors. The main lignocellulosic-based products are bioethanol, representing 71% of the reports, and xylitol, representing 17% of the reports. K. marxianus also proved to be a good chassis for lactic acid and volatile compounds production from lignocellulosic biomass, although the literature on this matter is still scarce. The increasing advances in genome editing tools and process optimization strategies will widen the K. marxianus-based portfolio products.
Collapse
Affiliation(s)
- Marlene Baptista
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
34
|
Saha BC, Kennedy GJ, Bowman MJ, Qureshi N, Nichols NN. Itaconic acid production by Aspergillus terreus from glucose up to pilot scale and from corn stover and wheat straw hydrolysates using new manganese tolerant medium. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Wohlgemuth R, Littlechild J. Complexity reduction and opportunities in the design, integration and intensification of biocatalytic processes for metabolite synthesis. Front Bioeng Biotechnol 2022; 10:958606. [PMID: 35935499 PMCID: PMC9355135 DOI: 10.3389/fbioe.2022.958606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The biosynthesis of metabolites from available starting materials is becoming an ever important area due to the increasing demands within the life science research area. Access to metabolites is making essential contributions to analytical, diagnostic, therapeutic and different industrial applications. These molecules can be synthesized by the enzymes of biological systems under sustainable process conditions. The facile synthetic access to the metabolite and metabolite-like molecular space is of fundamental importance. The increasing knowledge within molecular biology, enzyme discovery and production together with their biochemical and structural properties offers excellent opportunities for using modular cell-free biocatalytic systems. This reduces the complexity of synthesizing metabolites using biological whole-cell approaches or by classical chemical synthesis. A systems biocatalysis approach can provide a wealth of optimized enzymes for the biosynthesis of already identified and new metabolite molecules.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
- Swiss Coordination Committee for Biotechnology, Zurich, Switzerland
| | - Jennifer Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
36
|
Marchyshyn S, Mysula Y, Kishchuk V, Slobodianiuk L, Parashchuk E, Budniak L. Investigation of amino acids content in the herb and tubers of Stachys sieboldii. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this research was the comparative study of the content of the amino acids in the herb and tubers of Stachys sieboldii. The study of the amino acid composition of the raw materials was carried out using high-performance liquid chromatography (HPLC). The results obtained have shown that the aerial parts of plants investigated have higher amino acid content than the underground organs. Free and bound L-aspartic acid, L-proline, and L-phenylalanine were present in the analyzed samples in the greatest amount. Moreover, L-cysteine was found only in Stachys sieboldii tubers in amounts (8.11 mg/g). This research established that Stachys sieboldii herb and tubers have the most suitable amino acids composition and are prospective for further pharmacological studies.
Collapse
|
37
|
Li Y, Zhao M, Wei D, Zhang J, Ren Y. Photocontrol of Itaconic Acid Synthesis in Escherichia coli. ACS Synth Biol 2022; 11:2080-2088. [PMID: 35638258 DOI: 10.1021/acssynbio.2c00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic engineering aims to control cellular metabolic flow and maximize the production of a product of interest. Photocontrol of the activities of proteins is an effective method for accurately regulating metabolic pathways. In this study, we inserted the photosensor light-oxygen-voltage-sensing domain 2 of Avena sativa (AsLOV2) into selected sites of isocitrate dehydrogenase (IDH), the key enzyme in the competitive pathway of itaconic acid (ITA) synthesis, to construct photoswitchable IDH-AsLOV2 (ILOVs). These engineered light-sensitive proteins were used to regulate the metabolic flux of the tricarboxylic acid (TCA) cycle in Escherichia coli to improve ITA production. The engineered fusion proteins ILOV2, ILOV3, ILOV6, and ILOV7 exhibited effective reversibility under the oscillation of darkness and blue light illumination in vitro. The efficacies of the intracellular photoswitches were evaluated, and an optimal photocontrol strategy was established in vivo. The ITA titer was significantly enhanced to 3.30 g/L for strain ITAΔ43, which displayed superior photoswitchable potency for ITA production compared with the strains that completely deleted the icd gene. The photocontrol strategy developed here can be extended for process optimization and titer improvement of other high-value bioengineering chemicals.
