1
|
di Stefano G, Battistuzzi M, La Rocca N, Selinger VM, Nürnberg DJ, Billi D. Far-red light photoacclimation in a desert Chroococcidiopsis strain with a reduced FaRLiP gene cluster and expression of its chlorophyll f synthase in space-resistant isolates. Front Microbiol 2024; 15:1450575. [PMID: 39328908 PMCID: PMC11424453 DOI: 10.3389/fmicb.2024.1450575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Some cyanobacteria can use far-red light (FRL) to drive oxygenic photosynthesis, a phenomenon known as Far-Red Light Photoacclimation (FaRLiP). It can expand photosynthetically active radiation beyond the visible light (VL) range. Therefore, it holds promise for biotechnological applications and may prove useful for the future human exploration of outer space. Typically, FaRLiP relies on a cluster of ~20 genes, encoding paralogs of the standard photosynthetic machinery. One of them, a highly divergent D1 gene known as chlF (or psbA4), is the synthase responsible for the formation of the FRL-absorbing chlorophyll f (Chl f) that is essential for FaRLiP. The minimum gene set required for this phenotype is unclear. The desert cyanobacterium Chroococcidiopsis sp. CCMEE 010 is unusual in being capable of FaRLiP with a reduced gene cluster (15 genes), and it lacks most of the genes encoding FR-Photosystem I. Methods Here we investigated whether the reduced gene cluster of Chroococcidiopsis sp. CCMEE 010 is transcriptionally regulated by FRL and characterized the spectral changes that occur during the FaRLiP response of Chroococcidiopsis sp. CCMEE 010. In addition, the heterologous expression of the Chl f synthase from CCMEE 010 was attempted in three closely related desert strains of Chroococcidiopsis. Results All 15 genes of the FaRLiP cluster were preferentially expressed under FRL, accompanied by a progressive red-shift of the photosynthetic absorption spectrum. The Chl f synthase from CCMEE 010 was successfully expressed in two desert strains of Chroococcidiopsis and transformants could be selected in both VL and FRL. Discussion In Chroococcidiopsis sp. CCME 010, all the far-red genes of the unusually reduced FaRLiP cluster, are transcriptionally regulated by FRL and two closely related desert strains heterologously expressing the chlF010 gene could grow in FRL. Since the transformation hosts had been reported to survive outer space conditions, such an achievement lays the foundation toward novel cyanobacteria-based technologies to support human space exploration.
Collapse
Affiliation(s)
- Giorgia di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Mariano Battistuzzi
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
- Giuseppe Colombo University Center for Studies and Activities, University of Padua, Padua, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | - Vera M. Selinger
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Pfennig T, Kullmann E, Zavřel T, Nakielski A, Ebenhöh O, Červený J, Bernát G, Matuszyńska AB. Shedding light on blue-green photosynthesis: A wavelength-dependent mathematical model of photosynthesis in Synechocystis sp. PCC 6803. PLoS Comput Biol 2024; 20:e1012445. [PMID: 39264951 PMCID: PMC11421815 DOI: 10.1371/journal.pcbi.1012445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Cyanobacteria hold great potential to revolutionize conventional industries and farming practices with their light-driven chemical production. To fully exploit their photosynthetic capacity and enhance product yield, it is crucial to investigate their intricate interplay with the environment including the light intensity and spectrum. Mathematical models provide valuable insights for optimizing strategies in this pursuit. In this study, we present an ordinary differential equation-based model for the cyanobacterium Synechocystis sp. PCC 6803 to assess its performance under various light sources, including monochromatic light. Our model can reproduce a variety of physiologically measured quantities, e.g. experimentally reported partitioning of electrons through four main pathways, O2 evolution, and the rate of carbon fixation for ambient and saturated CO2. By capturing the interactions between different components of a photosynthetic system, our model helps in understanding the underlying mechanisms driving system behavior. Our model qualitatively reproduces fluorescence emitted under various light regimes, replicating Pulse-amplitude modulation (PAM) fluorometry experiments with saturating pulses. Using our model, we test four hypothesized mechanisms of cyanobacterial state transitions for ensemble of parameter sets and found no physiological benefit of a model assuming phycobilisome detachment. Moreover, we evaluate metabolic control for biotechnological production under diverse light colors and irradiances. We suggest gene targets for overexpression under different illuminations to increase the yield. By offering a comprehensive computational model of cyanobacterial photosynthesis, our work enhances the basic understanding of light-dependent cyanobacterial behavior and sets the first wavelength-dependent framework to systematically test their producing capacity for biocatalysis.
Collapse
Affiliation(s)
- Tobias Pfennig
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elena Kullmann
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Andreas Nakielski
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Ebenhöh
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Theoretical and Quantitative Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Gábor Bernát
- Aquatic Botany and Microbial Ecology Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Anna Barbara Matuszyńska
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Tiwari D, Kumar N, Bongirwar R, Shukla P. Nutraceutical prospects of genetically engineered cyanobacteria- technological updates and significance. World J Microbiol Biotechnol 2024; 40:263. [PMID: 38980547 DOI: 10.1007/s11274-024-04064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
Genetically engineered cyanobacterial strains that have improved growth rate, biomass productivity, and metabolite productivity could be a better option for sustainable bio-metabolite production. The global demand for biobased metabolites with nutraceuticals and health benefits has increased due to their safety and plausible therapeutic and nutritional utility. Cyanobacteria are solar-powered green cellular factories that can be genetically tuned to produce metabolites with nutraceutical and pharmaceutical benefits. The present review discusses biotechnological endeavors for producing bioprospective compounds from genetically engineered cyanobacteria and discusses the challenges and troubleshooting faced during metabolite production. This review explores the cyanobacterial versatility, the use of engineered strains, and the techno-economic challenges associated with scaling up metabolite production from cyanobacteria. Challenges to produce cyanobacterial bioactive compounds with remarkable nutraceutical values have been discussed. Additionally, this review also summarises the challenges and future prospects of metabolite production from genetically engineered cyanobacteria as a sustainable approach.
Collapse
Affiliation(s)
- Deepali Tiwari
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Riya Bongirwar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Joseph FM, Kaldenhoff R. Tobacco aquaporin NtAQP1 and human aquaporin hAQP1 contribute to single cell photosynthesis in Synechococcus. Biol Cell 2024; 116:e2470003. [PMID: 38653736 DOI: 10.1111/boc.202470003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND INFORMATION Aquaporins are H2O-permeable membrane protein pores. However, some aquaporins are also permeable to other substances such as CO2. In higher plants, overexpression of such aquaporins has already led to an enhanced photosynthetic performance due to improved CO2 mesophyll conductance. In this work, we investigated the effects of such aquaporins on unicellular photosynthetically active organisms, specifically cyanobacteria. RESULTS Overexpression of aquaporins NtAQP1 or hAQP1 that might have a function to improve CO2 membrane permeability lead to increased photosynthesis rates in the cyanobacterium Synechococcus sp. PCC7002 as concluded by the rate of evolved O2. A shift in the Plastoquinone pool state of the cells supports our findings. Water permeable aquaporins without CO2 permeability, such as NtPIP2;1, do not have this effect. CONCLUSIONS AND SIGNIFICANCE We conclude that also in single cell organisms like cyanobacteria, membrane CO2 conductivity could be rate limiting and CO2-porins reduce the respective membrane resistance. We could show that besides the tobacco aquaporin NtAQP1 also the human hAQP1 most likely functions as CO2 diffusion facilitator in the photosynthesis assay.
