1
|
Hu Z, Zuo M, Ding S, Zhong Y, Xue M, Zheng H. Integrating Metabolomics and Genomics to Uncover the Impact of Fermented Total Mixed Ration on Heifer Growth Performance Through Host-Dependent Metabolic Pathways. Animals (Basel) 2025; 15:173. [PMID: 39858173 PMCID: PMC11758300 DOI: 10.3390/ani15020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
With the increasing demand for enhancing livestock production performance and optimizing feed efficiency, this study aimed to investigate the effects of fermented total mixed ration (FTMR) containing different proportions of rice straw and sheath and leaves of Zizania latifolia on systemic nutrient metabolism and oxidative metabolism under host genetic regulation and on growth performance of heifers. A total of 157 heifers aged 7-8 months were selected, and their hair was collected for whole-genome sequencing. They were randomly assigned into four groups of 18 to 21 cattle each and fed FTMR containing varying levels of rice straw (21% in LSF, 28% in MSF, 35% in HSF) or 31% sheath and leaves of Zizania latifolia (ZF) for a two-month period. At the end of trial, blood and urine samples were collected to measure biochemical indexes and metabolomics. The results showed that high rice straw content and ZF diets could increase blood glucose and non-protein nitrogen in heifers, that is, blood glucose and urea nitrogen levels in HSF and ZF groups were higher than those in LSF and MSF groups (p < 0.05). Meanwhile, the two diets could improve the antioxidant level of heifers. Urine metabolomics analysis between the groups identified three differential metabolic pathways, including 11 metabolites. Among them, l-homoserine and o-acetylserine had significant SNPs associated with them, which promoted glutathione metabolism. Although there was no significant effect of diet on heifers' average daily gain (ADG) in body weight (p > 0.05), there was substantial inter-individual variation in metabolites among all animals, as further correlation analyses illustrated. Twenty-eight metabolites were significantly associated with ADG (R > 0.3, p < 0.05). Four of them were identified as biomarkers, primarily regulating energy metabolism and oxidative balance. In conclusion, feeding HSF and ZF FTMR enhances glutathione metabolism and antioxidant capacity in heifers, positioning key metabolites as candidates for ADG markers. This integrative omics approach underscores the potential for enhancing livestock productivity and promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Xianghu Laboratory, Hangzhou 311231, China; (Z.H.); (M.Z.); (S.D.)
| | - Minyu Zuo
- Xianghu Laboratory, Hangzhou 311231, China; (Z.H.); (M.Z.); (S.D.)
| | - Shixuan Ding
- Xianghu Laboratory, Hangzhou 311231, China; (Z.H.); (M.Z.); (S.D.)
| | - Yifan Zhong
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China;
| | - Mingyuan Xue
- Xianghu Laboratory, Hangzhou 311231, China; (Z.H.); (M.Z.); (S.D.)
| | - Huichao Zheng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Niu K, Zheng R, Zhang M, Chen MQ, Kong YM, Liu ZQ, Zheng YG. Adjustment of the main biosynthesis modules to enhance the production of l-homoserine in Escherichia coli W3110. Biotechnol Bioeng 2025; 122:223-232. [PMID: 39425492 DOI: 10.1002/bit.28861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
l-homoserine is an important platform compound of many valuable products. Construction of microbial cell factory for l-homoserine production from glucose has attracted a great deal of attention. In this study, l-homoserine biosynthesis pathway was divided into three modules, the glucose uptake and upstream pathway, the downstream pathway, and the energy supply module. Metabolomics of the chassis strain HS indicated that the supply of ATP was inadequate, therefore, the energy supply module was firstly modified. By balancing the ATP supply module, the l-homoserine production increased by 66% to 12.55 g/L. Further, the results indicated that the upstream pathway was blocked, and increasing the culture temperature to 37°C could solve this problem and the l-homoserine production reached 21.38 g/L. Then, the downstream synthesis pathways were further strengthened to balance the fluxes, and the l-homoserine production reached the highest reported level of 32.55 g/L in shake flasks. Finally, fed-batch fermentation in a 5-L bioreactor was conducted, and l-homoserine production could reach to 119.96 g/L after 92 h cultivation, with the yield of 0.41 g/g glucose and productivity of 1.31 g/L/h. The study provides a well research foundation for l-homoserine production by microbial fermentation with the capacity for industrial application.
Collapse
Affiliation(s)
- Kun Niu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Rui Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Miao Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Mao-Qin Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yi-Ming Kong
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Jin X, Wang S, Wang Y, Qi Q, Liang Q. Metabolic engineering strategies for L-Homoserine production in Escherichia coli. Microb Cell Fact 2024; 23:338. [PMID: 39702271 DOI: 10.1186/s12934-024-02623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
L-Homoserine, serves as a non-essential precursor for the essential amino acids derived from L-aspartate in both animals and humans. It finds widespread applications across the food, cosmetics, pharmaceutical, and animal feed industries. Microbial fermentation, primarily utilizing Escherichia coli, is the dominant approach for L-Homoserine production. However, despite recent advancements in fermentative processes employing E. coli strains, low production efficiency remains a significant barrier to its commercial viability. This review explores the biosynthesis, secretion, and regulatory mechanisms of L-Homoserine in E. coli while assessing various metabolic engineering strategies aimed at improving production efficiency.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China
| | - Sumeng Wang
- Qingdao Agricultural University, Qingdao, 266100, China
| | - Yanbing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, PR China.
| |
Collapse
|
4
|
Vušak D, Šimunović Letić M, Tašner M, Matković-Čalogović D, Jurec J, Žilić D, Prugovečki B. Solvatomorphic Diversity in Coordination Compounds of Copper(II) with l-Homoserine and 1,10-Phenanthroline: Syntheses, Crystal Structures and ESR Study. Molecules 2024; 29:5621. [PMID: 39683780 DOI: 10.3390/molecules29235621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, we report the syntheses, crystal structures and magnetic properties of ternary copper(II) coordination compounds with l-homoserine (l-Hhser) and 1,10-phenanthroline (phen). Six new coordination compounds were obtained: [Cu(l-hser)(H2O)(phen)]2SO4·5H2O (1·5H2O), [Cu(μ-l-hser)(H2O)(phen)][Cu(l-hser)(H2O)(phen)]3(SO4)2∙12H2O (2·12H2O), {[Cu(μ-l-hser)(H2O)(phen)][Cu(μ-l-hser)(phen)]SO4·6H2O}n (3·6H2O), {[Cu(μ-l-hser)(H2O)(phen)]2SO4·3H2O}n (4·3H2O), [Cu(l-hser)(H2O)(phen)][Cu(l-hser)(CH3OH)(phen)]SO4·4H2O (5·4H2O) and {[Cu(l-hser)(CH3OH)(phen)][Cu(μ-l-hser)(phen)]SO4·5CH3OH}n (6·5CH3OH). It was shown that slight differences in water content in the synthetic mixtures highly influence the final product, so in some cases, two or three different products were obtained. The compounds were characterized by single-crystal X-ray diffraction and ESR spectroscopy. Crystal packings are based on intensive networks of hydrogen bonds and π interactions. Most water solvent molecules in these microporous compounds are found in discrete pockets (1∙5H2O, 2∙12H2O, 3∙6H2O, 4∙3H2O). In 5∙4H2O, water molecules are packed in pockets and 1D channels and in 6∙5CH3OH methanol solvent molecules form 1D channels. ESR spectroscopy measured from room down to liquid nitrogen temperature was used for local magnetic characterization of copper centers. The spin Hamiltonian parameters obtained from the spectral simulation revealed copper coordination geometry that is in agreement with the structural results. Furthermore, ESR spectra revealed no significant exchange coupling between copper ions. 3·6H2O showed pronounced antiproliferative activity toward human colon cancer cell lines (HCT116), human breast cancer cell line (MCF-7) and human lung cancer cell lines (H460).