Collapse
Affiliation(s)
- Yuting Li
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Zhang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhong Ren
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
38
|
Hashmi OH, Capet F, Visseaux M, Champouret Y. Homoleptic and Heteroleptic Substituted Amidomethylpyridine Iron Complexes: Synthesis, Structure and Polymerization of rac‐Lactide. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Obaid H. Hashmi
- Universite de Lille Faculte des Sciences et Technologies UMR 8181 Campus Scientifique 59655 Villeneuve d'Ascq FRANCE
| | - Frederic Capet
- Universite de Lille Faculte des Sciences et Technologies UMR 8181 Campus Scientifique 59655 Villeneuve d'Ascq FRANCE
| | - Marc Visseaux
- Universite de Lille Faculte des Sciences et Technologies UMR 8181 Campus Scientifique 59655 Villeneuve d'Ascq FRANCE
| | - Yohan Champouret
- Universite de Lille Faculte des Sciences et Technologies UMR 8181 Campus Scientifique 59655 Villeneuve d'Ascq FRANCE
| |
Collapse
|
39
|
Grausa K, Mozga I, Pleiko K, Pentjuss A. Integrative Gene Expression and Metabolic Analysis Tool IgemRNA. Biomolecules 2022; 12:biom12040586. [PMID: 35454176 PMCID: PMC9029533 DOI: 10.3390/biom12040586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Genome-scale metabolic modeling is widely used to study the impact of metabolism on the phenotype of different organisms. While substrate modeling reflects the potential distribution of carbon and other chemical elements within the model, the additional use of omics data, e.g., transcriptome, has implications when researching the genotype–phenotype responses to environmental changes. Several algorithms for transcriptome analysis using genome-scale metabolic modeling have been proposed. Still, they are restricted to specific objectives and conditions and lack flexibility, have software compatibility issues, and require advanced user skills. We classified previously published algorithms, summarized transcriptome pre-processing, integration, and analysis methods, and implemented them in the newly developed transcriptome analysis tool IgemRNA, which (1) has a user-friendly graphical interface, (2) tackles compatibility issues by combining previous data input and pre-processing algorithms in MATLAB, and (3) introduces novel algorithms for the automatic comparison of different transcriptome datasets with or without Cobra Toolbox 3.0 optimization algorithms. We used publicly available transcriptome datasets from Saccharomyces cerevisiae BY4741 and H4-S47D strains for validation. We found that IgemRNA provides a means for transcriptome and environmental data validation on biochemical network topology since the biomass function varies for different phenotypes. Our tool can detect problematic reaction constraints.
Collapse
Affiliation(s)
- Kristina Grausa
- Department of Computer Systems, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia; (K.G.); (I.M.)
| | - Ivars Mozga
- Department of Computer Systems, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia; (K.G.); (I.M.)
| | - Karlis Pleiko
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia;
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Agris Pentjuss
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
- Correspondence:
| |
Collapse
|
40
|
|
41
|
Gurdo N, Volke DC, Nikel PI. Merging automation and fundamental discovery into the design–build–test–learn cycle of nontraditional microbes. Trends Biotechnol 2022; 40:1148-1159. [DOI: 10.1016/j.tibtech.2022.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022]
|
42
|
Liu X, Zhao G, Sun S, Fan C, Feng X, Xiong P. Biosynthetic Pathway and Metabolic Engineering of Succinic Acid. Front Bioeng Biotechnol 2022; 10:843887. [PMID: 35350186 PMCID: PMC8957974 DOI: 10.3389/fbioe.2022.843887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
Succinic acid, a dicarboxylic acid produced as an intermediate of the tricarboxylic acid (TCA) cycle, is one of the most important platform chemicals for the production of various high value-added derivatives. As traditional chemical synthesis processes suffer from nonrenewable resources and environment pollution, succinic acid biosynthesis has drawn increasing attention as a viable, more environmentally friendly alternative. To date, several metabolic engineering approaches have been utilized for constructing and optimizing succinic acid cell factories. In this review, different succinic acid biosynthesis pathways are summarized, with a focus on the key enzymes and metabolic engineering approaches, which mainly include redirecting carbon flux, balancing NADH/NAD+ ratios, and optimizing CO2 supplementation. Finally, future perspectives on the microbial production of succinic acid are discussed.
Collapse
Affiliation(s)
- Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Guang Zhao
- State Key Lab of Microbial Technology, Shandong University, Qingdao, China
| | - Shengjie Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Chuanle Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinjun Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
43
|
Tong KTX, Tan IS, Foo HCY, Lam MK, Lim S, Lee KT. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-37. [PMID: 35316983 PMCID: PMC8929714 DOI: 10.1007/s13399-022-02561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players. Graphical abstract
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
44
|
Kacanski M, Pucher L, Peral C, Dietrich T, Neureiter M. Cell Retention as a Viable Strategy for PHA Production from Diluted VFAs with Bacillus megaterium. Bioengineering (Basel) 2022; 9:bioengineering9030122. [PMID: 35324811 PMCID: PMC8945770 DOI: 10.3390/bioengineering9030122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/01/2023] Open
Abstract
The production of biodegradable and biocompatible materials such as polyhydroxyalkanoates (PHAs) from waste-derived volatile fatty acids (VFAs) is a promising approach towards implementing a circular bioeconomy. However, VFA solutions obtained via acidification of organic wastes are usually too diluted for direct use in standard batch or fed-batch processes. To overcome these constraints, this study introduces a cell recycle fed-batch system using Bacillus megaterium uyuni S29 for poly(3-hydroxybutyrate) (P3HB) production from acetic acid. The concentrations of dry cell weight (DCW), P3HB, acetate, as well as nitrogen as the limiting substrate component, were monitored during the process. The produced polymer was characterized in terms of molecular weight and thermal properties after extraction with hypochlorite. The results show that an indirect pH-stat feeding regime successfully kept the strain fed without prompting inhibition, resulting in a dry cell weight concentration of up to 19.05 g/L containing 70.21% PHA. After appropriate adaptations the presented process could contribute to an efficient and sustainable production of biopolymers.
