1
|
Li YN, Lei C, Yang Q, Yu X, Li S, Sun Y, Ji C, Zhang C, Xue JA, Cui H, Li R. Identification and expression analysis of calcium-dependent protein kinase family in oat ( Avena sativa L.) and their functions in response to saline-alkali stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1395696. [PMID: 39450084 PMCID: PMC11499199 DOI: 10.3389/fpls.2024.1395696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Calcium-dependent protein kinases (CDPKs) serve as calcium ion sensors and play crucial roles in all aspects of plant life cycle. While CDPK gene family has been extensively studied in various plants, there is limited information available for CDPK members in oat, an important cereal crop worldwide. Totally, 60 AsCDPK genes were identified in oat genome and were classified into four subfamilies based on their phylogenetic relationship. The members within each subfamily shared similar gene structure and conserved motifs. Collinearity analysis revealed that AsCDPK gene amplification was attributed to segmental duplication events and underwent strong purifying selection. AsCDPK promoters were predicted to contain cis-acting elements associated with hormones, biotic and abiotic stresses. AsCDPK gene expressions were induced by different salt stresses, exhibiting stress-specific under different salt treatments. Moreover, overexpression of AsCDPK26 gene enhanced salt resistance in C. reinhardtii, a single-cell photoautotrophic model plants. Further analysis revealed a significant correlation between AsCDPK26 and Na+/H+ antiporter 1 (p<0.05), suggesting that AsCDPK26 may interact with ion transporter to modulate salt resistance. These results not only provide valuable insights into AsCDPK genes in response to different salt stresses, but also lay the foundation to mine novel candidates for improving salt tolerance in oat and other crops.
Collapse
Affiliation(s)
- Ya-nan Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunyan Lei
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Qian Yang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yan Sun
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunhui Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jin-ai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Bio-Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandon, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
2
|
Garcia J, Moravek M, Fish T, Thannhauser T, Fei Z, Sparks JP, Giovannoni J, Kao-Kniffin J. Rhizosphere microbiomes derived from vermicompost alter gene expression and regulatory pathways in tomato (Solanum lycopersicum, L.). Sci Rep 2024; 14:21362. [PMID: 39266588 PMCID: PMC11393070 DOI: 10.1038/s41598-024-71792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
The gut microbiome of worms from composting facilities potentially harbors organisms that are beneficial to plant growth and development. In this experiment, we sought to examine the potential impacts of rhizosphere microbiomes derived from Eisenia fetida worm castings (i.e. vermicompost) on tomato (Solanum lycopersicum, L.) plant growth and physiology. Our experiment consisted of a greenhouse trial lasting 17 weeks total in which tomato plants were grown with one of three inoculant treatments: a microbial inoculant created from vermicompost (V), a microbial inoculant created from sterilized vermicompost (SV), and a no-compost control inoculant (C). We hypothesized that living microbiomes from the vermicompost inoculant treatment would enhance host plant growth and gene expression profiles compared to plants grown in sterile and control treatments. Our data showed that bacterial community composition was significantly altered in tomato rhizospheres, but fungal community composition was highly variable in each treatment. Plant phenotypes that were significantly enhanced in the vermicompost and sterile vermicompost treatments, compared to the control, included aboveground biomass and foliar δ15N nitrogen. RNA sequencing revealed distinct gene expression changes in the vermicompost treatment, including upregulation of nutrient transporter genes such as Solyc06g074995 (high affinity nitrate transporter), which exhibited a 250.2-fold increase in expression in the vermicompost treatment compared to both the sterile vermicompost and control treatments. The plant transcriptome data suggest that rhizosphere microbiomes derived from vermicompost can influence tomato gene expression and growth-related regulatory pathways, which highlights the value of RNA sequencing in uncovering molecular responses in plant microbiome studies.