Collapse
Affiliation(s)
- Franziska M Joseph
- Department of Biology, Applied Plant Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | - Ralf Kaldenhoff
- Department of Biology, Applied Plant Sciences, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
5
|
Bolay P, Dodge N, Janssen K, Jensen PE, Lindberg P. Tailoring regulatory components for metabolic engineering in cyanobacteria. PHYSIOLOGIA PLANTARUM 2024; 176:e14316. [PMID: 38686633 DOI: 10.1111/ppl.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
The looming climate crisis has prompted an ever-growing interest in cyanobacteria due to their potential as sustainable production platforms for the synthesis of energy carriers and value-added chemicals from CO2 and sunlight. Nonetheless, cyanobacteria are yet to compete with heterotrophic systems in terms of space-time yields and consequently production costs. One major drawback leading to the low production performance observed in cyanobacteria is the limited ability to utilize the full capacity of the photosynthetic apparatus and its associated systems, i.e. CO2 fixation and the directly connected metabolism. In this review, novel insights into various levels of metabolic regulation of cyanobacteria are discussed, including the potential of targeting these regulatory mechanisms to create a chassis with a phenotype favorable for photoautotrophic production. Compared to conventional metabolic engineering approaches, minor perturbations of regulatory mechanisms can have wide-ranging effects.
Collapse
Affiliation(s)
- Paul Bolay
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Nadia Dodge
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Kim Janssen
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Poul Erik Jensen
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| |
Collapse
|
6
|
Gupta JK, Jain KK, Kaushal M, Upton DJ, Joshi M, Pachauri P, Wood AJ, Yazdani SS, Srivastava S. Marine cyanobacterial biomass is an efficient feedstock for fungal bioprocesses. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:23. [PMID: 38350992 PMCID: PMC10863111 DOI: 10.1186/s13068-024-02469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Marine cyanobacteria offer many sustainability advantages, such as the ability to fix atmospheric CO2, very fast growth and no dependence on freshwater for culture. Cyanobacterial biomass is a rich source of sugars and proteins, two essential nutrients for culturing any heterotroph. However, no previous study has evaluated their application as a feedstock for fungal bioprocesses. RESULTS In this work, we cultured the marine cyanobacterium Synechococcus sp. PCC 7002 in a 3-L externally illuminated bioreactor with working volume of 2 L with a biomass productivity of ~ 0.8 g L-1 day-1. Hydrolysis of the biomass with acids released proteins and hydrolyzed glycogen while hydrolysis of the biomass with base released only proteins but did not hydrolyze glycogen. Among the different acids tested, treatment with HNO3 led to the highest release of proteins and glucose. Cyanobacterial biomass hydrolysate (CBH) prepared in HNO3 was used as a medium to produce cellulase enzyme by the Penicillium funiculosum OAO3 strain while CBH prepared in HCl and treated with charcoal was used as a medium for citric acid by Aspergillus tubingensis. Approximately 50% higher titers of both products were obtained compared to traditional media. CONCLUSIONS These results show that the hydrolysate of marine cyanobacteria is an effective source of nutrients/proteins for fungal bioprocesses.
Collapse
Affiliation(s)
- Jai Kumar Gupta
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Zero Cow Factory, Surat, India
| | - Kavish K Jain
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, 110067, India
- The Live Green Co., Bangalore, India
| | - Mehak Kaushal
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Perfect Day India Pvt. Ltd., Bangalore, India
| | - Daniel J Upton
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Manish Joshi
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, 110067, India
- Biocon Limited, Bangalore, India
| | - Piyush Pachauri
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - A Jamie Wood
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- Department of Mathematics, University of York, York, YO10 5DD, UK
| | - Syed Shams Yazdani
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, 110067, India
- Microbial Engineering Group, ICGEB, New Delhi, 110067, India
| | - Shireesh Srivastava
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, 110067, India.
| |
Collapse
|
7
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Lin YT, Xu T, Ip JCH, Sun Y, Fang L, Luan T, Zhang Y, Qian PY, Qiu JW, Qian PY, Qiu JW. Interactions among deep-sea mussels and their epibiotic and endosymbiotic chemoautotrophic bacteria: Insights from multi-omics analysis. Zool Res 2023; 44:106-125. [PMID: 36419378 PMCID: PMC9841196 DOI: 10.24272/j.issn.2095-8137.2022.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Endosymbiosis with Gammaproteobacteria is fundamental for the success of bathymodioline mussels in deep-sea chemosynthesis-based ecosystems. However, the recent discovery of Campylobacteria on the gill surfaces of these mussels suggests that these host-bacterial relationships may be more complex than previously thought. Using the cold-seep mussel ( Gigantidas haimaensis) as a model, we explored this host-bacterial system by assembling the host transcriptome and genomes of its epibiotic Campylobacteria and endosymbiotic Gammaproteobacteria and quantifying their gene and protein expression levels. We found that the epibiont applies a sulfur oxidizing (SOX) multienzyme complex with the acquisition of soxB from Gammaproteobacteria for energy production and switched from a reductive tricarboxylic acid (rTCA) cycle to a Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. The host provides metabolic intermediates, inorganic carbon, and thiosulfate to satisfy the materials and energy requirements of the epibiont, but whether the epibiont benefits the host is unclear. The endosymbiont adopts methane oxidation and the ribulose monophosphate pathway (RuMP) for energy production, providing the major source of energy for itself and the host. The host obtains most of its nutrients, such as lysine, glutamine, valine, isoleucine, leucine, histidine, and folate, from the endosymbiont. In addition, host pattern recognition receptors, including toll-like receptors, peptidoglycan recognition proteins, and C-type lectins, may participate in bacterial infection, maintenance, and population regulation. Overall, this study provides insights into the complex host-bacterial relationships that have enabled mussels and bacteria to thrive in deep-sea chemosynthetic ecosystems.
Collapse
Affiliation(s)
- Yi-Tao Lin
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China,Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jack Chi-Ho Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Yanan Sun
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Ling Fang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, Guangdong 510875, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510875, China,Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China,E-mail:
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China,Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China,
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lindberg P, Kenkel A, Bühler K. Introduction to Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:1-24. [PMID: 37009973 DOI: 10.1007/10_2023_217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Cyanobacteria are highly interesting microbes with the capacity for oxygenic photosynthesis. They fulfill an important purpose in nature but are also potent biocatalysts. This chapter gives a brief overview of this diverse phylum and shortly addresses the functions these organisms have in the natural ecosystems. Further, it introduces the main topics covered in this volume, which is dealing with the development and application of cyanobacteria as solar cell factories for the production of chemicals including potential fuels. We discuss cyanobacteria as industrial workhorses, present established chassis strains, and give an overview of the current target products. Genetic engineering strategies aiming at the photosynthetic efficiency as well as approaches to optimize carbon fluxes are summarized. Finally, main cultivation strategies are sketched.