Collapse
Affiliation(s)
- Milos Kacanski
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.K.); (L.P.)
| | - Lukas Pucher
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.K.); (L.P.)
| | - Carlota Peral
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnólogico de Álava, Leonardo Da Vinci 1, 01510 Minano, Spain; (C.P.); (T.D.)
| | - Thomas Dietrich
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnólogico de Álava, Leonardo Da Vinci 1, 01510 Minano, Spain; (C.P.); (T.D.)
| | - Markus Neureiter
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.K.); (L.P.)
- Correspondence: ; Tel.: +43-1-47654-97441
| |
Collapse
|
45
|
Recent advances and challenges on enzymatic synthesis of biobased polyesters via polycondensation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Abstract
The industrial relevance of organic acids is high; because of their chemical properties, they can be used as building blocks as well as single-molecule agents with a huge annual market. Organic acid chemical platforms can derive from fossil sources by petrochemical refining processes, but most of them also represent natural metabolites produced by many cells. They are the products, by-products or co-products of many primary metabolic processes of microbial cells. Thanks to the potential of microbial cell factories and to the development of industrial biotechnology, from the last decades of the previous century, the microbial-based production of these molecules has started to approach the market. This was possible because of a joint effort of microbial biotechnologists and biochemical and process engineers that boosted natural production up to the titer, yield and productivity needed to be industrially competitive. More recently, the possibility to utilize renewable residual biomasses as feedstock not only for biofuels, but also for organic acids production is further augmenting the sustainability of their production, in a logic of circular bioeconomy. In this review, we briefly present the latest updates regarding the production of some industrially relevant organic acids (citric fumaric, itaconic, lactic and succinic acid), discussing the challenges and possible future developments of successful production.
Collapse
|
47
|
Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. WATER 2022. [DOI: 10.3390/w14030346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tanning industry transforms animal skins into leather and produces liquid effluents with a high organic and inorganic pollutant load. This work evaluated the effect of the tannery wastewater (TWW) concentration and the light/dark cycle on the production of biomass, carbohydrates, proteins, lipids, and pigments (carotenoids and phycobiliproteins) on two microalgae (Chlorella sp. and Scenedesmus sp.) and one cyanobacterium (Hapalosiphon sp.). A non-factorial central experimental design with a response surface was implemented using the STATISTICA 7.0 software. High removal percentages for nitrates (97%), phosphates (73.3%), and chemical oxygen demand (93.2%) were achieved with the three strains. The results also highlight that the use of a constant light regime (24:0) and the concentration of real TWW affect the biomass production, since the highest concentration of biomass recorded was 1.31 g L−1 of Hapalosiphon sp. with 100% undiluted wastewater.
Collapse
|
48
|
Optogenetic approaches in biotechnology and biomaterials. Trends Biotechnol 2022; 40:858-874. [PMID: 35031132 DOI: 10.1016/j.tibtech.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022]
Abstract
Advances in genetic engineering, combined with the development of optical technologies, have allowed optogenetics to broaden its area of possible applications in recent years. However, the application of optogenetic tools in industry, including biotechnology and the production of biomaterials, is still limited, because each practical task requires the engineering of a specific optogenetic system. In this review, we discuss recent advances in the use of optogenetic tools in the production of biofuels and valuable chemicals, the synthesis of biomedical and polymer materials, and plant agrobiology. We also offer a comprehensive analysis of the properties and industrial applicability of light-controlled and other smart biomaterials. These data allow us to outline the prospects for the future use of optogenetics in bioindustry.
Collapse
|
49
|
Liu J, Liu J, Guo L, Liu J, Chen X, Liu L, Gao C. Advances in microbial synthesis of bioplastic monomers. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:35-81. [DOI: 10.1016/bs.aambs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Zhang F, Lan W, Zhang A, Liu C. Green approach to produce xylo-oligosaccharides and glucose by mechanical-hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2022; 344:126298. [PMID: 34748982 DOI: 10.1016/j.biortech.2021.126298] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
A pretreatment method combining ball-milling, ultrasound, and hydrothermal treatment was developed to produce xylooligosaccharides (XOS) and glucose with a high yield from corn stover. Under optimal conditions, the yield of XOS reached 80.40%, and the functional XOS (X2-X4) took up to 26.97%. Small amount of inhibitors were formed during the hydrothermal process. Enzymatic hydrolysis of the hydrothermally pretreated residue gave 92.60% yield of glucose, leaving lignin as the final residue which accounted for 66.82% of native lignin. The correlations between the yield of glucose and the physio-chemical properties of corn stover, such as crystalline index, particle size, and the removal of xylan, were established to understand the recalcitrance removal during the pretreatment process. Results demonstrate that this combined pretreatment method is a green and effective process to selectively separate the hemicellulose fractions and improve both production of XOS and glucose yield.
Collapse
Affiliation(s)
- Fulong Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wu Lan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Aiping Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|