1
|
Yang SK, Jeong S, Baek I, Choi JI, Lim S, Jung JH. Deionococcus proteotlycius Genomic Library Exploration Enhances Oxidative Stress Resistance and Poly-3-hydroxybutyrate Production in Recombinant Escherichia coli. Microorganisms 2023; 11:2135. [PMID: 37763980 PMCID: PMC10538107 DOI: 10.3390/microorganisms11092135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Cell growth is inhibited by abiotic stresses during industrial processes, which is a limitation of microbial cell factories. Microbes with robust phenotypes are critical for its maximizing the yield of the target products in industrial biotechnology. Currently, there are several reports on the enhanced production of industrial metabolite through the introduction of Deinococcal genes into host cells, which confers cellular robustness. Deinococcus is known for its unique genetic function thriving in extreme environments such as radiation, UV, and oxidants. In this study, we established that Deinococcus proteolyticus showed greater resistance to oxidation and UV-C than commonly used D. radiodurans. By screening the genomic library of D. proteolyticus, we isolated a gene (deipr_0871) encoding a response regulator, which not only enhanced oxidative stress, but also promoted the growth of the recombinant E. coli strain. The transcription analysis indicated that the heterologous expression of deipr_0871 upregulated oxidative-stress-related genes such as ahpC and sodA, and acetyl-CoA-accumulation-associated genes via soxS regulon. Deipr_0871 was applied to improve the production of the valuable metabolite, poly-3-hydroxybutyrate (PHB), in the synthetic E. coli strain, which lead to the remarkably higher PHB than the control strain. Therefore, the stress tolerance gene from D. proteolyticus should be used in the modification of E. coli for the production of PHB and other biomaterials.
Collapse
Affiliation(s)
- Seul-Ki Yang
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Inwoo Baek
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
| | - Jong-il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
| |
Collapse
|
2
|
Sangtani R, Nogueira R, Yadav AK, Kiran B. Systematizing Microbial Bioplastic Production for Developing Sustainable Bioeconomy: Metabolic Nexus Modeling, Economic and Environmental Technologies Assessment. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:2741-2760. [PMID: 36811096 PMCID: PMC9933833 DOI: 10.1007/s10924-023-02787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 06/12/2023]
Abstract
The excessive usage of non-renewable resources to produce plastic commodities has incongruously influenced the environment's health. Especially in the times of COVID-19, the need for plastic-based health products has increased predominantly. Given the rise in global warming and greenhouse gas emissions, the lifecycle of plastic has been established to contribute to it significantly. Bioplastics such as polyhydroxy alkanoates, polylactic acid, etc. derived from renewable energy origin have been a magnificent alternative to conventional plastics and reconnoitered exclusively for combating the environmental footprint of petrochemical plastic. However, the economically reasonable and environmentally friendly procedure of microbial bioplastic production has been a hard nut to crack due to less scouted and inefficient process optimization and downstream processing methodologies. Thereby, meticulous employment of computational tools such as genome-scale metabolic modeling and flux balance analysis has been practiced in recent times to understand the effect of genomic and environmental perturbations on the phenotype of the microorganism. In-silico results not only aid us in determining the biorefinery abilities of the model microorganism but also curb our reliance on equipment, raw materials, and capital investment for optimizing the best conditions. Additionally, to accomplish sustainable large-scale production of microbial bioplastic in a circular bioeconomy, extraction, and refinement of bioplastic needs to be investigated extensively by practicing techno-economic analysis and life cycle assessment. This review put forth state-of-the-art know-how on the proficiency of these computational techniques in laying the foundation of an efficient bioplastic manufacturing blueprint, chiefly focusing on microbial polyhydroxy alkanoates (PHA) production and its efficacy in outplacing fossil based plastic products.
Collapse
Affiliation(s)
- Rimjhim Sangtani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, 453552, Indore, India
| | - Regina Nogueira
- Institute for Sanitary Engineering and Waste Management, Leibniz Universität Hannover, Hannover, Germany
| | - Asheesh Kumar Yadav
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Bala Kiran
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, 453552, Indore, India
| |
Collapse
|
3
|
Alsiyabi A, Brown B, Immethun C, Long D, Wilkins M, Saha R. Synergistic experimental and computational approach identifies novel strategies for polyhydroxybutyrate overproduction. Metab Eng 2021; 68:1-13. [PMID: 34464732 DOI: 10.1016/j.ymben.2021.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022]
Abstract
Polyhydroxybutyrate (PHB) is a sustainable bioplastic produced by bacteria that is a potential replacement for conventional plastics. This study delivers an integrated experimental and computational modeling approach to decipher metabolic factors controlling PHB production and offers engineering design strategies to boost production. In the metabolically robust Rhodopseudomonas palustris CGA009, PHB production significantly increased when grown on the carbon- and electron-rich lignin breakdown product p-coumarate (C9H8O3) compared to virtually no PHB titer from acetate (C2H3NaO2). The maximum yield did not improve further when grown on coniferyl alcohol (C10H12O3), but comparison of the PHB profiles showed that coniferyl alcohol's higher carbon content resulted in a higher rate of PHB production. Combined experimental results revealed that cytoplasmic space may be a limiting factor for maximum PHB titer. In order to obtain a systems-level understanding of factors driving PHB yield, a model-driven investigation was performed. The model yielded several engineering design strategies including utilizing reduced, high molecular weight substrates that bypass the thiolase reaction (phaA). Based on these strategies, utilization of butyrate was predicted and subsequently validated to produce PHB. Model analysis also explained why nitrogen starvation was not essential for PHB production and revealed that renewable and abundant lignin aromatics are ideal candidates for PHB production. Most importantly, the generality of the derived design rules allows them to be applied to any PHB-producing microbe with similar metabolic features.