Collapse
Affiliation(s)
- Darko Vušak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia
| | - Marta Šimunović Letić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia
| | - Marina Tašner
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia
| | - Dubravka Matković-Čalogović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia
| | - Jurica Jurec
- Laboratory for Magnetic Resonances, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Dijana Žilić
- Laboratory for Magnetic Resonances, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Biserka Prugovečki
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia
| |
Collapse
|
5
|
Cetnar DP, Hossain A, Vezeau GE, Salis HM. Predicting synthetic mRNA stability using massively parallel kinetic measurements, biophysical modeling, and machine learning. Nat Commun 2024; 15:9601. [PMID: 39505899 PMCID: PMC11541907 DOI: 10.1038/s41467-024-54059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
mRNA degradation is a central process that affects all gene expression levels, though it remains challenging to predict the stability of a mRNA from its sequence, due to the many coupled interactions that control degradation rate. Here, we carried out massively parallel kinetic decay measurements on over 50,000 bacterial mRNAs, using a learn-by-design approach to develop and validate a predictive sequence-to-function model of mRNA stability. mRNAs were designed to systematically vary translation rates, secondary structures, sequence compositions, G-quadruplexes, i-motifs, and RppH activity, resulting in mRNA half-lives from about 20 seconds to 20 minutes. We combined biophysical models and machine learning to develop steady-state and kinetic decay models of mRNA stability with high accuracy and generalizability, utilizing transcription rate models to identify mRNA isoforms and translation rate models to calculate ribosome protection. Overall, the developed model quantifies the key interactions that collectively control mRNA stability in bacterial operons and predicts how changing mRNA sequence alters mRNA stability, which is important when studying and engineering bacterial genetic systems.
Collapse
Affiliation(s)
- Daniel P Cetnar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ayaan Hossain
- Graduate Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA
| | - Grace E Vezeau
- Department of Biological Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Howard M Salis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Biological Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Zou S, Liu J, Zhao K, Zhu X, Zhang B, Liu Z, Zheng Y. Metabolic engineering of Escherichia coli for enhanced production of D-pantothenic acid. BIORESOURCE TECHNOLOGY 2024; 412:131352. [PMID: 39186986 DOI: 10.1016/j.biortech.2024.131352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
D-pantothenic acid (D-PA) is an essential vitamin that has been widely used in various industries. However, the low productivity caused by slow D-PA production in fermentation hinders its potential applications. In this study, strategies of engineering the synthetic pathway combined with regulating methyl recycle were employed in E. coli to enhance D-PA production. First, a self-induced promoter-mediated dynamic regulation of D-PA degradation pathway was carried out to improve D-PA accumulation. Then, to drive more carbon flux into D-PA synthesis, the key nodes of the R-pantoate pathway which encoded the essential enzyme were integrated into the genome. Subsequently, the further increase in D-PA production was achieved by promoting the regeneration of methyl donor. The strain L11T produced 86.03 g/L D-PA with a productivity of 0.797 g/L/h, which presented the highest D-PA titer and productivity to date. The strategies could be applied to constructing cell factories for producing other bio-based products.
Collapse
Affiliation(s)
- Shuping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinlong Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Kuo Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xintao Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhiqiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
7
|
Zhao G, Zhang D, Zhou B, Li Z, Liu G, Li H, Hu X, Wang X. Fine-Regulating the Carbon Flux of l-Isoleucine Producing Corynebacterium glutamicum WM001 for Efficient l-Threonine Production. ACS Synth Biol 2024; 13:3446-3460. [PMID: 39383016 DOI: 10.1021/acssynbio.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
l-Threonine, an essential amino acid, is widely used in various industries, with an annually growing demand. However, the present Corynebacterium glutamicum strains are difficult to achieve industrialization of l-threonine due to low yield and purity. In this study, we engineered an l-isoleucine-producing C. glutamicum WM001 to efficiently produce l-threonine by finely regulating the carbon flux. First, the threonine dehydratase in WM001 was mutated to lower the level of l-isoleucine production, then the homoserine dehydrogenase and aspartate kinase were mutated to release the feedback inhibition of l-threonine, and the resulting strain TWZ006 produced 14.2 g/L l-threonine. Subsequently, aspartate ammonia-lyase and aspartate transaminase were overexpressed to accumulate the precursor l-aspartate. Next, phosphoenolpyruvate carboxylase, pyruvate carboxylase and pyruvate kinase were overexpressed, and phosphoenolpyruvate carboxykinase, oxaloacetate decarboxylase were inactivated to fine-regulate the carbon flux among oxaloacetate, pyruvate and phosphoenolpyruvate. The resulting strain TWZ017 produced 21.5 g/L l-threonine. Finally, dihydrodipicolinate synthase was mutated with strong allosteric inhibition from l-lysine to significantly decrease byproducts accumulation, l-threonine export was optimized, and the final engineered strain TWZ024/pXTuf-thrE produced 78.3 g/L of l-threonine with the yield of 0.33 g/g glucose and the productivity of 0.82 g/L/h in a 7 L bioreactor. To the best of our knowledge, this represents the highest l-threonine production in C. glutamicum, providing possibilities for industrial-scale production.
Collapse
Affiliation(s)
- Guihong Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Dezhi Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Benzheng Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zihan Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Geer Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hedan Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Lu N, Wei M, Yang X, Li Y, Sun H, Yan Q, Zhang H, He J, Ma J, Xia M, Zhang C. Growth-coupled production of L-isoleucine in Escherichia coli via metabolic engineering. Metab Eng 2024; 86:181-193. [PMID: 39413988 DOI: 10.1016/j.ymben.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
L-isoleucine, an essential amino acid, is widely used in the pharmaceutical and food industries. However, the current production efficiency is insufficient to meet the increasing demands. In this study, we aimed to develop an efficient L-isoleucine-producing strain of Escherichia coli. First, accumulation of L-isoleucine was achieved by employing feedback-resistant enzymes. Next, a growth-coupled L-isoleucine synthetic pathway was established by introducing the metA-metB-based α-ketobutyrate-generating bypass, which significantly increased L-isoleucine production to 7.4 g/L. Upon employing an activity-improved cystathionine γ-synthase mutant obtained from adaptive laboratory evolution, L-isoleucine production further increased to 8.5 g/L. Subsequently, the redox flux was improved by bypassing the NADPH-dependent aspartate aminotransferase pathway and employing the NADH-dependent pathway and transhydrogenase. Finally, L-isoleucine efflux was enhanced by modifying the transport system. After fed-batch fermentation for 48 h, the resultant strain, ISO-12, reached an L-isoleucine production titer of 51.5 g/L and yield of 0.29 g/g glucose. The strains developed in this study achieved a higher L-isoleucine production efficiency than those reported previously. These strategies will aid in the development of cell factories that produce L-isoleucine and related products.
Collapse
Affiliation(s)
- Nan Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Minhua Wei
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuejing Yang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yingzi Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hao Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qianyu Yan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haibin Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jilong He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jie Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Chenglin Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
9
|
Zhou HY, Ding WQ, Zhang X, Zhang HY, Hu ZC, Liu ZQ, Zheng YG. Fine and combinatorial regulation of key metabolic pathway for enhanced β-alanine biosynthesis with non-inducible Escherichia coli. Biotechnol Bioeng 2024; 121:3297-3310. [PMID: 38978393 DOI: 10.1002/bit.28799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
β-Alanine is the only β-amino acid in nature and one of the most important three-carbon chemicals. This work was aimed to construct a non-inducible β-alanine producer with enhanced metabolic flux towards β-alanine biosynthesis in Escherichia coli. First of all, the assembled E. coli endogenous promoters and 5'-untranslated regions (PUTR) were screened to finely regulate the combinatorial expression of genes panDBS and aspBCG for an optimal flux match between two key pathways. Subsequently, additional copies of key genes (panDBS K104S and ppc) were chromosomally introduced into the host A1. On these bases, dynamical regulation of the gene thrA was performed to reduce the carbon flux directed in the competitive pathway. Finally, the β-alanine titer reached 10.25 g/L by strain A14-R15, 361.7% higher than that of the original strain. Under fed-batch fermentation in a 5-L fermentor, a titer of 57.13 g/L β-alanine was achieved at 80 h. This is the highest titer of β-alanine production ever reported using non-inducible engineered E. coli. This metabolic modification strategy for optimal carbon flux distribution developed in this work could also be used for the production of various metabolic products.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wen-Qing Ding
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xi Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hong-Yu Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Ce Hu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
10
|
Mao J, Zhang H, Chen Y, Wei L, Liu J, Nielsen J, Chen Y, Xu N. Relieving metabolic burden to improve robustness and bioproduction by industrial microorganisms. Biotechnol Adv 2024; 74:108401. [PMID: 38944217 DOI: 10.1016/j.biotechadv.2024.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Metabolic burden is defined by the influence of genetic manipulation and environmental perturbations on the distribution of cellular resources. The rewiring of microbial metabolism for bio-based chemical production often leads to a metabolic burden, followed by adverse physiological effects, such as impaired cell growth and low product yields. Alleviating the burden imposed by undesirable metabolic changes has become an increasingly attractive approach for constructing robust microbial cell factories. In this review, we provide a brief overview of metabolic burden engineering, focusing specifically on recent developments and strategies for diminishing the burden while improving robustness and yield. A variety of examples are presented to showcase the promise of metabolic burden engineering in facilitating the design and construction of robust microbial cell factories. Finally, challenges and limitations encountered in metabolic burden engineering are discussed.