Collapse
Affiliation(s)
- J Garcia
- School of Integrative Plant Science, Cornell University, 135 Plant Science Building, Ithaca, NY, 14850, USA
| | - M Moravek
- School of Integrative Plant Science, Cornell University, 135 Plant Science Building, Ithaca, NY, 14850, USA
| | - T Fish
- USDA Robert W. Holley Center for Agriculture & Health, Ithaca, NY, 14850, USA
| | - T Thannhauser
- USDA Robert W. Holley Center for Agriculture & Health, Ithaca, NY, 14850, USA
| | - Z Fei
- Boyce Thompson Institute, Ithaca, NY, 14850, USA
| | - J P Sparks
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - J Giovannoni
- USDA Robert W. Holley Center for Agriculture & Health, Ithaca, NY, 14850, USA
- Boyce Thompson Institute, Ithaca, NY, 14850, USA
| | - J Kao-Kniffin
- School of Integrative Plant Science, Cornell University, 135 Plant Science Building, Ithaca, NY, 14850, USA.
| |
Collapse
|
3
|
Xie X, Jaleel A, Zhan J, Ren M. Microalgae: towards human health from urban areas to space missions. FRONTIERS IN PLANT SCIENCE 2024; 15:1419157. [PMID: 39220018 PMCID: PMC11361926 DOI: 10.3389/fpls.2024.1419157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Space exploration and interstellar migration are important strategies for long-term human survival. However, extreme environmental conditions, such as space radiation and microgravity, can cause adverse effects, including DNA damage, cerebrovascular disease, osteoporosis, and muscle atrophy, which would require prophylactic and remedial treatment en route. Production of oral drugs in situ is therefore critical for interstellar travel and can be achieved through industrial production utilizing microalgae, which offers high production efficiency, edibility, resource minimization, adaptability, stress tolerance, and genetic manipulation ease. Synthetic biological techniques using microalgae as a chassis offer several advantages in producing natural products, including availability of biosynthetic precursors, potential for synthesizing natural metabolites, superior quality and efficiency, environmental protection, and sustainable development. This article explores the advantages of bioproduction from microalgal chassis using synthetic biological techniques, suitability of microalgal bioreactor-based cell factories for producing value-added natural metabolites, and prospects and applications of microalgae in interstellar travel.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Coleman B, Vereecke E, Van Laere K, Novoveska L, Robbens J. Genetic Engineering and Innovative Cultivation Strategies for Enhancing the Lutein Production in Microalgae. Mar Drugs 2024; 22:329. [PMID: 39195445 DOI: 10.3390/md22080329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Carotenoids, with their diverse biological activities and potential pharmaceutical applications, have garnered significant attention as essential nutraceuticals. Microalgae, as natural producers of these bioactive compounds, offer a promising avenue for sustainable and cost-effective carotenoid production. Despite the ability to cultivate microalgae for its high-value carotenoids with health benefits, only astaxanthin and β-carotene are produced on a commercial scale by Haematococcus pluvialis and Dunaliella salina, respectively. This review explores recent advancements in genetic engineering and cultivation strategies to enhance the production of lutein by microalgae. Techniques such as random mutagenesis, genetic engineering, including CRISPR technology and multi-omics approaches, are discussed in detail for their impact on improving lutein production. Innovative cultivation strategies are compared, highlighting their advantages and challenges. The paper concludes by identifying future research directions, challenges, and proposing strategies for the continued advancement of cost-effective and genetically engineered microalgal carotenoids for pharmaceutical applications.