Collapse
Affiliation(s)
- Pia Lindberg
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Amelie Kenkel
- Helmholtzcenter for Environmental Research, Leipzig, Germany
| | - Katja Bühler
- Helmholtzcenter for Environmental Research, Leipzig, Germany.
| |
Collapse
|
10
|
Srisawat P, Higuchi-Takeuchi M, Numata K. Microbial autotrophic biorefineries: Perspectives for biopolymer production. Polym J 2022. [DOI: 10.1038/s41428-022-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractThe use of autotrophic microorganisms to fabricate biochemical products has attracted much attention in both academia and industry. Unlike heterotrophic microorganisms that require carbohydrates and amino acids for growth, autotrophic microorganisms have evolved to utilize either light (photoautotrophs) or chemical compounds (chemolithotrophs) to fix carbon dioxide (CO2) and drive metabolic processes. Several biotechnological approaches, including synthetic biology and metabolic engineering, have been proposed to harness autotrophic microorganisms as a sustainable/green production platform for commercially essential products such as biofuels, commodity chemicals, and biopolymers. Here, we review the recent advances in natural autotrophic microorganisms (photoautotrophic and chemoautotrophic), focusing on the biopolymer production. We present current state-of-the-art technologies to engineer autotrophic microbial cell factories for efficient biopolymer production.
Collapse
|
11
|
Liang B, Sun G, Zhang X, Nie Q, Zhao Y, Yang J. Recent Advances, Challenges and Metabolic Engineering Strategies in the Biosynthesis of 3-Hydroxypropionic Acid. Biotechnol Bioeng 2022; 119:2639-2668. [PMID: 35781640 DOI: 10.1002/bit.28170] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022]
Abstract
As an attractive and valuable platform chemical, 3-hydroxypropionic acid (3-HP) can be used to produce a variety of industrially important commodity chemicals and biodegradable polymers. Moreover, the biosynthesis of 3-HP has drawn much attention in recent years due to its sustainability and environmental friendliness. Here, we focus on recent advances, challenges and metabolic engineering strategies in the biosynthesis of 3-HP. While glucose and glycerol are major carbon sources for its production of 3-HP via microbial fermentation, other carbon sources have also been explored. To increase yield and titer, synthetic biology and metabolic engineering strategies have been explored, including modifying pathway enzymes, eliminating flux blockages due to byproduct synthesis, eliminating toxic byproducts, and optimizing via genome-scale models. This review also provides insights on future directions for 3-HP biosynthesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guannan Sun
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingjuan Nie
- Foreign Languages School, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Velmurugan R, Incharoensakdi A. Metabolic transformation of cyanobacteria for biofuel production. CHEMOSPHERE 2022; 299:134342. [PMID: 35307390 DOI: 10.1016/j.chemosphere.2022.134342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
World-wide, an emerging demand is moving towards the biofuels to replace the fossil fuels. In alternative biofuel production strategies, cyanobacteria have unique characteristic of accumulating glycogen, lipid, and fuel molecules through natural mechanisms. Moreover, the cyanobacteria can be easily engineered to synthesis a plenty of fuel molecules from CO2. To obtain the fuel molecule from cyanobacteria, various techniques were invented in which the metabolic engineering is found to be a prerequisite to develop an economically feasible process. The expression of indigenous or heterologous pathways plays an important role in developing successful production process. In addition, the engineering of photosynthetic apparatus, destruction of competitive pathways and improvement of tolerance were also proven to improve the product specific synthesis. Although various metabolic engineering approaches have been developed, there are certain obstacles when it comes to implementation for the production. In this review, the important biosynthetic pathways for biofuels, alteration of other genes to improve the actual pathway and possibilities of developing cyanobacterial fuel production have been elaborated.
Collapse
Affiliation(s)
- Rajendran Velmurugan
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
13
|
Joshi S, Mishra S. Recent advances in biofuel production through metabolic engineering. BIORESOURCE TECHNOLOGY 2022; 352:127037. [PMID: 35318143 DOI: 10.1016/j.biortech.2022.127037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Rising global energy demands and climate crisis has created an unprecedented need for the bio-based circular economy to ensure sustainable development with the minimized carbon footprint. Along with conventional biofuels such as ethanol, microbes can be used to produce advanced biofuels which are equivalent to traditional fuels in their energy efficiencies and are compatible with already established infrastructure and hence can be directly blended in higher proportions without overhauling of the pre-existing setup. Metabolic engineering is at the frontiers to develop microbial chassis for biofuel bio-foundries to meet the industrial needs for clean energy. This review does a thorough inquiry of recent developments in metabolic engineering for increasing titers, rates, and yields (TRY) of biofuel production by engineered microorganisms.
Collapse
Affiliation(s)
- Swati Joshi
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India; Central University of Gujarat, Gandhinagar, Gujarat, India.
| | - SukhDev Mishra
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Verma S, Thapa S, Siddiqui N, Chakdar H. Cyanobacterial secondary metabolites towards improved commercial significance through multiomics approaches. World J Microbiol Biotechnol 2022; 38:100. [PMID: 35486205 DOI: 10.1007/s11274-022-03285-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are ubiquitous photosynthetic prokaryotes responsible for the oxygenation of the earth's reducing atmosphere. Apart from oxygen they are producers of a myriad of bioactive metabolites with diverse complex chemical structures and robust biological activities. These secondary metabolites are known to have a variety of medicinal and therapeutic applications ranging from anti-microbial, anti-viral, anti-inflammatory, anti-cancer, and immunomodulating properties. The present review discusses various aspects of secondary metabolites viz. biosynthesis, types and applications, which highlights the repertoire of bioactive constituents they harbor. Majority of these products have been produced from only a handful of genera. Moreover, with the onset of various OMICS approaches, cyanobacteria have become an attractive chassis for improved secondary metabolites production. Also the intervention of synthetic biology tools such as gene editing technologies and a variety of metabolomics and fluxomics approaches, used for engineering cyanobacteria, have significantly enhanced the production of secondary metabolites.