Collapse
Affiliation(s)
- Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Hongyu Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Liang Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kongens Lyngby, Denmark.
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
11
|
Chen Y, Huang L, Yu T, Yao Y, Zhao M, Pang A, Zhou J, Zhang B, Liu Z, Zheng Y. Balancing the AspC and AspA Pathways of Escherichia coli by Systematic Metabolic Engineering Strategy for High-Efficient l-Homoserine Production. ACS Synth Biol 2024; 13:2457-2469. [PMID: 39042380 DOI: 10.1021/acssynbio.4c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
l-Homoserine is a promising C4 platform compound used in the agricultural, cosmetic, and pharmaceutical industries. Numerous works have been conducted to engineer Escherichia coli to be an excellent l-homoserine producer, but it is still unable to meet the industrial-scale demand. Herein, we successfully engineered a plasmid-free and noninducible E. coli strain with highly efficient l-homoserine production through balancing AspC and AspA synthesis pathways. First, an initial strain was constructed by increasing the accumulation of the precursor oxaloacetate and attenuating the organic acid synthesis pathway. To remodel the carbon flux toward l-aspartate, a balanced route prone to high yield based on TCA intensity regulation was designed. Subsequently, the main synthetic pathway and the cofactor system were strengthened to reinforce the l-homoserine synthesis. Ultimately, under two-stage DO control, strain HSY43 showed 125.07 g/L l-homoserine production in a 5 L fermenter in 60 h, with a yield of 0.62 g/g glucose and a productivity of 2.08 g/L/h. The titer, yield, and productivity surpassed the highest reported levels for plasmid-free strains in the literature. The strategies adopted in this study can be applied to the production of other l-aspartate family amino acids.
Collapse
Affiliation(s)
- Yuanyuan Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lianggang Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Yu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan Yao
- The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mingming Zhao
- The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Aiping Pang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Junping Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
12
|
Wang L, Yang H, Wu M, Zhang H, Zhang J, Chen X. Enhanced ε-Poly-L-Lysine Production in Streptomyces albulus through Multi-Omics-Guided Metabolic Engineering. Biomolecules 2024; 14:752. [PMID: 39062465 PMCID: PMC11274744 DOI: 10.3390/biom14070752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
Safe and eco-friendly preservatives are crucial to preventing food spoilage and illnesses, as foodborne diseases caused by pathogens result in approximately 600 million cases of illness and 420,000 deaths annually. ε-Poly-L-lysine (ε-PL) is a novel food preservative widely used in many countries. However, its commercial application has been hindered by high costs and low production. In this study, ε-PL's biosynthetic capacity was enhanced in Streptomyces albulus WG608 through metabolic engineering guided by multi-omics techniques. Based on transcriptome and metabolome data, differentially expressed genes (fold change >2 or <0.5; p < 0.05) and differentially expressed metabolites (fold change >1.2 or <0.8) were separately subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The integrative analysis of transcriptome, metabolome, and overexpression revealed the essential roles of isocitrate lyase, succinate dehydrogenase, flavoprotein subunit, diaminopimelate dehydrogenase, polyphosphate kinase, and polyP:AMP phosphotransferase in ε-PL biosynthesis. Subsequently, a strain with enhanced ATP supply, L-lysine supply, and ε-PL synthetase expression was constructed to improve its production. Finally, the resulting strain, S. albulus WME10, achieved an ε-PL production rate of 77.16 g/L in a 5 L bioreactor, which is the highest reported ε-PL production to date. These results suggest that the integrative analysis of the transcriptome and metabolome can facilitate the identification of key pathways and genetic elements affecting ε-PL synthesis, guiding further metabolic engineering and thus significantly enhancing ε-PL production. The method presented in this study could be applicable to other valuable natural antibacterial agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Xusheng Chen
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Ministry of Education, Wuxi 214122, China; (L.W.); (M.W.); (J.Z.)
| |
Collapse
|
13
|
Wang Y, Wu M, Zheng H, Wu D, Yao P, Li W, Jin K, Yu X. Biomanufacture of L-homoserine lactone building block: A strategy for preparing γ-substituted L-amino acids by modular reaction. Enzyme Microb Technol 2024; 176:110411. [PMID: 38377656 DOI: 10.1016/j.enzmictec.2024.110411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
A strain high-performance of esterase producing bacteria was screened from soil, which could selectively hydrolyze D-homoserine lactone from its racemate to achieve the resolution of L- homoserine lactone with more than 99% e.e. in 48% yield. L-homoserine lactone building block was then converted to L-α-amino-γ-bromobutyronic acid chiral blocks, which reacted with various nucleophilic reagent modules could to be applied to prepare L-γ- substituted α-amino acids such as L-selenomethionine, L-methionine, L-glufosinate and L-selenocystine. Its advantages included high selectivity of biocatalytic resolution reactions, high optical purity of products, racemic recycle of D-substrates and modular reaction, which simplified the production process of these products and highlighted the power of biological manufacturing.
Collapse
Affiliation(s)
- Yuguang Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.1 Gongda Road, Deqing, Zhejiang 313299, China; Jiangxi XinzhongyeTea Industry Biotechnology Co., Ltd, China; Zhejiang Caihe Biotechnology Co., Ltd, China
| | - Mengjing Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.1 Gongda Road, Deqing, Zhejiang 313299, China
| | - Huifang Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.1 Gongda Road, Deqing, Zhejiang 313299, China
| | - Dongmei Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.1 Gongda Road, Deqing, Zhejiang 313299, China
| | - Panpan Yao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.1 Gongda Road, Deqing, Zhejiang 313299, China
| | - Wenjing Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.1 Gongda Road, Deqing, Zhejiang 313299, China
| | - Kexin Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.1 Gongda Road, Deqing, Zhejiang 313299, China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.1 Gongda Road, Deqing, Zhejiang 313299, China.
| |
Collapse
|
14
|
Sun Y, Wu J, Xu J, Yang L. Metabolic Engineering of Escherichia coli for the Production of l-Homoserine. CHEM & BIO ENGINEERING 2024; 1:223-230. [PMID: 39974203 PMCID: PMC11835149 DOI: 10.1021/cbe.3c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2025]
Abstract
l-Homoserine embodies significant functional properties as an amino acid of utmost importance, showcasing remarkable utility within the industrial realm. As synthetic biology and biotechnology continue to advance, the synthesis of l-homoserine through microbial fermentation emerges as a compelling and eco-conscious approach. This Review summarized the recent progress in systematic metabolic engineering strategies for improving l-homoserine production in Escherichia coli, including blocking the competing and degrading pathways, strengthening the key enzymes and precursors, and genetic modification of transport systems. We discussed and compared these systematic metabolism strategies, which have laid a solid foundation for the microbial industrial production of l-homoserine.