Collapse
Affiliation(s)
- Bert Coleman
- Aquatic Environment and Quality, Cell Blue Biotech and Food Integrity, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Jacobsenstraat 1, 8400 Ostend, Belgium
| | - Elke Vereecke
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
- Center for Plant Systems Biology, Flemish Institute for Biotechnology (VIB), Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Katrijn Van Laere
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium
| | | | - Johan Robbens
- Aquatic Environment and Quality, Cell Blue Biotech and Food Integrity, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Jacobsenstraat 1, 8400 Ostend, Belgium
| |
Collapse
|
5
|
Huang JJ, Xu W, Lin S, Cheung PCK. The bioactivities and biotechnological production approaches of carotenoids derived from microalgae and cyanobacteria. Crit Rev Biotechnol 2024:1-29. [PMID: 39038957 DOI: 10.1080/07388551.2024.2359966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/13/2024] [Indexed: 07/24/2024]
Abstract
Microalgae and cyanobacteria are a rich source of carotenoids that are well known for their potent bioactivities, including antioxidant, anti-cancer, anti-proliferative, anti-inflammatory, and anti-obesity properties. Recently, many interests have also been focused on the biological activities of these microalgae/cyanobacteria-derived carotenoids, such as fucoxanthin and β-carotene potential to be the salutary nutraceuticals, on treating or preventing human common diseases (e.g., cancers). This is due to their special chemical structures that demonstrate unique bioactive functions, in which the biologically active discrepancies might attribute to the different spatial configurations of their molecules. In addition, their abundance and bioaccessibilities make them more popularly applied in food and pharmaceutical industries, as compared to the macroalgal/fungal-derived ones. This review is focused on the recent studies on the bioactivities of fucoxanthin and some carotenoids derived from microalgae and cyanobacteria in relationship with human health and diseases, with emphasis on their potential applications as natural antioxidants. Various biotechnological approaches employed to induce the production of these specific carotenoids from the culture of microalgae/cyanobacteria are also critically reviewed. These well-developed and emerging biotechnologies present promise to be applied in food and pharmaceutical industries to facilitate the efficient manufacture of the bioactive carotenoid products derived from microalgae and cyanobacteria.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
| |
Collapse
|
6
|
Zhu M, Tang Y, Xie Y, He B, Ding G, Zhou X. Research progress on differentiation and regulation of plant chromoplasts. Mol Biol Rep 2024; 51:810. [PMID: 39001942 DOI: 10.1007/s11033-024-09753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest. The differentiation of chromoplasts involves alterations in plastid structure and protein import machinery. Additionally, this process is influenced by factors such as the ORANGE (OR) gene, Clp proteases, xanthophyll esterification, and environmental factors. This review shows the relationship between chromoplast and carotenoid accumulation by presenting recent advances in chromoplast structure, the differentiation process, and key regulatory factors, which can also provide a reference for rational exploitation of chromoplasts to enhance plant quality.
Collapse
Affiliation(s)
- Mengyao Zhu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunxia Tang
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiqing Xie
- Institute of Economic Forestry, Fujian Academy of Forestry, Fuzhou, 350012, China
| | - BingBing He
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guochang Ding
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xingwen Zhou
- College of Architecture and Planning, Fujian University of Technology, Fuzhou, 350118, China.
| |
Collapse
|
7
|
Cutolo EA, Caferri R, Campitiello R, Cutolo M. The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics. Mar Drugs 2023; 21:630. [PMID: 38132951 PMCID: PMC10745133 DOI: 10.3390/md21120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Rosanna Campitiello
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| |
Collapse
|
8
|
Liang MH, Li XY. Involvement of Transcription Factors and Regulatory Proteins in the Regulation of Carotenoid Accumulation in Plants and Algae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18660-18673. [PMID: 38053506 DOI: 10.1021/acs.jafc.3c05662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Carotenoids are essential for photosynthesis and photoprotection in photosynthetic organisms, which are widely used in food coloring, feed additives, nutraceuticals, cosmetics, and pharmaceuticals. Carotenoid biofortification in crop plants or algae has been considered as a sustainable strategy to improve human nutrition and health. However, the regulatory mechanisms of carotenoid accumulation are still not systematic and particularly scarce in algae. This article focuses on the regulatory mechanisms of carotenoid accumulation in plants and algae through regulatory factors (transcription factors and regulatory proteins), demonstrating the complexity of homeostasis regulation of carotenoids, mainly including transcriptional regulation as the primary mechanism, subsequent post-translational regulation, and cross-linking with other metabolic processes. Different organs of plants and different plant/algal species usually have specific regulatory mechanisms for the biosynthesis, storage, and degradation of carotenoids in response to the environmental and developmental signals. In plants and algae, regulators such as MYB, bHLH, MADS, bZIP, AP2/ERF, WRKY, and orange proteins can be involved in the regulation of carotenoid metabolism. And many more regulators, regulatory networks, and mechanisms need to be explored. Our paper will provide a basis for multitarget or multipathway engineering for carotenoid biofortification in plants and algae.