Collapse
Affiliation(s)
- Shaloo Verma
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
15
|
Zhuang X, Zhang Y, Xiao AF, Zhang A, Fang B. Applications of Synthetic Biotechnology on Carbon Neutrality Research: A Review on Electrically Driven Microbial and Enzyme Engineering. Front Bioeng Biotechnol 2022; 10:826008. [PMID: 35145960 PMCID: PMC8822124 DOI: 10.3389/fbioe.2022.826008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022] Open
Abstract
With the advancement of science, technology, and productivity, the rapid development of industrial production, transportation, and the exploitation of fossil fuels has gradually led to the accumulation of greenhouse gases and deterioration of global warming. Carbon neutrality is a balance between absorption and emissions achieved by minimizing carbon dioxide (CO2) emissions from human social productive activity through a series of initiatives, including energy substitution and energy efficiency improvement. Then CO2 was offset through forest carbon sequestration and captured at last. Therefore, efficiently reducing CO2 emissions and enhancing CO2 capture are a matter of great urgency. Because many species have the natural CO2 capture properties, more and more scientists focus their attention on developing the biological carbon sequestration technique and further combine with synthetic biotechnology and electricity. In this article, the advances of the synthetic biotechnology method for the most promising organisms were reviewed, such as cyanobacteria, Escherichia coli, and yeast, in which the metabolic pathways were reconstructed to enhance the efficiency of CO2 capture and product synthesis. Furthermore, the electrically driven microbial and enzyme engineering processes are also summarized, in which the critical role and principle of electricity in the process of CO2 capture are canvassed. This review provides detailed summary and analysis of CO2 capture through synthetic biotechnology, which also pave the way for implementing electrically driven combined strategies.
Collapse
Affiliation(s)
- Xiaoyan Zhuang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Yonghui Zhang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - An-Feng Xiao
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Aihui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Baishan Fang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Shinde S, Singapuri S, Jiang Z, Long B, Wilcox D, Klatt C, Jones JA, Yuan JS, Wang X. Thermodynamics contributes to high limonene productivity in cyanobacteria. Metab Eng Commun 2022; 14:e00193. [PMID: 35145855 PMCID: PMC8801761 DOI: 10.1016/j.mec.2022.e00193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/02/2023] Open
Abstract
Terpenoids are a large group of secondary metabolites with broad industrial applications. Engineering cyanobacteria is an attractive route for the sustainable production of commodity terpenoids. Currently, a major obstacle lies in the low productivity attained in engineered cyanobacterial strains. Traditional metabolic engineering to improve pathway kinetics has led to limited success in enhancing terpenoid productivity. In this study, we reveal thermodynamics as the main determinant for high limonene productivity in cyanobacteria. Through overexpressing the primary sigma factor, a higher photosynthetic rate was achieved in an engineered strain of Synechococcus elongatus PCC 7942. Computational modeling and wet lab analyses showed an increased flux toward both native carbon sink glycogen synthesis and the non-native limonene synthesis from photosynthate output. On the other hand, comparative proteomics showed decreased expression of terpene pathway enzymes, revealing their limited role in determining terpene flux. Lastly, growth optimization by enhancing photosynthesis has led to a limonene titer of 19 mg/L in 7 days with a maximum productivity of 4.3 mg/L/day. This study highlights the importance of enhancing photosynthesis and substrate input for the high productivity of secondary metabolic pathways, providing a new strategy for future terpenoid engineering in phototrophs. Pathway enzyme engineering marginally increases cyanobacterial terpene production. Sigma factor overexpression improves photosynthetic efficiency in cyanobacteria. Enhanced photosynthesis results in high limonene production in cyanobacteria. Enhanced photosynthesis provides high thermodynamic driving force for terpenes.
Collapse
Affiliation(s)
- Shrameeta Shinde
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA
| | - Sonali Singapuri
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA
| | - Zhenxiong Jiang
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA
| | - Bin Long
- Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Danielle Wilcox
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA
| | - Camille Klatt
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA
| | - J. Andrew Jones
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, 45056, USA
| | - Joshua S. Yuan
- Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Xin Wang
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA
- Corresponding author.
| |
Collapse
|
17
|
Andrews F, Faulkner M, Toogood HS, Scrutton NS. Combinatorial use of environmental stresses and genetic engineering to increase ethanol titres in cyanobacteria. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:240. [PMID: 34920731 PMCID: PMC8684110 DOI: 10.1186/s13068-021-02091-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/05/2021] [Indexed: 06/07/2023]
Abstract
Current industrial bioethanol production by yeast through fermentation generates carbon dioxide. Carbon neutral bioethanol production by cyanobacteria uses biological fixation (photosynthesis) of carbon dioxide or other waste inorganic carbon sources, whilst being sustainable and renewable. The first ethanologenic cyanobacterial process was developed over two decades ago using Synechococcus elongatus PCC 7942, by incorporating the recombinant pdc and adh genes from Zymomonas mobilis. Further engineering has increased bioethanol titres 24-fold, yet current levels are far below what is required for industrial application. At the heart of the problem is that the rate of carbon fixation cannot be drastically accelerated and carbon partitioning towards bioethanol production impacts on cell fitness. Key progress has been achieved by increasing the precursor pyruvate levels intracellularly, upregulating synthetic genes and knocking out pathways competing for pyruvate. Studies have shown that cyanobacteria accumulate high proportions of carbon reserves that are mobilised under specific environmental stresses or through pathway engineering to increase ethanol production. When used in conjunction with specific genetic knockouts, they supply significantly more carbon for ethanol production. This review will discuss the progress in generating ethanologenic cyanobacteria through chassis engineering, and exploring the impact of environmental stresses on increasing carbon flux towards ethanol production.
Collapse
Affiliation(s)
- Fraser Andrews
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Matthew Faulkner
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Helen S Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
- C3 Biotechnologies Ltd, 20 Mannin Way, Lancaster Business Park, Caton Road, Lancaster, LA1 3SW, Lancashire, UK.
| |
Collapse
|
18
|
Sengupta S, Sahasrabuddhe D, Wangikar PP. Transporter engineering for the development of cyanobacteria as cell factories: A text analytics guided survey. Biotechnol Adv 2021; 54:107816. [PMID: 34411662 DOI: 10.1016/j.biotechadv.2021.107816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are attractive candidates for photoautotrophic production of platform chemicals due to their inherent ability to utilize carbon dioxide as the sole carbon source. Metabolic pathways can be engineered more readily in cyanobacteria compared to higher photosynthetic organisms. Although significant progress has been made in pathway engineering, intracellular accumulation of the product is a potential bottleneck in large-scale production. Likewise, substrate uptake is known to limit growth and product formation. These limitations can potentially be addressed by targeted and controlled expression of transporter proteins in the metabolically engineered strains. This review focuses on the transporters that have been explored in cyanobacteria. To highlight the progress on characterization and application of cyanobacterial transporters, we applied text analytics to extract relevant information from over 1000 publications. We have categorized the transporters based on their source, their function and the solute they transport. Further, the review provides insights into the potential of transporters in the metabolic engineering of cyanobacteria for improved product titer.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Deepti Sahasrabuddhe
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
19
|
Liu X, Xie H, Roussou S, Lindblad P. Current advances in engineering cyanobacteria and their applications for photosynthetic butanol production. Curr Opin Biotechnol 2021; 73:143-150. [PMID: 34411807 DOI: 10.1016/j.copbio.2021.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 11/03/2022]
Abstract
Cyanobacteria are natural photosynthetic microbes which can be engineered for sustainable conversion of solar energy and carbon dioxide into chemical products. Attempts to improve target production often require an improved understanding of the native cyanobacterial host system. Valuable insights into cyanobacterial metabolism, biochemistry and physiology have been steadily increasing in recent years, stimulating key advancements of cyanobacteria as cell factories for biochemical, including biofuel, production. In the present review, we summarize the current progress in engineering cyanobacteria and discuss the achieved and potential utilization of these advances in cyanobacteria for the production of the bulk chemical butanol, specifically isobutanol and 1-butanol.