Collapse
Affiliation(s)
- Yijie Sun
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| | - Jianping Wu
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| | - Jiaqi Xu
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| | - Lirong Yang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310058
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China 311200
| |
Collapse
|
15
|
Lv Y, Chang J, Zhang W, Dong H, Chen S, Wang X, Zhao A, Zhang S, Alam MA, Wang S, Du C, Xu J, Wang W, Xu P. Improving Microbial Cell Factory Performance by Engineering SAM Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3846-3871. [PMID: 38372640 DOI: 10.1021/acs.jafc.3c09561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Methylated natural products are widely spread in nature. S-Adenosyl-l-methionine (SAM) is the secondary abundant cofactor and the primary methyl donor, which confer natural products with structural and functional diversification. The increasing demand for SAM-dependent natural products (SdNPs) has motivated the development of microbial cell factories (MCFs) for sustainable and efficient SdNP production. Insufficient and unsustainable SAM availability hinders the improvement of SdNP MCF performance. From the perspective of developing MCF, this review summarized recent understanding of de novo SAM biosynthesis and its regulatory mechanism. SAM is just the methyl mediator but not the original methyl source. Effective and sustainable methyl source supply is critical for efficient SdNP production. We compared and discussed the innate and relatively less explored alternative methyl sources and identified the one involving cheap one-carbon compound as more promising. The SAM biosynthesis is synergistically regulated on multilevels and is tightly connected with ATP and NAD(P)H pools. We also covered the recent advancement of metabolic engineering in improving intracellular SAM availability and SdNP production. Dynamic regulation is a promising strategy to achieve accurate and dynamic fine-tuning of intracellular SAM pool size. Finally, we discussed the design and engineering constraints underlying construction of SAM-responsive genetic circuits and envisioned their future applications in developing SdNP MCFs.
Collapse
Affiliation(s)
- Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jinmian Chang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Hanyu Dong
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Song Chen
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xian Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Shen Zhang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Chaojun Du
- Nanyang Research Institute of Zhengzhou University, Nanyang Institute of Technology, No. 80 Changjiang Road, Nanyang 473004, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- National Key Laboratory of Biobased Transportation Fuel Technology, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Palo Alto, California 94305, United States
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China
| |
Collapse
|
16
|
Zeng M, Wu H, Han Z, Du Z, Yu X, Luo W. Metabolic Engineering of Escherichia coli for Production of 2,5-Dimethylpyrazine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4267-4276. [PMID: 38369722 DOI: 10.1021/acs.jafc.3c08481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
2,5-Dimethylpyrazine (2,5-DMP) is a high-value-added alkylpyrazine compound with important applications in both the food and pharmaceutical fields. In response to the increasing consumer preference for natural products over chemically synthesized ones, efforts have been made to develop efficient microbial cell factories for the production of 2,5-DMP. However, the previously reported recombinant strains have exhibited low yields and relied on expensive antibiotics and inducers. In this study, we employed metabolic engineering strategies to develop an Escherichia coli strain capable of producing 2,5-DMP at high levels without the need for inducers or antibiotics. Initially, the biosynthesis pathway of 2,5-DMP was constructed that realized 2,5-DMP production from glucose. Subsequently, efforts focused on enhancing 2,5-DMP production by improving the availability of the cofactor NAD+ and precursor l-threonine. Additionally, the supply and conversion of l-threonine were balanced by optimizing the copy number of the key gene tdh on the chromosome and by modifying the l-threonine transport system. The final engineering strain D19 produced 3.1 g/L of 2,5-DMP, which is the highest titer for fermentative production of 2,5-DMP using glucose as the carbon source up to date. The strategies used in this study lay a good foundation for the production of 2,5-DMP on a large scale.
Collapse
Affiliation(s)
- Mingxi Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200231, China
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Zhiyan Du
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
17
|
Zheng Z, Wei L, Zhu M, Qian Z, Liu J, Zhang L, Xu Y. Effect of lactic acid bacteria co-fermentation on antioxidant activity and metabolomic profiles of a juice made from wolfberry and longan. Food Res Int 2023; 174:113547. [PMID: 37986427 DOI: 10.1016/j.foodres.2023.113547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
Lactic acid bacteria (LAB) fermentation is frequently employed to improve the nutritional, functional, and sensory characteristics of foods. Our study explored the effects of co-fermentation with Lacticaseibacillus paracasei ZH8 and Lactococcus lactis subsp. lactis YM313 on the physicochemical properties, antioxidant activity, and metabolomic profiles of wolfberry-longan juice (WLJ). Fermentation was carried out at 35 °C for 15 h. The results suggest that WLJ is a favorable substrate for LAB growth, reaching a total viable count exceeding 8 log CFU/mL after fermentation. LAB fermentation increased acidity, reduced the sugar content, and significantly impacted the juice color. The total phenolic and flavonoid contents of the WLJ and the antioxidant capacities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS radical scavenging abilities and FRAP were significantly improved by LAB fermentation. Nontargeted metabolomics analysis suggested that the contents of small molecule substances in WLJ were considerably affected by LAB fermentation. A total of 374 differential metabolites were identified in the juice before and after fermentation, with 193 significantly upregulated metabolites and 181 siginificantly downregulated metabolites. The regulation of metabolites is important for improving the flavor and functions of juices, such as L-eucylproline, Isovitexin, Netivudine, 3-Phenyllactic acid, vanillin, and ethyl maltol, ect. This study provides a theoretical foundation for developing plant-based foods fermented with LAB.
Collapse
Affiliation(s)
- Zhenjie Zheng
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Linya Wei
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Manli Zhu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Zhenning Qian
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Jiao Liu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Lili Zhang
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Yunhe Xu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
18
|
François JM. Progress advances in the production of bio-sourced methionine and its hydroxyl analogues. Biotechnol Adv 2023; 69:108259. [PMID: 37734648 DOI: 10.1016/j.biotechadv.2023.108259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The essential sulphur-containing amino acid, methionine, is becoming a mass-commodity product with an annual production that exceeded 1,500,000 tons in 2018. This amino acid is today almost exclusively produced by chemical process from fossil resources. The environmental problems caused by this industrial process, and the expected scarcity of oil resources in the coming years, have recently accelerated the development of bioprocesses for producing methionine from renewable carbon feedstock. After a brief description of the chemical process and the techno-economic context that still justify the production of methionine by petrochemical processes, this review will present the current state of the art of biobased alternatives aiming at a sustainable production of this amino acid and its hydroxyl analogues from renewable carbon feedstock. In particular, this review will focus on three bio-based processes, namely a purely fermentative process based on the metabolic engineering of the natural methionine pathway, a mixed process combining the production of the O-acetyl/O-succinyl homoserine intermediate of this pathway by fermentation followed by an enzyme-based conversion of this intermediate into L-methionine and lately, a hybrid process in which the non-natural chemical synthon, 2,4-dihydroxybutyric acid, obtained by fermentation of sugars is converted by chemo-catalysis into hydroxyl methionine analogues. The industrial potential of these three bioprocesses, as well as the major technical and economic obstacles that remain to be overcome to reach industrial maturity are discussed. This review concludes by bringing up the assets of these bioprocesses to meet the challenge of the "green transition", with the accomplishment of the objective "zero carbon" by 2050 and how they can be part of a model of Bioeconomy enhancing local resources.