Collapse
Affiliation(s)
- Ming-Hua Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xian-Yi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
9
|
McQuillan JL, Cutolo EA, Evans C, Pandhal J. Proteomic characterization of a lutein-hyperaccumulating Chlamydomonas reinhardtii mutant reveals photoprotection-related factors as targets for increasing cellular carotenoid content. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:166. [PMID: 37925447 PMCID: PMC10625216 DOI: 10.1186/s13068-023-02421-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Microalgae are emerging hosts for the sustainable production of lutein, a high-value carotenoid; however, to be commercially competitive with existing systems, their capacity for lutein sequestration must be augmented. Previous attempts to boost microalgal lutein production have focussed on upregulating carotenoid biosynthetic enzymes, in part due to a lack of metabolic engineering targets for expanding lutein storage. RESULTS Here, we isolated a lutein hyper-producing mutant of the model green microalga Chlamydomonas reinhardtii and characterized the metabolic mechanisms driving its enhanced lutein accumulation using label-free quantitative proteomics. Norflurazon- and high light-resistant C. reinhardtii mutants were screened to yield four mutant lines that produced significantly more lutein per cell compared to the CC-125 parental strain. Mutant 5 (Mut-5) exhibited a 5.4-fold increase in lutein content per cell, which to our knowledge is the highest fold increase of lutein in C. reinhardtii resulting from mutagenesis or metabolic engineering so far. Comparative proteomics of Mut-5 against its parental strain CC-125 revealed an increased abundance of light-harvesting complex-like proteins involved in photoprotection, among differences in pigment biosynthesis, central carbon metabolism, and translation. Further characterization of Mut-5 under varying light conditions revealed constitutive overexpression of the photoprotective proteins light-harvesting complex stress-related 1 (LHCSR1) and LHCSR3 and PSII subunit S regardless of light intensity, and increased accrual of total chlorophyll and carotenoids as light intensity increased. Although the photosynthetic efficiency of Mut-5 was comparatively lower than CC-125, the amplitude of non-photochemical quenching responses of Mut-5 was 4.5-fold higher than in CC-125 at low irradiance. CONCLUSIONS We used C. reinhardtii as a model green alga and identified light-harvesting complex-like proteins (among others) as potential metabolic engineering targets to enhance lutein accumulation in microalgae. These have the added value of imparting resistance to high light, although partially compromising photosynthetic efficiency. Further genetic characterization and engineering of Mut-5 could lead to the discovery of unknown players in photoprotective mechanisms and the development of a potent microalgal lutein production system.
Collapse
Affiliation(s)
- Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Caroline Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|
10
|
Cao K, Cui Y, Sun F, Zhang H, Fan J, Ge B, Cao Y, Wang X, Zhu X, Wei Z, Yao Q, Ma J, Wang Y, Meng C, Gao Z. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv 2023; 68:108236. [PMID: 37586543 DOI: 10.1016/j.biotechadv.2023.108236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Microalgae are microorganisms capable of producing bioactive compounds using photosynthesis. Microalgae contain a variety of high value-added natural pigments such as carotenoids, phycobilins, and chlorophylls. These pigments play an important role in many areas such as food, pharmaceuticals, and cosmetics. Natural pigments have a health value that is unmatched by synthetic pigments. However, the current commercial production of natural pigments from microalgae is not able to meet the growing market demand. The use of metabolic engineering and synthetic biological strategies to improve the production performance of microalgal cell factories is essential to promote the large-scale production of high-value pigments from microalgae. This paper reviews the health and economic values, the applications, and the synthesis pathways of microalgal pigments. Overall, this review aims to highlight the latest research progress in metabolic engineering and synthetic biology in constructing engineered strains of microalgae with high-value pigments and the application of CRISPR technology and multi-omics in this context. Finally, we conclude with a discussion on the bottlenecks and challenges of microalgal pigment production and their future development prospects.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Xiaodong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Zuoxi Wei
- School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
11
|
Hitchcock A, Proctor MS, Sobotka R. Coordinating plant pigment production: A green role for ORANGE family proteins. MOLECULAR PLANT 2023; 16:1366-1369. [PMID: 37573474 DOI: 10.1016/j.molp.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Affiliation(s)
- Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Matthew S Proctor
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Třeboň 379 01, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| |
Collapse
|
12
|
Kang L, Zhang C, Liu J, Ye M, Zhang L, Chen F, Lin X, Yang D, Ren L, Li Y, Kim HS, Kwak SS, Li H, Deng X, Zhang P, Ke Q. Overexpression of potato ORANGE (StOR) and StOR mutant in Arabidopsis confers increased carotenoid accumulation and tolerance to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107809. [PMID: 37315350 DOI: 10.1016/j.plaphy.2023.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
ORANGE (OR) plays essential roles in regulating carotenoid homeostasis and enhancing the ability of plants to adapt to environmental stress. However, OR proteins have been functionally characterized in only a few plant species, and little is known about the role of potato OR (StOR). In this study, we characterized the StOR gene in potato (Solanum tuberosum L. cv. Atlantic). StOR is predominantly localized to the chloroplast, and its transcripts are tissue-specifically expressed and significantly induced in response to abiotic stress. Compared with wild type, overexpression of StOR increased β-carotene levels up to 4.8-fold, whereas overexpression of StORHis with a conserved arginine to histidine substitution promoted β-carotene accumulation up to 17.6-fold in Arabidopsis thaliana calli. Neither StOR nor StORHis overexpression dramatically affected the transcript levels of carotenoid biosynthetic genes. Furthermore, overexpression of either StOR or StORHis increased abiotic stress tolerance in Arabidopsis, which was associated with higher photosynthetic capacity and antioxidative activity. Taken together, these results indicate that StOR could be exploited as a potential new genetic tool for the improvement of crop nutritional quality and environmental stress tolerance.