Collapse
Affiliation(s)
- Xufeng Liu
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Hao Xie
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Stamatina Roussou
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
20
|
Norena-Caro DA, Zuniga C, Pete AJ, Saemundsson SA, Donaldson MR, Adams AJ, Dooley KM, Zengler K, Benton MG. Analysis of the cyanobacterial amino acid metabolism with a precise genome-scale metabolic reconstruction of Anabaena sp. UTEX 2576. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Mosey M, Douchi D, Knoshaug EP, Laurens LM. Methodological review of genetic engineering approaches for non-model algae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
23
|
Battaglino B, Arduino A, Pagliano C, Sforza E, Bertucco A. Optimization of Light and Nutrients Supply to Stabilize Long-Term Industrial Cultivation of Metabolically Engineered Cyanobacteria: A Model-Based Analysis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Beatrice Battaglino
- BioSolar Lab, Applied Science and Technology Department, Politecnico di Torino, Environment Park, Via Livorno 60, 10144 Torino, Italy
| | - Alessandro Arduino
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Cristina Pagliano
- BioSolar Lab, Applied Science and Technology Department, Politecnico di Torino, Environment Park, Via Livorno 60, 10144 Torino, Italy
| | - Eleonora Sforza
- Department of Industrial Engineering, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Alberto Bertucco
- Department of Industrial Engineering, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
24
|
Lee HJ, Choi JI, Woo HM. Biocontainment of Engineered Synechococcus elongatus PCC 7942 for Photosynthetic Production of α-Farnesene from CO 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:698-703. [PMID: 33411536 DOI: 10.1021/acs.jafc.0c07020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Biocontainment systems have been developed to mitigate the concerns regarding biosafety and environmental risk because of the possible escape of genetically modified organisms into the environment following large-scale outdoor cultivation. Here, we present a biocontainment system entailing genetically modified Synechococcus elongatus PCC 7942, also engineered for α-farnesene production using a de-evolutionary strategy. In this approach, the gene cluster encoding the β-carboxysome and the associated carbon concentrating mechanism (CCM) were deleted in the α-farnesene-producing cyanobacteria, resulting in no cell growth and no α-farnesene production at ambient CO2 concentrations (100% air bubbling). However, cell growth and α-farnesene production were detected in the CCM-deficient strains at high CO2 concentrations (5% CO2 [v/v], 10% CO2 [v/v]), albeit at levels lower than those of the parental control. To overcome this limitation, the overexpression of carbonic anhydrase and bicarbonate transporter genes in the CCM-deficient strains restored cell growth and the production level of α-farnesene (5.0 ± 0.6 mg/L) to that of the parental control. The production of α-farnesene in the later strains strictly depended on CO2 concentration in the photobioreactor and did not rely on a chemical induction process. Thus, next generation bio-solar cell factories could be promoted with the suggested biocontainment system.
Collapse
Affiliation(s)
- Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
25
|
Engineering cyanobacteria with enhanced growth in simulated flue gases for high-yield bioethanol production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Liu D, Liberton M, Hendry JI, Aminian-Dehkordi J, Maranas CD, Pakrasi HB. Engineering biology approaches for food and nutrient production by cyanobacteria. Curr Opin Biotechnol 2020; 67:1-6. [PMID: 33129046 DOI: 10.1016/j.copbio.2020.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023]
Abstract
As photoautotrophic organisms, cyanobacteria capture and store solar energy in the form of biomass. Cyanobacterial biomass has been an important component of diet and nutrition in several regions for centuries. Synthetic biology strategies are currently being applied to increase the yield and productivity of cyanobacterial biomass by optimizing solar energy utilization and CO2 fixation rates for carbon storage. Likewise, engineering cyanobacteria as cellular factories to synthesize carbohydrates, amino acids, proteins, lipids and fatty acids is providing an attractive way to sustainably produce food and nutrients for human consumption. In this review, we have summarized recent progress in both aspects and prospective trends under development.
Collapse
Affiliation(s)
- Deng Liu
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - John I Hendry
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Javad Aminian-Dehkordi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
27
|
Wang X, Chen L, Liu J, Sun T, Zhang W. Light-Driven Biosynthesis of myo-Inositol Directly From CO 2 in Synechocystis sp. PCC 6803. Front Microbiol 2020; 11:566117. [PMID: 33117313 PMCID: PMC7550737 DOI: 10.3389/fmicb.2020.566117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
myo-inositol (MI) is an essential growth factor, nutritional source, and important precursor for many derivatives like D-chiro-inositol. In this study, attempts were made to achieve the “green biosynthesis” of MI in a model photosynthetic cyanobacterium Synechocystis sp. PCC 6803. First, several genes encoding myo-inositol-1-phosphate synthases and myo-inositol-1-monophosphatase, catalyzing the first or the second step of MI synthesis, were introduced, respectively, into Synechocystis. The results showed that the engineered strain carrying myo-inositol-1-phosphate synthase gene from Saccharomyces cerevisiae was able to produce MI at 0.97 mg L–1. Second, the combined overexpression of genes related to the two catalyzing processes increased the production up to 1.42 mg L–1. Third, to re-direct more cellular carbon flux into MI synthesis, an inducible small RNA regulatory tool, based on MicC-Hfq, was utilized to control the competing pathways of MI biosynthesis, resulting in MI production of ∼7.93 mg L–1. Finally, by optimizing the cultivation condition via supplying bicarbonate to enhance carbon fixation, a final MI production up to 12.72 mg L–1 was achieved, representing a ∼12-fold increase compared with the initial MI-producing strain. This study provides a light-driven green synthetic strategy for MI directly from CO2 in cyanobacterial chassis and represents a renewable alternative that may deserve further optimization in the future.
Collapse
Affiliation(s)
- Xiaoshuai Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Jing Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Bu G, Parrish S, Gleason PR, Nielsen DR, Nannenga BL. Heterologous expression and purification of the bicarbonate transporter BicA from Synechocystis sp. PCC 6803. Protein Expr Purif 2020; 175:105716. [PMID: 32738437 DOI: 10.1016/j.pep.2020.105716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022]
Abstract
The high-flux/low-affinity cyanobacterial bicarbonate transporter BicA is a member of sulfate permease/solute carrier 26 (SulP/SLC26) family and plays a major role in cyanobacterial inorganic carbon uptake. In order to study this important membrane protein, robust platforms for over-expression and protocols for purification are required. In this work we have optimized the expression and purification of BicA from strain Synechocystis sp. PCC 6803 (BicA6803) in Escherichia coli. It was determined that expression with C43 (DE3) Rosetta2 at 37 °C produced the highest levels of over-expressed BicA6803 relative to other strains screened, and membrane solubilization with n-dodecyl-β-d-maltopyranoside facilitated the purification of high levels of stable and homogenous BicA6803. Using these expression and purification strategies, the final yields of purified BicA were 6.5 ± 1.0 mg per liter of culture.