Collapse
Affiliation(s)
- Jean Marie François
- Toulouse Biotechnology Institute, UMR INSA -CNRS5504 and UMR INSA-INRAE 792, 135 avenue de Rangueil, 31077 Toulouse, France; Toulouse White Biotechnology, UMS INRAE-INSA-CNRS, 135 Avenue de Rangueil, 31077 Toulouse, France.
| |
Collapse
|
19
|
Liu Z, Cai M, Zhou S, You J, Zhao Z, Liu Z, Xu M, Rao Z. High-efficient production of L-homoserine in Escherichia coli through engineering synthetic pathway combined with regulating cell division. BIORESOURCE TECHNOLOGY 2023; 389:129828. [PMID: 37806363 DOI: 10.1016/j.biortech.2023.129828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
L-Homoserine is an important amino acid as a precursor in synthesizing many valuable products. However, the low productivity caused by slow L-homoserine production during active cell growth in fermentation hinders its potential applications. In this study, strategies of engineering the synthetic pathway combined with regulating cell division were employed in an L-homoserine-producing Escherichia coli strain for efficiently biomanufacturing L-homoserine. First, the flux-control genes in the L-homoserine degradation pathway were omitted to redistribute carbon flux. To drive more carbon flux into L-homoserine production, the phosphoenolpyruvate-pyruvate-oxaloacetate loop was redrawn. Subsequently, the cell division was engineered by using the self-regulated promoters to coordinate cell growth and L-homoserine production. The ultimate strain HOM23 produced 101.31 g/L L-homoserine with a productivity of 1.91 g/L/h, which presented the highest L-homoserine titer and productivity to date from plasmid-free strains. The strategies used in this study could be applied to constructing cell factories for producing other L-aspartate derivatives.
Collapse
Affiliation(s)
- Zhifei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Mengmeng Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Siquan Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Zuyi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China.
| |
Collapse
|
20
|
Cai M, Liu Z, Zhao Z, Wu H, Xu M, Rao Z. Microbial production of L-methionine and its precursors using systems metabolic engineering. Biotechnol Adv 2023; 69:108260. [PMID: 37739275 DOI: 10.1016/j.biotechadv.2023.108260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
L-methionine is an essential amino acid with versatile applications in food, feed, cosmetics and pharmaceuticals. At present, the production of L-methionine mainly relies on chemical synthesis, which conflicts with the concern over serious environmental problems and sustainable development goals. In recent years, microbial production of natural products has been amply rewarded with the emergence and rapid development of system metabolic engineering. However, efficient L-methionine production by microbial fermentation remains a great challenge due to its complicated biosynthetic pathway and strict regulatory mechanism. Additionally, the engineered production of L-methionine precursors, L-homoserine, O-succinyl-L-homoserine (OSH) and O-acetyl-L-homoserine (OAH), has also received widespread attention because they can be catalyzed to L-methionine via a high-efficiently enzymatic reaction in vitro, which is also a promising alternative to chemical route. This review provides a comprehensive overview on the recent advances in the microbial production of L-methionine and its precursors, highlighting the challenges and potential solutions for developing L-methionine microbial cell factories from the perspective of systems metabolic engineering, aiming to offer guidance for future engineering.
Collapse
Affiliation(s)
- Mengmeng Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhifei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Hongxuan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
21
|
Wei Z, Zhao D, Wang J, Li J, Xu N, Ding C, Liu J, Li S, Zhang C, Bi C, Zhang X. Targeted C-to-T and A-to-G dual mutagenesis system for RhtA transporter in vivo evolution. Appl Environ Microbiol 2023; 89:e0075223. [PMID: 37728922 PMCID: PMC10617597 DOI: 10.1128/aem.00752-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/24/2023] [Indexed: 09/22/2023] Open
Abstract
T7 RNA polymerase (T7RNAP) has been fused with cytosine or adenine deaminase individually, enabling in vivo C-to-T or A-to-G transitions on DNA sequence downstream of T7 promoter, and greatly accelerated directed protein evolution. However, its base conversion type is limited. In this study, we created a dual-functional system for simultaneous C-to-T and A-to-G in vivo mutagenesis, called T7-DualMuta, by fusing T7RNAP with both cytidine deaminase (PmCDA1) and a highly active adenine deaminase (TadA-8e). The C-to-T and A-to-G mutagenesis frequencies of T7-DualMuta were 4.02 × 10-3 and 1.20 × 10-2, respectively, with 24 h culturing and distributed mutations evenly across the target gene. The T7-DualMuta system was used to in vivo directed evolution of L-homoserine transporter RhtA, resulting in efficient variants that carried the four types of base conversions by T7-DualMuta. The evolved variants greatly increased the host growth rates at L-homoserine concentrations of 8 g/L, which was not previously achieved, and demonstrated the great in vivo evolution capacity. The novel molecular device T7-DualMuta efficiently provides both C/G-to-T/A and A/T-to-G/C mutagenesis on target regions, making it useful for various applications and research in Enzymology and Synthetic Biology studies. It also represents an important expansion of the base editing toolbox.ImportanceA T7-DualMuta system for simultaneous C-to-T and A-to-G in vivo mutagenesis was created. The mutagenesis frequency was 4.02 × 107 fold higher than the spontaneous mutation, which was reported to be approximately 10-10 bases per nucleotide per generation. This mutant system can be utilized for various applications and research in Enzymology and Synthetic Biology studies.
Collapse
Affiliation(s)
- Zhandong Wei
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jie Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chao Ding
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chunzhi Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
22
|
Chen L, Xin X, Zhang Y, Li S, Zhao X, Li S, Xu Z. Advances in Biosynthesis of Non-Canonical Amino Acids (ncAAs) and the Methods of ncAAs Incorporation into Proteins. Molecules 2023; 28:6745. [PMID: 37764520 PMCID: PMC10534643 DOI: 10.3390/molecules28186745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The functional pool of canonical amino acids (cAAs) has been enriched through the emergence of non-canonical amino acids (ncAAs). NcAAs play a crucial role in the production of various pharmaceuticals. The biosynthesis of ncAAs has emerged as an alternative to traditional chemical synthesis due to its environmental friendliness and high efficiency. The breakthrough genetic code expansion (GCE) technique developed in recent years has allowed the incorporation of ncAAs into target proteins, giving them special functions and biological activities. The biosynthesis of ncAAs and their incorporation into target proteins within a single microbe has become an enticing application of such molecules. Based on that, in this study, we first review the biosynthesis methods for ncAAs and analyze the difficulties related to biosynthesis. We then summarize the GCE methods and analyze their advantages and disadvantages. Further, we review the application progress of ncAAs and anticipate the challenges and future development directions of ncAAs.
Collapse
Affiliation(s)
- Liang Chen
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China; (X.X.); (Y.Z.); (S.L.); (X.Z.); (S.L.); (Z.X.)
| | | | | | | | | | | | | |
Collapse
|
23
|
Li M, Zhang Y, Li J, Tan T. Biosynthesis of 1,3-Propanediol via a New Pathway from Glucose in Escherichia coli. ACS Synth Biol 2023. [PMID: 37316976 DOI: 10.1021/acssynbio.3c00122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
1,3-Propanediol (1,3-PDO), an important dihydric alcohol, is widely used in textiles, resins, and pharmaceuticals. More importantly, it can be used as a monomer in the synthesis of polytrimethylene terephthalate (PTT). In this study, a new biosynthetic pathway is proposed to produce 1,3-PDO using glucose as a substrate and l-aspartate as a precursor without the addition of expensive vitamin B12. We introduced a 3-HP synthesis module derived from l-aspartate and a 1,3-PDO synthesis module to achieve the de novo biosynthesis. The following strategies were then pursued that included screening key enzymes, optimizing the transcription and translation levels, enhancing the precursor supply of l-aspartate and oxaloacetate, weakening the tricarboxylic acid (TCA) cycle, and blocking competitive pathways. We also used transcriptomic methods to analyze the different gene expression levels. Finally, an engineered Escherichia coli strain produced 6.41 g/L 1,3-PDO with a yield of 0.51 mol/mol glucose in a shake flask and 11.21 g/L in fed-batch fermentation. This study provides a new pathway for production of 1,3-PDO.