Collapse
Affiliation(s)
- Le Kang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China; National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chunli Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Junke Liu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Muying Ye
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Li Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Fengfeng Chen
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Xinyue Lin
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu, 221131, China
| | - Liping Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Hongbing Li
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Xiping Deng
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Qingbo Ke
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
13
|
Liang MH, Xie SR, Dai JL, Chen HH, Jiang JG. Roles of Two Phytoene Synthases and Orange Protein in Carotenoid Metabolism of the β-Carotene-Accumulating Dunaliella salina. Microbiol Spectr 2023; 11:e0006923. [PMID: 37022233 PMCID: PMC10269666 DOI: 10.1128/spectrum.00069-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Phytoene synthase (PSY) is a key enzyme in carotenoid metabolism and often regulated by orange protein. However, few studies have focused on the functional differentiation of the two PSYs and their regulation by protein interaction in the β-carotene-accumulating Dunaliella salina CCAP 19/18. In this study, we confirmed that DsPSY1 from D. salina possessed high PSY catalytic activity, whereas DsPSY2 almost had no activity. Two amino acid residues at positions 144 and 285 responsible for substrate binding were associated with the functional variance between DsPSY1 and DsPSY2. Moreover, orange protein from D. salina (DsOR) could interact with DsPSY1/2. DbPSY from Dunaliella sp. FACHB-847 also had high PSY activity, but DbOR could not interact with DbPSY, which might be one reason why it could not highly accumulate β-carotene. Overexpression of DsOR, especially the mutant DsORHis, could significantly improve the single-cell carotenoid content and change cell morphology (with larger cell size, bigger plastoglobuli, and fragmented starch granules) of D. salina. Overall, DsPSY1 played a dominant role in carotenoid biosynthesis in D. salina, and DsOR promoted carotenoid accumulation, especially β-carotene via interacting with DsPSY1/2 and regulating the plastid development. Our study provides a new clue for the regulatory mechanism of carotenoid metabolism in Dunaliella. IMPORTANCE Phytoene synthase (PSY) as the key rate-limiting enzyme in carotenoid metabolism can be regulated by various regulators and factors. We found that DsPSY1 played a dominant role in carotenogenesis in the β-carotene-accumulating Dunaliella salina, and two amino acid residues critical in the substrate binding were associated with the functional variance between DsPSY1 and DsPSY2. Orange protein from D. salina (DsOR) can promote carotenoid accumulation via interacting with DsPSY1/2 and regulating the plastid development, which provides new insights into the molecular mechanism of massive accumulation of β-carotene in D. salina.
Collapse
Affiliation(s)
- Ming-Hua Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shan-Rong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jv-Liang Dai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Fu Y, Wang Y, Yi L, Liu J, Yang S, Liu B, Chen F, Sun H. Lutein production from microalgae: A review. BIORESOURCE TECHNOLOGY 2023; 376:128875. [PMID: 36921637 DOI: 10.1016/j.biortech.2023.128875] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Lutein production from microalgae is a sustainable and economical strategy to offer the increasing global demands, but is still challenged with low lutein content at the high-cell density for commercial production. This review summarizes the suitable conditions for cell growth and lutein accumulation, and presents recent cultivation strategies to further improve lutein productivity. Light and nitrogen play critical roles in lutein biosynthesis that lead to the efficient multi-stage cultivation by increasing lutein content at the later stage. In addition, metabolic and genetic designs for carbon regulation and lutein biosynthesis are discussed at the molecule level. The in-situ lutein accumulation in fermenters by regulating carbon metabolism is considered as a cost-effective direction. Then, downstream processes are summarized for the efficient lutein recovery. Finally, challenges of current lutein production from microalgae are discussed. Meanwhile, potential solutions are proposed to improve lutein content and drive down costs of microalgal biomass.