Collapse
Affiliation(s)
- Guanhong Bu
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Sydney Parrish
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Patrick R Gleason
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA; Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85278, USA
| | - David R Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
29
|
Mukherjee B, Madhu S, Wangikar PP. The role of systems biology in developing non-model cyanobacteria as hosts for chemical production. Curr Opin Biotechnol 2020; 64:62-69. [DOI: 10.1016/j.copbio.2019.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 11/16/2022]
|
30
|
Engineering cyanobacteria chassis cells toward more efficient photosynthesis. Curr Opin Biotechnol 2020; 62:1-6. [DOI: 10.1016/j.copbio.2019.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/08/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
|
31
|
Ng I, Keskin BB, Tan S. A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnol J 2020; 15:e1900228. [DOI: 10.1002/biot.201900228] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Batuhan Birol Keskin
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
32
|
Kamennaya NA, Hu P, Jansson C. Sedimentation of ballasted cells-free EPS in meromictic Fayetteville Green Lake. GEOBIOLOGY 2020; 18:80-92. [PMID: 31682076 DOI: 10.1111/gbi.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 09/10/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Fayetteville Green Lake (FGL) is a recognized, extensively studied present-day model of the stratified Proterozoic ocean. Nonetheless, biomass sedimentation in FGL remains hard to explain: while virtually all sediment pigments belong to photosynthetic sulfur bacteria from a chemocline, the isotopic carbon signature of the bulk organic matter suggests its epilimnetic phytoplankton origin. To explain the epilimnetic origin of sedimented carbon, we studied the dominant Synechococci, isolated from FGL. Here, we present experimental evidence that FGL Synechococci produce copious extracellular polysaccharides (EPS) especially when availability of inorganic carbon (Ci ) is high relative to availability of other macronutrients, for example phosphorus. The accumulating EPS become impregnated with calcium, magnesium, and sodium cations and are released to the environment as ballasted cell coverings. Sedimentation of these cell-free EPS can constitute the bulk of pigment-free organic material in FGL sediment. Because increased availability of Ci specifically stimulates production of EPS and the accumulated EPS adsorb cations and become ballasted, we propose the universal role of cyanobacterial EPS in biomass sedimentation in the high-Ci Paleoproterozoic ocean as well as in modern aquatic systems like FGL.
Collapse
Affiliation(s)
- Nina A Kamennaya
- Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA
| | - Ping Hu
- Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA
| | - Christer Jansson
- Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA
| |
Collapse
|
33
|
Gupta JK, Rai P, Jain KK, Srivastava S. Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcus sp. PCC 7002 increases growth rate and glycogen accumulation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:17. [PMID: 32015756 PMCID: PMC6988372 DOI: 10.1186/s13068-020-1656-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/13/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Synechococcus sp. PCC 7002 is an attractive organism as a feedstock and for photoautotrophic production of biofuels and biochemicals due to its fast growth and ability to grow in marine/brackish medium. Previous studies suggest that the growth of this organism is limited by the HCO3 - transport across the cytoplasmic membrane. Tools for genetic engineering are well established for this cyanobacterium, which makes it possible to overexpress genes of interest. RESULTS In this work, we overexpressed two different native Na+-dependent carbon transporters viz., SbtA and BicA in Synechococcus sp. PCC 7002 cells under the influence of a strong light-inducible promoter and a strong RBS sequence. The overexpression of these transporters enhanced biomass by about 50%, increased intracellular glycogen about 50%, and increased extracellular carbohydrate up to threefold. Importantly, the biomass and glycogen productivity of the transformants with air bubbling was even higher than that of WT cells with 1% CO2 bubbling. The overexpression of these transporters was associated with an increased carotenoid content without altering the chl a content. CONCLUSIONS Our work shows the utility of increased carbon transport in improving the growth as well as product formation in a marine cyanobacterium and will serve to increase the utility of this organism as a potential cell factory.
Collapse
Affiliation(s)
- Jai Kumar Gupta
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Preeti Rai
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, India
| | | | - Shireesh Srivastava
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067 India
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, India
| |
Collapse
|
34
|
Pereira SB, Sousa A, Santos M, Araújo M, Serôdio F, Granja P, Tamagnini P. Strategies to Obtain Designer Polymers Based on Cyanobacterial Extracellular Polymeric Substances (EPS). Int J Mol Sci 2019; 20:E5693. [PMID: 31739392 PMCID: PMC6888056 DOI: 10.3390/ijms20225693] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023] Open
Abstract
Biopolymers derived from polysaccharides are a sustainable and environmentally friendly alternative to the synthetic counterparts available in the market. Due to their distinctive properties, the cyanobacterial extracellular polymeric substances (EPS), mainly composed of heteropolysaccharides, emerge as a valid alternative to address several biotechnological and biomedical challenges. Nevertheless, biotechnological/biomedical applications based on cyanobacterial EPS have only recently started to emerge. For the successful exploitation of cyanobacterial EPS, it is important to strategically design the polymers, either by genetic engineering of the producing strains or by chemical modification of the polymers. This requires a better understanding of the EPS biosynthetic pathways and their relationship with central metabolism, as well as to exploit the available polymer functionalization chemistries. Considering all this, we provide an overview of the characteristics and biological activities of cyanobacterial EPS, discuss the challenges and opportunities to improve the amount and/or characteristics of the polymers, and report the most relevant advances on the use of cyanobacterial EPS as scaffolds, coatings, and vehicles for drug delivery.
Collapse
Affiliation(s)
- Sara B. Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aureliana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Marina Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Filipa Serôdio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
35
|
Douchi D, Liang F, Cano M, Xiong W, Wang B, Maness PC, Lindblad P, Yu J. Membrane-Inlet Mass Spectrometry Enables a Quantitative Understanding of Inorganic Carbon Uptake Flux and Carbon Concentrating Mechanisms in Metabolically Engineered Cyanobacteria. Front Microbiol 2019; 10:1356. [PMID: 31293533 PMCID: PMC6604854 DOI: 10.3389/fmicb.2019.01356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/31/2019] [Indexed: 01/04/2023] Open
Abstract
Photosynthesis uses solar energy to drive inorganic carbon (Ci) uptake, fixation, and biomass formation. In cyanobacteria, Ci uptake is assisted by carbon concentrating mechanisms (CCM), and CO2 fixation is catalyzed by RubisCO in the Calvin-Benson-Bassham (CBB) cycle. Understanding the regulation that governs CCM and CBB cycle activities in natural and engineered strains requires methods and parameters that quantify these activities. Here, we used membrane-inlet mass spectrometry (MIMS) to simultaneously quantify Ci concentrating and fixation processes in the cyanobacterium Synechocystis 6803. By comparing cultures acclimated to ambient air conditions to cultures transitioning to high Ci conditions, we show that acclimation to high Ci involves a concurrent decline of Ci uptake and fixation parameters. By varying light input, we show that both CCM and CBB reactions become energy limited under low light conditions. A strain over-expressing the gene for the CBB cycle enzyme fructose-bisphosphate aldolase showed higher CCM and carbon fixation capabilities, suggesting a regulatory link between CBB metabolites and CCM capacity. While the engineering of an ethanol production pathway had no effect on CCM or carbon fixation parameters, additional fructose-bisphosphate aldolase gene over-expression enhanced both activities while simultaneously increasing ethanol productivity. These observations show that MIMS can be a useful tool to study the extracellular Ci flux and how CBB metabolites regulate Ci uptake and fixation.