Collapse
Affiliation(s)
- Mingda Li
- Beijing Key Laboratory of Bioprocess, National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology. 15th, Beisanhuan East Road, Beijing 100029, People's Republic of China
| | - Yang Zhang
- Beijing Key Laboratory of Bioprocess, National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology. 15th, Beisanhuan East Road, Beijing 100029, People's Republic of China
| | - Jingchuan Li
- Beijing Key Laboratory of Bioprocess, National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology. 15th, Beisanhuan East Road, Beijing 100029, People's Republic of China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology. 15th, Beisanhuan East Road, Beijing 100029, People's Republic of China
| |
Collapse
|
24
|
Li B, Huang LG, Yang YF, Chen YY, Zhou XJ, Liu ZQ, Zheng YG. Metabolic engineering and pathway construction for O-acetyl-L-homoserine production in Escherichia coli. 3 Biotech 2023; 13:173. [PMID: 37188286 PMCID: PMC10170018 DOI: 10.1007/s13205-023-03564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
O-Acetyl-L-homoserine (OAH) is a potentially important platform metabolic intermediate for the production of homoserine lactone, methionine, 1,4-butanediol and 1,3-propanediol which have giant market value. Currently, multiple strategies have been adopted to explore sustainable production of OAH. However, the production of OAH by consuming cheap bio-based feedstocks with Escherichia coli as the chassis is still in its infancy. Construction of high yield OAH-producing strains is of great significance in industry. In this study, we introduced an exogenous metA from Bacillus cereus (metXbc) and engineered an OAH-producing strain by combinatorial metabolic engineering. Initially, exogenous metXs/metA were screened and used to reconstruct an initial biosynthesis pathway of OAH in E. coli. Subsequently, the disruption of degradation and competitive pathways combined with optimal expression of metXbc were carried out, accumulating 5.47 g/L OAH. Meanwhile, the homoserine pool was enriched by overexpressing metL with producing 7.42 g/L OAH. Lastly, the carbon flux of central carbon metabolism was redistributed to balance the metabolic flux of homoserine and acetyl coenzyme A (acetyl-CoA) in OAH biosynthesis with accumulating 8.29 g/L OAH. The engineered strain produced 24.33 g/L OAH with a yield of 0.23 g/g glucose in fed-batch fermentation. By these strategies, the key nodes for OAH synthesis were clarified and corresponding strategies were proposed. This study would lay a foundation for OAH bioproduction. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03564-5.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Liang-Gang Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yu-Feng Yang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yuan-Yuan Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Xiao-Jie Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| |
Collapse
|
25
|
Jiang S, Wang R, Wang D, Zhao C, Ma Q, Wu H, Xie X. Metabolic reprogramming and biosensor-assisted mutagenesis screening for high-level production of L-arginine in Escherichia coli. Metab Eng 2023; 76:146-157. [PMID: 36758663 DOI: 10.1016/j.ymben.2023.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/14/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
L-arginine is a value-added amino acid with promising applications in the pharmaceutical and nutraceutical industries. Further unleashing the potential of microbial cell factories to make L-arginine production more competitive remains challenging due to the sophisticated intracellular interaction networks and the insufficient knowledge of global metabolic regulation. Here, we combined multilevel rational metabolic engineering with biosensor-assisted mutagenesis screening to exploit the L-arginine production potential of Escherichia coli. First, multiple metabolic pathways were systematically reprogrammed to redirect the metabolic flux into L-arginine synthesis, including the L-arginine biosynthesis, TCA cycle, and L-arginine export. Specifically, a toggle switch responding to special cellular physiological conditions was designed to dynamically control the expression of sucA and pull more carbon flux from the TCA cycle toward L-arginine biosynthesis. Subsequently, a biosensor-assisted high-throughput screening platform was designed and applied to further exploit the L-arginine production potential. The best-engineered ARG28 strain produced 132 g/L L-arginine in a 5-L bioreactor with a yield of 0.51 g/g glucose and productivity of 2.75 g/(L ⋅ h), which were the highest values reported so far. Through whole genome sequencing and reverse engineering, Frc frameshift mutant, PqiB A78P mutant, and RpoB P564T mutant were revealed for enhancing the L-arginine biosynthesis. Our study exhibited the power of coupling rational metabolic reprogramming and biosensor-assisted mutagenesis screening to unleash the cellular potential for value-added metabolite production.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Ruirui Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Dehu Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Chunguang Zhao
- Ningxia Eppen Biotech Co., Ltd, Ningxia, 750000, PR China
| | - Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
26
|
Sun BY, Wang FQ, Zhao J, Tao XY, Liu M, Wei DZ. Engineering Escherichia coli for l-homoserine production. J Basic Microbiol 2023; 63:168-178. [PMID: 36284486 DOI: 10.1002/jobm.202200488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 02/03/2023]
Abstract
l-homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l-homoserine-producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l-homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l-homoserine production, including enhancement of precursors for l-homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l-homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid-losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l-homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5-L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics.
Collapse
Affiliation(s)
- Bing-Yao Sun
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feng-Qing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xin-Yi Tao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Min Liu
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dong-Zhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
27
|
Hao R, Wang S, Jin X, Yang X, Qi Q, Liang Q. Dynamic and balanced regulation of the thrABC operon gene for efficient synthesis of L-threonine. Front Bioeng Biotechnol 2023; 11:1118948. [PMID: 36937754 PMCID: PMC10018013 DOI: 10.3389/fbioe.2023.1118948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
L-threonine is an essential amino acid used widely in food, cosmetics, animal feed and medicine. The thrABC operon plays an important role in regulating the biosynthesis of L-theronine. In this work, we systematically analyzed the effects of separating thrAB and thrC in different proportions on strain growth and L-threonine production in Escherichia coli firstly. The results showed that higher expression of thrC than thrAB enhanced cell growth and L-threonine production; however, L-threonine production decreased when the thrC proportion was too high. The highest L-threonine production was achieved when the expression intensity ratio of thrAB to thrC was 3:5. Secondly, a stationary phase promoter was also used to dynamically regulate the expression of engineered thrABC. This strategy improved cell growth and shortened the fermentation period from 36 h to 24 h. Finally, the acetate metabolic overflow was reduced by deleting the ptsG gene, leading to a further increase in L-threonine production. With these efforts, the final strain P 2.1 -2901ΔptsG reached 40.06 g/L at 60 h fermentation, which was 96.85% higher than the initial control strain TH and the highest reported titer in shake flasks. The maximum L-threonine yield and productivity was obtained in reported fed-batch fermentation, and L-threonine production is close to the highest titer (127.30 g/L). In this work, the expression ratio of genes in the thrABC operon in E. coli was studied systematically, which provided a new approach to improve L-threonine production and its downstream products.
Collapse
|
28
|
Guidi C, De Wannemaeker L, De Baets J, Demeester W, Maertens J, De Paepe B, De Mey M. Dynamic feedback regulation for efficient membrane protein production using a small RNA-based genetic circuit in Escherichia coli. Microb Cell Fact 2022; 21:260. [PMID: 36522655 PMCID: PMC9753035 DOI: 10.1186/s12934-022-01983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Membrane proteins (MPs) are an important class of molecules with a wide array of cellular functions and are part of many metabolic pathways. Despite their great potential-as therapeutic drug targets or in microbial cell factory optimization-many challenges remain for efficient and functional expression in a host such as Escherichia coli. RESULTS A dynamically regulated small RNA-based circuit was developed to counter membrane stress caused by overexpression of different MPs. The best performing small RNAs were able to enhance the maximum specific growth rate with 123%. On culture level, the total MP production was increased two-to three-fold compared to a system without dynamic control. This strategy not only improved cell growth and production of the studied MPs, it also suggested the potential use for countering metabolic burden in general. CONCLUSIONS A dynamically regulated feedback circuit was developed that can sense metabolic stress caused by, in casu, the overexpression of an MP and responds to it by balancing the metabolic state of the cell and more specifically by downregulating the expression of the MP of interest. This negative feedback mechanism was established by implementing and optimizing simple-to-use genetic control elements based on post-transcriptional regulation: small non-coding RNAs. In addition to membrane-related stress when the MP accumulated in the cytoplasm as aggregates, the sRNA-based feedback control system was still effective for improving cell growth but resulted in a decreased total protein production. This result suggests promiscuity of the MP sensor for more than solely membrane stress.