Collapse
Affiliation(s)
- Adil Alsiyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Brandi Brown
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Cheryl Immethun
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Dianna Long
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Mark Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
4
|
Lin Y, Guan Y, Dong X, Ma Y, Wang X, Leng Y, Wu F, Ye JW, Chen GQ. Engineering Halomonas bluephagenesis as a chassis for bioproduction from starch. Metab Eng 2021; 64:134-145. [PMID: 33577951 DOI: 10.1016/j.ymben.2021.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/22/2020] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
Halomonas bluephagenesis has been successfully engineered to produce multiple products under open unsterile conditions utilizing costly glucose as the carbon source. It would be highly interesting to investigate if H. bluephagenesis, a chassis for the Next Generation Industrial Biotechnology (NGIB), can be reconstructed to become an extracellular hydrolytic enzyme producer replacing traditional enzyme producer Bacillus spp. If successful, cost of bulk hydrolytic enzymes such as amylase and protease, can be significantly reduced due to the contamination resistant and robust growth of H. bluephagenesis. This also allows H. bluephagenesis to be able to grow on low cost substrates such as starch. The modularized secretion machinery was constructed and fine-tuned in H. bluephagenesis using codon-optimized gene encoding α-amylase from Bacillus lichenifomis. Screening of suitable signal peptides and linkers based on super-fold green fluorescence protein (sfGFP) for enhanced expression in H. bluephagenesis resulted in a 7-fold enhancement of sfGFP secretion in the recombinant H. bluephagenesis. When the gene encoding sfGFP was replaced by α-amylase encoding gene, recombinant H. bluephagenesis harboring this amylase secretory system was able to produce poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), ectoine and L-threonine utilizing starch as the growth substrate, respectively. Recombinant H. bluephagenesis TN04 expressing genes encoding α-amylase and glucosidase on chromosome and plasmid-based systems, respectively, was able to grow on corn starch to approximately 10 g/L cell dry weight containing 51% PHB when grown in shake flasks. H. bluephagenesis was demonstrated to be a chassis for productions of extracellular enzymes and multiple products from low cost corn starch.
Collapse
Affiliation(s)
- Yina Lin
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, 100084, China
| | - Yuying Guan
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Dong
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yueyuan Ma
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuan Wang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, 100084, China
| | - Yuchen Leng
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuqing Wu
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, 100084, China; MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, 100084, China; Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, 100084, China; MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Wu H, Li S, Ji M, Chen Q, Shi J, Blamey JM, Sun J. Improvement of polyhydroxybutyrate production by deletion of csrA in Escherichia coli. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Ye J, Hu D, Yin J, Huang W, Xiang R, Zhang L, Wang X, Han J, Chen GQ. Stimulus response-based fine-tuning of polyhydroxyalkanoate pathway in Halomonas. Metab Eng 2019; 57:85-95. [PMID: 31678427 DOI: 10.1016/j.ymben.2019.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/01/2022]
Abstract
Optimization of intracellular biosynthesis process involving regulation of multiple gene expressions is dependent on the efficient and accurate expression of each expression unit independently. However, challenges of analyzing intermediate products seriously hinder the application of high throughput assays. This study aimed to develop an engineering approach for unsterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) or (P3HB4HB) by recombinant Halomonas bluephagenesis (H. bluephagenesis) constructed via coupling the design of GFP-mediated transcriptional mapping and high-resolution control of gene expressions (HRCGE), which consists of two inducible systems with high- and low-dynamic ranges employed to search the exquisite transcription level of each expression module in the presence of γ-butyrolactone, the intermediate for 4-hydroxybutyrate (4HB) synthesis. It has been successful to generate a recombinant H. bluephagenesis, namely TD68-194, able to produce over 36 g/L P3HB4HB consisting of 16 mol% 4HB during a 7-L lab-scale fed-batch growth process, of which cell dry weight and PHA content reached up to 48.22 g/L and 74.67%, respectively, in 36 h cultivation. HRCGE has been found useful for metabolic pathway construction.