Collapse
Affiliation(s)
- Yunlei Fu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yinan Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
15
|
Jeong BR, Jang J, Jin E. Genome engineering via gene editing technologies in microalgae. BIORESOURCE TECHNOLOGY 2023; 373:128701. [PMID: 36746216 DOI: 10.1016/j.biortech.2023.128701] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
CRISPR-Cas has revolutionized genetic modification with its comparative simplicity and accuracy, and it can be used even at the genomic level. Microalgae are excellent feedstocks for biofuels and nutraceuticals because they contain high levels of fatty acids, carotenoids, and other metabolites; however, genome engineering for microalgae is not yet as developed as for other model organisms. Microalgal engineering at the genetic and metabolic levels is relatively well established, and a few genomic resources are available. Their genomic information was used for a "safe harbor" site for stable transgene expression in microalgae. This review proposes further genome engineering schemes including the construction of sgRNA libraries, pan-genomic and epigenomic resources, and mini-genomes, which can together be developed into synthetic biology for carbon-based engineering in microalgae. Acetyl-CoA is at the center of carbon metabolic pathways and is further reviewed for the production of molecules including terpenoids in microalgae.
Collapse
Affiliation(s)
- Byeong-Ryool Jeong
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
16
|
Stra A, Almarwaey LO, Alagoz Y, Moreno JC, Al-Babili S. Carotenoid metabolism: New insights and synthetic approaches. FRONTIERS IN PLANT SCIENCE 2023; 13:1072061. [PMID: 36743580 PMCID: PMC9891708 DOI: 10.3389/fpls.2022.1072061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Carotenoids are well-known isoprenoid pigments naturally produced by plants, algae, photosynthetic bacteria as well as by several heterotrophic microorganisms. In plants, they are synthesized in plastids where they play essential roles in light-harvesting and in protecting the photosynthetic apparatus from reactive oxygen species (ROS). Carotenoids are also precursors of bioactive metabolites called apocarotenoids, including vitamin A and the phytohormones abscisic acid (ABA) and strigolactones (SLs). Genetic engineering of carotenogenesis made possible the enhancement of the nutritional value of many crops. New metabolic engineering approaches have recently been developed to modulate carotenoid content, including the employment of CRISPR technologies for single-base editing and the integration of exogenous genes into specific "safe harbors" in the genome. In addition, recent studies revealed the option of synthetic conversion of leaf chloroplasts into chromoplasts, thus increasing carotenoid storage capacity and boosting the nutritional value of green plant tissues. Moreover, transient gene expression through viral vectors allowed the accumulation of carotenoids outside the plastid. Furthermore, the utilization of engineered microorganisms allowed efficient mass production of carotenoids, making it convenient for industrial practices. Interestingly, manipulation of carotenoid biosynthesis can also influence plant architecture, and positively impact growth and yield, making it an important target for crop improvements beyond biofortification. Here, we briefly describe carotenoid biosynthesis and highlight the latest advances and discoveries related to synthetic carotenoid metabolism in plants and microorganisms.