Collapse
Affiliation(s)
- Chiara Guidi
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | | | - Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Wouter Demeester
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
29
|
Alkim C, Farias D, Fredonnet J, Serrano-Bataille H, Herviou P, Picot M, Slama N, Dejean S, Morin N, Enjalbert B, François JM. Toxic effect and inability of L-homoserine to be a nitrogen source for growth of Escherichia coli resolved by a combination of in vivo evolution engineering and omics analyses. Front Microbiol 2022; 13:1051425. [PMID: 36583047 PMCID: PMC9792984 DOI: 10.3389/fmicb.2022.1051425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
L-homoserine is a pivotal intermediate in the carbon and nitrogen metabolism of E. coli. However, this non-canonical amino acid cannot be used as a nitrogen source for growth. Furthermore, growth of this bacterium in a synthetic media is potently inhibited by L-homoserine. To understand this dual effect, an adapted laboratory evolution (ALE) was applied, which allowed the isolation of a strain able to grow with L-homoserine as the nitrogen source and was, at the same time, desensitized to growth inhibition by this amino acid. Sequencing of this evolved strain identified only four genomic modifications, including a 49 bp truncation starting from the stop codon of thrL. This mutation resulted in a modified thrL locus carrying a thrL* allele encoding a polypeptide 9 amino acids longer than the thrL encoded leader peptide. Remarkably, the replacement of thrL with thrL* in the original strain MG1655 alleviated L-homoserine inhibition to the same extent as strain 4E, but did not allow growth with this amino acid as a nitrogen source. The loss of L-homoserine toxic effect could be explained by the rapid conversion of L-homoserine into threonine via the thrL*-dependent transcriptional activation of the threonine operon thrABC. On the other hand, the growth of E. coli on a mineral medium with L-homoserine required an activation of the threonine degradation pathway II and glycine cleavage system, resulting in the release of ammonium ions that were likely recaptured by NAD(P)-dependent glutamate dehydrogenase. To infer about the direct molecular targets of L-homoserine toxicity, a transcriptomic analysis of wild-type MG1655 in the presence of 10 mM L-homoserine was performed, which notably identified a potent repression of locomotion-motility-chemotaxis process and of branched-chain amino acids synthesis. Since the magnitude of these effects was lower in a ΔthrL mutant, concomitant with a twofold lower sensitivity of this mutant to L-homoserine, it could be argued that growth inhibition by L-homoserine is due to the repression of these biological processes. In addition, L-homoserine induced a strong upregulation of genes in the sulfate reductive assimilation pathway, including those encoding its transport. How this non-canonical amino acid triggers these transcriptomic changes is discussed.
Collapse
Affiliation(s)
- Ceren Alkim
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France,Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Daniele Farias
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Julie Fredonnet
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | | | - Pauline Herviou
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Marc Picot
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Nawel Slama
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | | | - Nicolas Morin
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Brice Enjalbert
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France,Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France,*Correspondence: Jean M. François,
| |
Collapse
|
30
|
Re-designing Escherichia coli for high-yield production of β-alanine by metabolic engineering. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Lian C, Zhang M, Mao J, Liu Y, Wang X, Kong L, Yao Q, Qin J. Transcriptomic and metabolomic analyses for providing insights into the influence of polylysine synthetase on the metabolism of Streptomyces albulus. Microb Cell Fact 2022; 21:224. [PMID: 36307825 DOI: 10.1186/s12934-022-01953-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/16/2022] [Indexed: 11/10/2022] Open
Abstract
ε-poly-L-lysine (ε-PL) is the main secondary metabolite of Streptomyces albulus, and it is widely used in the food industry. Polylysine synthetase (Pls) is the last enzyme in the ε-PL biosynthetic pathway. Our previous study revealed that Pls overexpressed in S. albulus CICC11022 result in the efficient production of ε-PL. In this study, a Pls gene knockout strain was initially constructed. Then, genomic, transcriptomic and metabolomic approaches were integrated to study the effects of the high expression and knockout of Pls on the gene expression and metabolite synthesis of S. albulus. The high expression of Pls resulted in 598 significantly differentially expressed genes (DEGs) and 425 known differential metabolites, whereas the inactivation of Pls resulted in 868 significant DEGs and 374 known differential metabolites. The expressions of 8 and 35 genes were negatively and positively associated with the Pls expression, respectively. Subsequently, the influence mechanism of the high expression and inactivation of Pls on the ε-PL biosynthetic pathway was elucidated. Twelve metabolites with 30% decreased yield in the high-expression strain of Pls but 30% increased production in the Pls knockout strain were identified. These results demonstrate the influence of Pls on the metabolism of S. albulus. The present work can provide the theoretical basis for improving the production capacity of ε-PL by means of metabolic engineering or developing bioactive substances derived from S. albulus.
Collapse
Affiliation(s)
- Congcong Lian
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Min Zhang
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Jiaqi Mao
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yuanyu Liu
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Xiuwen Wang
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Linghui Kong
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Qingshou Yao
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Jiayang Qin
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| |
Collapse
|
32
|
Jiang A, Song Y, You J, Zhang X, Xu M, Rao Z. High-yield ectoine production in engineered Corynebacterium glutamicum by fine metabolic regulation via plug-in repressor library. BIORESOURCE TECHNOLOGY 2022; 362:127802. [PMID: 36007762 DOI: 10.1016/j.biortech.2022.127802] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Ectoine is a high-value protective and stabilizing agent with different applications in biopharmaceuticals, biotechnology, and fine chemicals. Here, efficient production of ectoine in Corynebacterium glutamicum was achieved by combination of metabolic engineering and plug-in repressor library strategy. First, the ectBAC cluster from Pseudomonas stutzeri was introduced into strain K02, and the titer of the obtained strain was 2.12 g/L. Metabolic engineering was then performed for further optimization, including removal of competing pathways (pck and ldh knockout), deletion of glycolysis repressor (sugR knockout), and enhancement of precursor supply (overexpression of Ecasd and CglysCS301Y). Next, two repressor libraries were designed for targeted flux control to improve ectoine production. Finally, strain CB5L6 produced 45.52 g/L ectoine and had the highest yield in C. glutamicum. For the first time, plug-in repressor library was employed to engineer C. glutamicum for metabolites production, which will provide a guideline for the construction of microbial cell factories.
Collapse
Affiliation(s)
- An Jiang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yunhai Song
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
33
|
Cai M, Zhao Z, Li X, Xu Y, Xu M, Rao Z. Development of a nonauxotrophic L-homoserine hyperproducer in Escherichia coli by systems metabolic engineering. Metab Eng 2022; 73:270-279. [PMID: 35961600 DOI: 10.1016/j.ymben.2022.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022]
Abstract
L-Homoserine is a valuable amino acid as a platform chemical in the synthesis of various important compounds. Development of microbial strains for high-level L-homoserine production is an attractive research direction in recent years. Herein, we converted a wild-type Escherichia coli to a non-auxotrophic and plasmid-free hyperproducer of L-homoserine using systematically metabolic engineer strategies. First, an initial strain was obtained through regulating L-homoserine degradation pathway and enhancing synthetic flow. To facilitate L-homoserine production, flux-control genes were tuned by optimizing the copy numbers in chromosome, and transport system was modified to promote L-homoserine efflux. Subsequently, a strategy of cofactors synergistic utilization was proposed and successfully applied to achieve L-homoserine hyperproduction. The final engineered strain could efficiently produce 85.29 g/L L-homoserine, which was the highest production level ever reported from a plasmid-free, antibiotic-free, inducer-free and nonauxotrophic strain. These strategies used here can be considered for developing microbial cell factory of other L-aspartate derivatives.