Collapse
Affiliation(s)
- Jianwen Ye
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China; MOE Key Lab of Bioinformatics, Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
| | - Dingkai Hu
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin Yin
- BluePHA Co., Ltd., Beijing, 100084, China
| | - Wuzhe Huang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | - Lizhan Zhang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; MOE Key Lab of Bioinformatics, Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
| | - Xuan Wang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China; MOE Key Lab of Bioinformatics, Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
| | - Jianing Han
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; MOE Key Lab of Bioinformatics, Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China; MOE Key Lab of Bioinformatics, Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China; MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Elsayed NS, Aboshanab KM, Yassien MA, Hassouna NA. Kinetic modeling, recovery, and molecular characterization of poly-beta-hydroxybutyrate polymer in Acinetobacter baumannii isolate P39. Bioprocess Biosyst Eng 2018; 41:1779-1791. [PMID: 30194493 DOI: 10.1007/s00449-018-2000-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 08/10/2018] [Indexed: 11/26/2022]
Abstract
To control the poly-β-hydroxybutyrate (PHB) biopolymer production by Acinetobacter baumannii isolate P39 kinetic modeling of the fermentation process, polymer downstream processing, enzymological analysis, and molecular characterization of PHA synthase, key biosynthetic enzyme, should be addressed. A. baumannii isolate P39 produced 0.15 g/L PHB after 24 h of incubation with a polymer content of 28% per dry weight. Logistic and Leudeking-Piret models were used for describing cell growth and PHB production, respectively. They showed good agreement with the experimental data describing both cell growth and PHB production (average regression coefficient r2:0.999). The growth-associated production of PHB biopolymer as an electron acceptor was confirmed using Leudeking-Piret model and victim substrate experiment. The best method of recovery of PHB biopolymer was chemical digestion using sodium hypochlorite, since it produced the largest amount of polymer and highest molecular weight (16,000 g/mole) in comparison to other recovery methods. DTNB assay showed high activity of PHA synthase enzyme, 600 U activity, and 153.8 U/mg specific activity. Molecular analysis of PHA synthase enzyme confirmed class III identity. Taken together, micelle model was proposed for polyhydroxybutyrate formation in A. baumannii isolate P39.
Collapse
Affiliation(s)
- Noha S Elsayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, P.O. Box 11566, Cairo, Egypt.
| | - Nadia A Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, P.O. Box 11566, Cairo, Egypt
| |
Collapse
|
8
|
Ye J, Hu D, Che X, Jiang X, Li T, Chen J, Zhang HM, Chen GQ. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metab Eng 2018; 47:143-152. [PMID: 29551476 DOI: 10.1016/j.ymben.2018.03.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/01/2023]
Abstract
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is one of the most promising biomaterials expected to be used in a wide range of scenarios. However, its large-scale production is still hindered by the high cost. Here we report the engineering of Halomonas bluephagenesis as a low-cost platform for non-sterile and continuous fermentative production of P(3HB-co-4HB) from glucose. Two interrelated 4-hydroxybutyrate (4HB) biosynthesis pathways were constructed to guarantee 4HB monomer supply for P(3HB-co-4HB) synthesis by working in concert with 3-hydroxybutyrate (3HB) pathway. Interestingly, only 0.17 mol% 4HB in the copolymer was obtained during shake flask studies. Pathway debugging using structurally related carbon source located the failure as insufficient 4HB accumulation. Further whole genome sequencing and comparative genomic analysis identified multiple orthologs of succinate semialdehyde dehydrogenase (gabD) that may compete with 4HB synthesis flux in H. bluephagenesis. Accordingly, combinatory gene-knockout strains were constructed and characterized, through which the molar fraction of 4HB was increased by 24-fold in shake flask studies. The best-performing strain was grown on glucose as the single carbon source for 60 h under non-sterile conditions in a 7-L bioreactor, reaching 26.3 g/L of dry cell mass containing 60.5% P(3HB-co-17.04 mol%4HB). Besides, 4HB molar fraction in the copolymer can be tuned from 13 mol% to 25 mol% by controlling the residual glucose concentration in the cultures. This is the first study to achieve the production of P(3HB-co-4HB) from only glucose using Halomonas.