Collapse
Affiliation(s)
- Damien Douchi
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Feiyan Liang
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Melissa Cano
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Wei Xiong
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Bo Wang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Pin-Ching Maness
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Jianping Yu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
36
|
Santos-Merino M, Singh AK, Ducat DC. New Applications of Synthetic Biology Tools for Cyanobacterial Metabolic Engineering. Front Bioeng Biotechnol 2019; 7:33. [PMID: 30873404 PMCID: PMC6400836 DOI: 10.3389/fbioe.2019.00033] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/05/2019] [Indexed: 01/25/2023] Open
Abstract
Cyanobacteria are promising microorganisms for sustainable biotechnologies, yet unlocking their potential requires radical re-engineering and application of cutting-edge synthetic biology techniques. In recent years, the available devices and strategies for modifying cyanobacteria have been increasing, including advances in the design of genetic promoters, ribosome binding sites, riboswitches, reporter proteins, modular vector systems, and markerless selection systems. Because of these new toolkits, cyanobacteria have been successfully engineered to express heterologous pathways for the production of a wide variety of valuable compounds. Cyanobacterial strains with the potential to be used in real-world applications will require the refinement of genetic circuits used to express the heterologous pathways and development of accurate models that predict how these pathways can be best integrated into the larger cellular metabolic network. Herein, we review advances that have been made to translate synthetic biology tools into cyanobacterial model organisms and summarize experimental and in silico strategies that have been employed to increase their bioproduction potential. Despite the advances in synthetic biology and metabolic engineering during the last years, it is clear that still further improvements are required if cyanobacteria are to be competitive with heterotrophic microorganisms for the bioproduction of added-value compounds.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Amit K. Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
37
|
Kamennaya NA, Zemla M, Mahoney L, Chen L, Holman E, Holman HY, Auer M, Ajo-Franklin CM, Jansson C. High pCO 2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial. Nat Commun 2018; 9:2116. [PMID: 29844378 PMCID: PMC5974010 DOI: 10.1038/s41467-018-04588-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/13/2018] [Indexed: 11/28/2022] Open
Abstract
The contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22-2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO2 pressure (pCO2) representative of the early Paleoproterozoic. We find that high pCO2 boosts generation of acidic extracellular polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.
Collapse
Affiliation(s)
- Nina A Kamennaya
- Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, 94720, USA.
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Marcin Zemla
- Molecular Biophysics and Integrated Bioimaging Sciences Division, LBNL, Berkeley, CA, 94720, USA
| | - Laura Mahoney
- Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, 94720, USA
| | - Liang Chen
- Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, 94720, USA
| | - Elizabeth Holman
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Hoi-Ying Holman
- Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, 94720, USA
| | - Manfred Auer
- Molecular Biophysics and Integrated Bioimaging Sciences Division, LBNL, Berkeley, CA, 94720, USA
| | | | - Christer Jansson
- Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, 94720, USA
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O Box 999, K8-93, Richland, WA, 99352, USA
| |
Collapse
|
38
|
Chen X, Cao Y, Li F, Tian Y, Song H. Enzyme-Assisted Microbial Electrosynthesis of Poly(3-hydroxybutyrate) via CO2 Bioreduction by Engineered Ralstonia eutropha. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00226] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoli Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yingxiu Cao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Feng Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yao Tian
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
39
|
Valdespino-Castillo PM, Hu P, Merino-Ibarra M, López-Gómez LM, Cerqueda-García D, González-De Zayas R, Pi-Puig T, Lestayo JA, Holman HY, Falcón LI. Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba. Front Microbiol 2018; 9:510. [PMID: 29666607 PMCID: PMC5891642 DOI: 10.3389/fmicb.2018.00510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2018] [Indexed: 01/23/2023] Open
Abstract
Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblages accumulate major ions, trace elements and biomass from their ambient aquatic environments; their role in the resulting chemical structure of these lithifications needs clarification. We studied the biogeochemistry and microbial structure of microbialites collected from diverse locations in Mexico and in a previously undescribed microbialite in Cuba. We examined their structure, chemistry and mineralogy at different scales using an array of nested methods including 16S rRNA gene high-throughput sequencing, elemental analysis, X-Ray fluorescence (XRF), X-Ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transformed Infrared (FTIR) spectroscopy and Synchrotron Radiation-based Fourier Transformed Infrared (SR-FTIR) spectromicroscopy. The resulting data revealed high biological and chemical diversity among microbialites and specific microbe to chemical correlations. Regardless of the sampling site, Proteobacteria had the most significant correlations with biogeochemical parameters such as organic carbon (Corg), nitrogen and Corg:Ca ratio. Biogeochemically relevant bacterial groups (dominant phototrophs and heterotrophs) showed significant correlations with major ion composition, mineral type and transition element content, such as cadmium, cobalt, chromium, copper and nickel. Microbial-chemical relationships were discussed in reference to microbialite formation, microbial metabolic capacities and the role of transition elements as enzyme cofactors. This paper provides an analytical baseline to drive our understanding of the links between microbial diversity with the chemistry of their lithified precipitations.
Collapse
Affiliation(s)
- Patricia M Valdespino-Castillo
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, United States
| | - Ping Hu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, United States
| | - Martín Merino-Ibarra
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luz M López-Gómez
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Cerqueda-García
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Teresa Pi-Puig
- Instituto de Geología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio Nacional de Geoquímica y Mineralogía, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julio A Lestayo
- Centro de Investigaciones de Ecosistemas Costeros, Cayo Coco, Cuba
| | - Hoi-Ying Holman
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, United States
| | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
40
|
Zhou J, Meng H, Zhang W, Li Y. Production of Industrial Chemicals from CO 2 by Engineering Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:97-116. [PMID: 30091093 DOI: 10.1007/978-981-13-0854-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As photosynthetic prokaryotes, cyanobacteria can directly convert CO2 to organic compounds and grow rapidly using sunlight as the sole source of energy. The direct biosynthesis of chemicals from CO2 and sunlight in cyanobacteria is therefore theoretically more attractive than using glucose as carbon source in heterotrophic bacteria. To date, more than 20 different target chemicals have been synthesized from CO2 in cyanobacteria. However, the yield and productivity of the constructed strains is about 100-fold lower than what can be obtained using heterotrophic bacteria, and only a few products reached the gram level. The main bottleneck in optimizing cyanobacterial cell factories is the relative complexity of the metabolism of photoautotrophic bacteria. In heterotrophic bacteria, energy metabolism is integrated with the carbon metabolism, so that glucose can provide both energy and carbon for the synthesis of target chemicals. By contrast, the energy and carbon metabolism of cyanobacteria are separated. First, solar energy is converted into chemical energy and reducing power via the light reactions of photosynthesis. Subsequently, CO2 is reduced to organic compounds using this chemical energy and reducing power. Finally, the reduced CO2 provides the carbon source and chemical energy for the synthesis of target chemicals and cell growth. Consequently, the unique nature of the cyanobacterial energy and carbon metabolism determines the specific metabolic engineering strategies required for these organisms. In this chapter, we will describe the specific characteristics of cyanobacteria regarding their metabolism of carbon and energy, summarize and analyze the specific strategies for the production of chemicals in cyanobacteria, and propose metabolic engineering strategies which may be most suitable for cyanobacteria.