Collapse
Affiliation(s)
- Mengmeng Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiangfei Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuanyi Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
34
|
Vo TM, Park S. Metabolic engineering of Escherichia coli W3110 for efficient production of homoserine from glucose. Metab Eng 2022; 73:104-113. [PMID: 35803501 DOI: 10.1016/j.ymben.2022.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Efficient microbial cell factory for the production of homoserine from glucose has been developed by iterative and rational engineering of Escherichia coli W3110. The whole pathway from glucose to homoserine was divided into three groups, namely, glucose transport and glycolysis ('up-stream'), TCA and glyoxylate cycles ('mid-stream'), and homoserine module (conversion of aspartate to homoserine and its secretion; 'down-stream'), and the carbon flux in each group as well as between the groups were accelerated and balanced. Altogether, ∼18 genes were modified for active and consistent production of homoserine during both the actively-growing and non-growing stages of cultivation. Finally, fed-batch, two-stage bioreactor experiments, separating the growth from the production stage, were conducted for 61 h, which gave the high titer of 110.8 g/L, yield of 0.64 g/g glucose and volumetric productivity of 1.82 g/L/h, with an insignificant amount of acetate (<0.5 g/L) as the only noticeable byproduct. The metabolic engineering strategy employed in this study should be applicable for the biosynthesis of other amino acids or chemicals derived from aspartic acid.
Collapse
Affiliation(s)
- Toan Minh Vo
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea.
| |
Collapse
|
35
|
Li B, Zhang B, Wang P, Cai X, Chen YY, Yang YF, Liu ZQ, Zheng YG. Rerouting Fluxes of the Central Carbon Metabolism and Relieving Mechanism-Based Inactivation of l-Aspartate-α-decarboxylase for Fermentative Production of β-Alanine in Escherichia coli. ACS Synth Biol 2022; 11:1908-1918. [PMID: 35476404 DOI: 10.1021/acssynbio.2c00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
β-Alanine, with the amino group at the β-position, is an important platform chemical that has been widely applied in pharmaceuticals and feed and food additives. However, the current modest titer and productivity, increased fermentation cost, and complicated operation are the challenges for producing β-alanine by microbial fermentation. In this study, a high-yield β-alanine-producing strain was constructed by combining metabolic engineering, protein engineering, and fed-batch bioprocess optimization strategies. First, an aspartate-α-decarboxylase from Bacillus subtilis was introduced in Escherichia coli W3110 to construct an initial β-alanine-producing strain. Production of β-alanine was obviously increased to 4.36 g/L via improving the metabolic flux and reducing carbon loss by rerouting fluxes of the central carbon metabolism. To further increase β-alanine production, mechanism-based inactivation of aspartate-α-decarboxylase was relieved by rational design to maintain the productivity at a high level in β-alanine fed-batch fermentation. Finally, fed-batch bioprocess optimization strategies were used to improve β-alanine production to 85.18 g/L with 0.24 g/g glucose yield and 1.05 g/L/h productivity in fed-batch fermentation. These strategies can be effectively used in the construction of engineered strains for β-alanine and production of its derivatives, and the final engineered strain was a valuable microbial cell factory that can be used for the industrial production of β-alanine.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Pei Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Yuan-Yuan Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Yu-Feng Yang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| |
Collapse
|
36
|
Li N, Zeng W, Zhou J, Xu S. O-Acetyl-L-homoserine production enhanced by pathway strengthening and acetate supplementation in Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:27. [PMID: 35287716 PMCID: PMC8922893 DOI: 10.1186/s13068-022-02114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND O-Acetyl-L-homoserine (OAH) is an important potential platform chemical. However, low levels of production of OAH are greatly limiting its industrial application. Furthermore, as a common and safe amino acid-producing strain, Corynebacterium glutamicum has not yet achieved efficient production of OAH. RESULTS First, exogenous L-homoserine acetyltransferase was introduced into an L-homoserine-producing strain, resulting in the accumulation of 0.98 g/L of OAH. Second, by comparing different acetyl-CoA biosynthesis pathways and adding several feedstocks (acetate, citrate, and pantothenate), the OAH titer increased 2.3-fold to 3.2 g/L. Then, the OAH titer further increased by 62.5% when the expression of L-homoserine dehydrogenase and L-homoserine acetyltransferase was strengthened via strong promoters. Finally, the engineered strain produced 17.4 g/L of OAH in 96 h with acetate as the supplementary feedstock in a 5-L bioreactor. CONCLUSIONS This is the first report on the efficient production of OAH with C. glutamicum as the chassis, which would provide a good foundation for industrial production of OAH.
Collapse
Affiliation(s)
- Ning Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
37
|
Yang H, Jia X, Han Y. Microbial redox coenzyme engineering and applications in biosynthesis. Trends Microbiol 2022; 30:318-321. [DOI: 10.1016/j.tim.2022.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
|
38
|
Wang S, Luo Y, Jiang W, Li X, Qi Q, Liang Q. Development of Optogenetic Dual-Switch System for Rewiring Metabolic Flux for Polyhydroxybutyrate Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030617. [PMID: 35163885 PMCID: PMC8838604 DOI: 10.3390/molecules27030617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 11/30/2022]
Abstract
Several strategies, including inducer addition and biosensor use, have been developed for dynamical regulation. However, the toxicity, cost, and inflexibility of existing strategies have created a demand for superior technology. In this study, we designed an optogenetic dual-switch system and applied it to increase polyhydroxybutyrate (PHB) production. First, an optimized chromatic acclimation sensor/regulator (RBS10–CcaS#10–CcaR) system (comprising an optimized ribosomal binding site (RBS), light sensory protein CcaS, and response regulator CcaR) was selected for a wide sensing range of approximately 10-fold between green-light activation and red-light repression. The RBS10–CcaS#10–CcaR system was combined with a blue light-activated YF1–FixJ–PhlF system (containing histidine kinase YF1, response regulator FixJ, and repressor PhlF) engineered with reduced crosstalk. Finally, the optogenetic dual-switch system was used to rewire the metabolic flux for PHB production by regulating the sequences and intervals of the citrate synthase gene (gltA) and PHB synthesis gene (phbCAB) expression. Consequently, the strain RBS34, which has high gltA expression and a time lag of 3 h, achieved the highest PHB content of 16.6 wt%, which was approximately 3-fold that of F34 (expressed at 0 h). The results indicate that the optogenetic dual-switch system was verified as a practical and convenient tool for increasing PHB production.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Yue Luo
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Wei Jiang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Xiaomeng Li
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Correspondence: (Q.Q.); (Q.L.)
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
- Correspondence: (Q.Q.); (Q.L.)
| |
Collapse
|
39
|
Mu Q, Shi Y, Li R, Ma C, Tao Y, Yu B. Production of Propionate by a Sequential Fermentation-Biotransformation Process via l-Threonine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13895-13903. [PMID: 34757739 DOI: 10.1021/acs.jafc.1c05248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bio-based propionate is widely welcome in the food additive industry. The current anaerobic process by Propionibacteria endures low titers and a long fermentation time. In this study, a new route for propionate production from l-threonine was designed. 2-Ketobutyrate, deaminated from l-threonine, is cleaved into propionaldehyde and CO2 and then be oxidized into propionic acid, which is neutralized by ammonia released from the first deamination step. This CoA-independent pathway with only CO2 as a byproduct boosts propionate production from l-threonine with high productivity and purity. The key enzyme for 2-ketobutyrate decarboxylation was selected, and its expression was optimized. The engineered Pseudomonas putida strain, harboring 2-ketoisovalerate decarboxylase from Lactococcus lactis could produce 580 mM (43 g/L) pure propionic acid from 600 mM l-threonine in 24 h in the batch biotransformation process. Furthermore, a high titer of 62 g/L propionic acid with a productivity of 1.07 g/L/h and a molar yield of >0.98 was achieved in the fed-batch pattern. Finally, an efficient sequential fermentation-biotransformation process was demonstrated to produce propionate directly from the fermentation broth containing l-threonine, which further reduces the costs since no l-threonine purification step is required.
Collapse
Affiliation(s)
- Qingxuan Mu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya'nan Shi
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongshan Li
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Ma
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Cao Z, Meng R, Wang P, Zhu G. Heterologous expression and enzymatic identification of two novel soluble pyridine nucleotide transhydrogenases from Acidobacteria bacterium KBS 146 and Nocardia jiangxiensis. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1988708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Zhengyu Cao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, PR China
| | - Rui Meng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, PR China
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, PR China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, PR China
| |
Collapse
|