Collapse
Affiliation(s)
- Jianwen Ye
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Center for Nano and Micro-Mechanics, Tsinghua University, Beijing 100084, China
| | - Dingkai Hu
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Xuemei Che
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Center for Nano and Micro-Mechanics, Tsinghua University, Beijing 100084, China
| | - Xiaoran Jiang
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Teng Li
- Bluepha Co., Ltd., Beijing 102206, China
| | - Jinchun Chen
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | | | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Center for Nano and Micro-Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Bothfeld W, Kapov G, Tyo KEJ. A Glucose-Sensing Toggle Switch for Autonomous, High Productivity Genetic Control. ACS Synth Biol 2017; 6:1296-1304. [PMID: 28274123 DOI: 10.1021/acssynbio.6b00257] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Many biosynthetic strategies are coupled to growth, which is inherently limiting, as (1) excess feedstock (e.g., sugar) may be converted to biomass, instead of product, (2) essential genes must be maintained, and (3) growth toxicity must be managed. A decoupled growth and production phase strategy could avoid these issues. We have developed a toggle switch that uses glucose sensing to enable this two-phase strategy. Temporary glucose starvation precisely and autonomously activates product pathway expression in rich or minimal media, obviating the requirement for expensive inducers. The switch remains stably in the new state even after reintroduction of glucose. In the context of polyhydroxybutyrate (PHB) biosynthesis, our system enables shorter growth phases and comparable titers to a constitutively expressing PHB strain. This two-phase production strategy, and specifically the glucose toggle switch, should be broadly useful to initiate many types of genetic program for metabolic engineering applications.
Collapse
Affiliation(s)
- William Bothfeld
- Department of Chemical
and
Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Grace Kapov
- Department of Chemical
and
Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Keith E. J. Tyo
- Department of Chemical
and
Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Lawton TJ, Rosenzweig AC. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion. J Am Chem Soc 2016; 138:9327-40. [PMID: 27366961 PMCID: PMC5242187 DOI: 10.1021/jacs.6b04568] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock.
Collapse
Affiliation(s)
- Thomas J Lawton
- Departments of Molecular Biosciences and of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst Biol Appl 2016; 2:16009. [PMID: 28725470 PMCID: PMC5516863 DOI: 10.1038/npjsba.2016.9] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023] Open
Abstract
The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.
Collapse
Affiliation(s)
- Victor Chubukov
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Héctor García Martín
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
12
|
Metabolic Engineering of Escherichia coli for Poly(3-hydroxybutyrate) Production under Microaerobic Condition. BIOMED RESEARCH INTERNATIONAL 2015; 2015:789315. [PMID: 25945345 PMCID: PMC4405016 DOI: 10.1155/2015/789315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/05/2022]
Abstract
The alcohol dehydrogenase promoter PadhE and mixed acid fermentation pathway deficient mutants of Escherichia coli were employed to produce poly(3-hydroxybutyrate) (P3HB) under microaerobic condition. The E. coli mutant with ackA-pta, poxB, ldhA, and adhE deletions accumulated 0.67 g/L P3HB, up to 78.84% of cell dry weight in tube cultivation. The deletion of pyruvate formate-lyase gene pflB drastically decreased P3HB production and P3HB content to 0.09 g/L and 24.44%, respectively. Overexpressing pflB via the plasmid in its knocked out mutant restored cell growth and P3HB accumulation, indicating the importance of the pyruvate formate-lyase in microaerobic carbon metabolism. The engineered E. coli BWapld (pWYC09) produced 5.00 g/L P3HB from 16.50 g/L glucose in 24 h batch fermentation, and P3HB production yield from glucose was 0.30 g/g, which reached up to 63% of maximal theoretical yield.
Collapse
|
13
|
López NI, Pettinari MJ, Nikel PI, Méndez BS. Polyhydroxyalkanoates: Much More than Biodegradable Plastics. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:73-106. [PMID: 26505689 DOI: 10.1016/bs.aambs.2015.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in central metabolism, as they act as dynamic reservoirs of carbon and reducing equivalents. These polymers have a number of technical applications since they exhibit thermoplastic and elastomeric properties, making them attractive as a replacement of oil-derived materials. PHAs are accumulated under conditions of nutritional imbalance (usually an excess of carbon source with respect to a limiting nutrient, such as nitrogen or phosphorus). The cycle of PHA synthesis and degradation has been recognized as an important physiological feature when these biochemical pathways were originally described, yet its role in bacterial processes as diverse as global regulation and cell survival is just starting to be appreciated in full. In the present revision, the complex regulation of PHA synthesis and degradation at the transcriptional, translational, and metabolic levels are explored by analyzing examples in natural producer bacteria, such as Pseudomonas species, as well as in recombinant Escherichia coli strains. The ecological role of PHAs, together with the interrelations with other polymers and extracellular substances, is also discussed, along with their importance in cell survival, resistance to several types of environmental stress, and planktonic-versus-biofilm lifestyle. Finally, bioremediation and plant growth promotion are presented as examples of environmental applications in which PHA accumulation has successfully been exploited.
Collapse
|