Collapse
Affiliation(s)
- Alice Stra
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lamyaa O. Almarwaey
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yagiz Alagoz
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Juan C. Moreno
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Al-Babili
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
17
|
Li Z, Gao C, Ye C, Guo L, Liu J, Chen X, Song W, Wu J, Liu L. Systems engineering of Escherichia coli for high-level shikimate production. Metab Eng 2023; 75:1-11. [PMID: 36328295 DOI: 10.1016/j.ymben.2022.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
To further increase the production efficiency of microbial shikimate, a valuable compound widely used in the pharmaceutical and chemical industries, ten key target genes contributing to shikimate production were identified by exploiting the enzyme constraint model ec_iML1515, and subsequently used for promoting metabolic flux towards shikimate biosynthesis in the tryptophan-overproducing strain Escherichia coli TRP0. The engineered E. coli SA05 produced 78.4 g/L shikimate via fed-batch fermentation. Deletion of quinate dehydrogenase and introduction of the hydroaromatic equilibration-alleviating shikimate dehydrogenase mutant AroET61W/L241I reduced the contents of byproducts quinate (7.5 g/L) and 3-dehydroshikimic acid (21.4 g/L) by 89.1% and 52.1%, respectively. Furthermore, a high concentration shikimate responsive promoter PrpoS was recruited to dynamically regulate the expression of the tolerance target ProV to enhance shikimate productivity by 23.2% (to 2 g/L/h). Finally, the shikimate titer was increased to 126.4 g/L, with a yield of 0.50 g/g glucose and productivity of 2.63 g/L/h, using a 30-L fermenter and the engineered strain E. coli SA09. This is, to the best of our knowledge, the highest reported shikimate titer and productivity in E. coli.
Collapse
Affiliation(s)
- Zhendong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
18
|
Sirohi P, Verma H, Singh SK, Singh VK, Pandey J, Khusharia S, Kumar D, Kaushalendra, Teotia P, Kumar A. Microalgal Carotenoids: Therapeutic Application and Latest Approaches to Enhance the Production. Curr Issues Mol Biol 2022; 44:6257-6279. [PMID: 36547088 PMCID: PMC9777246 DOI: 10.3390/cimb44120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Microalgae are microscopic photosynthetic organisms frequently found in fresh and marine water ecosystems. Various microalgal species have been considered a reservoir of diverse health-value products, including vitamins, proteins, lipids, and polysaccharides, and are broadly utilized as food and for the treatment of human ailments such as cancer, cardiovascular diseases, allergies, and immunodeficiency. Microalgae-derived carotenoids are the type of accessory pigment that possess light-absorbing potential and play a significant role in metabolic functions. To date, nearly a thousand carotenoids have been reported, but a very less number of microalgae have been used for the commercial production of carotenoids. This review article briefly discussed the carotenoids of microalgal origin and their therapeutic application. In addition, we have briefly compiled the optimization of culture parameters used to enhance microalgal carotenoid production. In addition, the latest biotechnological approaches used to improve the yields of carotenoid has also been discussed.
Collapse
Affiliation(s)
- Priyanka Sirohi
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Hariom Verma
- Department of Botany, B.R.D. Government Degree College Duddhi, Sonbhadra 231216, India
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | | | - Jyoti Pandey
- Department of Biochemistry, Singhania University, Pacheri Barı, Jhunjhunu 333515, India
| | - Saksham Khusharia
- Kuwar SatyaVira College of Engineering and Management, Bijnor 246701, India
| | - Dharmendra Kumar
- Department of Zoology, C.M.B. College, Deorh, Ghoghardiha 847402, India
| | - Kaushalendra
- Department of Zoology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl 796001, India
| | - Pratibha Teotia
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization (ARO)—Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
19
|
Quiroz-Iturra LF, Simpson K, Arias D, Silva C, González-Calquin C, Amaza L, Handford M, Stange C. Carrot DcALFIN4 and DcALFIN7 Transcription Factors Boost Carotenoid Levels and Participate Differentially in Salt Stress Tolerance When Expressed in Arabidopsis thaliana and Actinidia deliciosa. Int J Mol Sci 2022; 23:ijms232012157. [PMID: 36293018 PMCID: PMC9603649 DOI: 10.3390/ijms232012157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
ALFIN-like transcription factors (ALs) are involved in several physiological processes such as seed germination, root development and abiotic stress responses in plants. In carrot (Daucus carota), the expression of DcPSY2, a gene encoding phytoene synthase required for carotenoid biosynthesis, is induced after salt and abscisic acid (ABA) treatment. Interestingly, the DcPSY2 promoter contains multiple ALFIN response elements. By in silico analysis, we identified two putative genes with the molecular characteristics of ALs, DcAL4 and DcAL7, in the carrot transcriptome. These genes encode nuclear proteins that transactivate reporter genes and bind to the carrot DcPSY2 promoter in yeast. The expression of both genes is induced in carrot under salt stress, especially DcAL4 which also responds to ABA treatment. Transgenic homozygous T3 Arabidopsis thaliana lines that stably express DcAL4 and DcAL7 show a higher survival rate with respect to control plants after chronic salt stress. Of note is that DcAL4 lines present a better performance in salt treatments, correlating with the expression level of DcAL4, AtPSY and AtDXR and an increase in carotenoid and chlorophyll contents. Likewise, DcAL4 transgenic kiwi (Actinidia deliciosa) lines show increased carotenoid and chlorophyll content and higher survival rate compared to control plants after chronic salt treatment. Therefore, DcAL4 and DcAL7 encode functional transcription factors, while ectopic expression of DcAL4 provides increased tolerance to salinity in Arabidopsis and Kiwi plants.