Collapse
Affiliation(s)
- Jie Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hengkai Meng
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
41
|
Maestre FT, Solé R, Singh BK. Microbial biotechnology as a tool to restore degraded drylands. Microb Biotechnol 2017; 10:1250-1253. [PMID: 28834240 PMCID: PMC5609258 DOI: 10.1111/1751-7915.12832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 12/01/2022] Open
Abstract
We briefly review how microbial biotechnology can contribute to improve activities aiming to restore degraded drylands and to combat their desertification, which are an integral part of the Sustainable Development Goal 15 of the 2030 Agenda. Microbial biotechnology offers notable promise to improve restoration actions based on the use of biocrust-forming engineered cyanobacteria, which play key roles in maintaining ecosystem structure and functioning in drylands worldwide. Advances in our understanding of microbiome associated to biocrusts and of the signalling involved in the communication among their constituents can also potentially enhance the outcome of restoration activities in drylands.
Collapse
Affiliation(s)
- Fernando T. Maestre
- Departamento de Biología y GeologíaFísica y Química InorgánicaEscuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan Carlosc/ Tulipán s/n28933MóstolesSpain
| | - Ricard Solé
- ICREA‐Complex Systems LabUniversitat Pompeu FabraDr Aiguader 8808003BarcelonaSpain
- Institut de Biologia EvolutivaCSIC‐UPFPg Maritim de la Barceloneta 3708003BarcelonaSpain
- Santa Fe Institute1399 Hyde Park RoadSanta FeNM87501USA
| | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrith2751NSWAustralia
- Global Centre for Land‐Based InnovationWestern Sydney UniversityPenrith2751NSWAustralia
| |
Collapse
|
42
|
Claassens NJ. A warm welcome for alternative CO 2 fixation pathways in microbial biotechnology. Microb Biotechnol 2017; 10:31-34. [PMID: 27873465 PMCID: PMC5270723 DOI: 10.1111/1751-7915.12456] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Nico J. Claassens
- Laboratory of MicrobiologyWageningen UniversityStippeneng 46708 WEWageningenThe Netherlands
| |
Collapse
|
43
|
Holland SC, Artier J, Miller NT, Cano M, Yu J, Ghirardi ML, Burnap RL. Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Claassens NJ, Sousa DZ, dos Santos VAPM, de Vos WM, van der Oost J. Harnessing the power of microbial autotrophy. Nat Rev Microbiol 2016; 14:692-706. [DOI: 10.1038/nrmicro.2016.130] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
45
|
De Farias Silva CE, Sforza E, Bertucco A. Effects of pH and Carbon Source on Synechococcus PCC 7002 Cultivation: Biomass and Carbohydrate Production with Different Strategies for pH Control. Appl Biochem Biotechnol 2016; 181:682-698. [DOI: 10.1007/s12010-016-2241-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/05/2016] [Indexed: 02/04/2023]
|
46
|
Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq. Sci Rep 2016; 6:30584. [PMID: 27488818 PMCID: PMC4973221 DOI: 10.1038/srep30584] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023] Open
Abstract
The development of high-throughput technology using RNA-seq has allowed understanding of cellular mechanisms and regulations of bacterial transcription. In addition, transcriptome analysis with RNA-seq has been used to accelerate strain improvement through systems metabolic engineering. Synechococcus elongatus PCC 7942, a photosynthetic bacterium, has remarkable potential for biochemical and biofuel production due to photoautotrophic cell growth and direct CO2 conversion. Here, we performed a transcriptome analysis of S. elongatus PCC 7942 using RNA-seq to understand the changes of cellular metabolism and regulation for nitrogen starvation responses. As a result, differentially expressed genes (DEGs) were identified and functionally categorized. With mapping onto metabolic pathways, we probed transcriptional perturbation and regulation of carbon and nitrogen metabolisms relating to nitrogen starvation responses. Experimental evidence such as chlorophyll a and phycobilisome content and the measurement of CO2 uptake rate validated the transcriptome analysis. The analysis suggests that S. elongatus PCC 7942 reacts to nitrogen starvation by not only rearranging the cellular transport capacity involved in carbon and nitrogen assimilation pathways but also by reducing protein synthesis and photosynthesis activities.
Collapse
|
47
|
Banerjee C, Dubey KK, Shukla P. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges. Front Microbiol 2016; 7:432. [PMID: 27065986 PMCID: PMC4815533 DOI: 10.3389/fmicb.2016.00432] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/17/2016] [Indexed: 12/14/2022] Open
Abstract
The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.
Collapse
Affiliation(s)
- Chiranjib Banerjee
- Department of Environmental Science and Engineering, Indian School of Mines Dhanbad, India
| | - Kashyap K Dubey
- Department of Biotechnology, University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University Rohtak, India
| |
Collapse
|
48
|
Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Appl Microbiol Biotechnol 2016; 100:3401-13. [DOI: 10.1007/s00253-016-7374-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
49
|
Zhou J, Zhu T, Cai Z, Li Y. From cyanochemicals to cyanofactories: a review and perspective. Microb Cell Fact 2016; 15:2. [PMID: 26743222 PMCID: PMC4705643 DOI: 10.1186/s12934-015-0405-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/25/2015] [Indexed: 11/18/2022] Open
Abstract
Engineering cyanobacteria for production of chemicals from solar energy, CO2 and water is a potential approach to address global energy and environment issues such as greenhouse effect. To date, more than 20 chemicals have been synthesized by engineered cyanobacteria using CO2 as raw materials, and these studies have been well reviewed. However, unlike heterotrophic microorganisms, the low CO2 fixation rate makes it a long way to go from cyanochemicals to cyanofactories. Here we review recent progresses on improvement of carbon fixation and redistribution of intercellular carbon flux, and discuss the challenges for developing cyanofactories in the future.
Collapse
Affiliation(s)
- Jie Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No 1, West Beichen Road, Chaoyang District, 100101, Beijing, China.
| | - Taicheng Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No 1, West Beichen Road, Chaoyang District, 100101, Beijing, China.
| | - Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No 1, West Beichen Road, Chaoyang District, 100101, Beijing, China.
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No 1, West Beichen Road, Chaoyang District, 100101, Beijing, China.
| |
Collapse
|
50
|
Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate. PLoS One 2015; 10:e0144206. [PMID: 26641455 PMCID: PMC4671721 DOI: 10.1371/journal.pone.0144206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023] Open
Abstract
Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3-). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3- responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3-. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage.
Collapse
|