Collapse
Affiliation(s)
- Luis Felipe Quiroz-Iturra
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Kevin Simpson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7750000, Chile
| | - Daniela Arias
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Cristóbal Silva
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Christian González-Calquin
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Leticia Amaza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Michael Handford
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
- Correspondence: ; Tel.: +56-22-2978-7361
| |
Collapse
|
20
|
Rafson JP, Sacks GL. Swellable Sorbent Coatings for Parallel Extraction, Storage, and Analysis of Plant Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7805-7814. [PMID: 35699964 DOI: 10.1021/acs.jafc.2c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quantitative and qualitative measurements of trace-level analytes in plants or foodstuffs, e.g., secondary metabolites like carotenoids, are often performed at centralized core facilities or off-site laboratories. However, preparation, storage, and/or transport of both intact samples and sample extracts may be cumbersome and complicated, especially for air-sensitive analytes. We describe the development of inexpensive swellable microextraction (SweME) devices for extraction and storage of nonpolar analytes. SweME devices consist of a thin layer of poly(dimethylsiloxane) (PDMS) grafted onto a stainless steel support. Pretreating the SweME device with small volumes of the organic solvent causes the PDMS to swell. The swollen SweME device can then be immersed directly into complex matrices for absorptive extraction of low-molecular-weight, nonpolar analytes. Following storage, analytes can be solvent-desorbed prior to characterization. Proof-of-principle work with carotenoids from tomatoes and carrots demonstrates that SweME is appropriate for semiquantitative analyses and increases the stability of air-sensitive analytes during storage at ambient temperatures as compared to the solvent extracts. Carotenoid profiles (fractional carotenoid contributions) from tomato and carrot samples were well correlated between SweME and liquid-liquid extraction (R2 = 0.97 and 0.94). Lycopene, the most abundant carotenoid in tomatoes, saw a less than 20% decrease in extracted mass during 1 month of ambient SweME storage. Extractions and desorptions can be run in parallel using multiwell plates. In summary, swelled sorbent extraction with SweME devices is a convenient and inexpensive approach for isolation and storage of analytes in complex matrices and may be particularly well suited for evaluating large numbers of plant samples through external laboratories.
Collapse
Affiliation(s)
- Jessica P Rafson
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Gavin L Sacks
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| |
Collapse
|
21
|
The DnaJ-like Zinc Finger Protein ORANGE Promotes Proline Biosynthesis in Drought-Stressed Arabidopsis Seedlings. Int J Mol Sci 2022; 23:ijms23073907. [PMID: 35409266 PMCID: PMC8999238 DOI: 10.3390/ijms23073907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Orange (OR) is a DnaJ-like zinc finger protein with both nuclear and plastidial localizations. OR, and its orthologs, are highly conserved in flowering plants, sharing a characteristic C-terminal tandem 4× repeats of the CxxCxxxG signature. It was reported to trigger chromoplast biogenesis, promote carotenoid accumulation in plastids of non-pigmented tissues, and repress chlorophyll biosynthesis and chloroplast biogenesis in the nucleus of de-etiolating cotyledons cells. Its ectopic overexpression was found to enhance plant resistance to abiotic stresses. Here, we report that the expression of OR in Arabidopsis thaliana was upregulated by drought treatment, and seedlings of the OR-overexpressing (OE) lines showed improved growth performance and survival rate under drought stress. Compared with the wild-type (WT) and OR-silencing (or) lines, drought-stressed OE seedlings possessed lower contents of reactive oxygen species (such as H2O2 and O2-), higher activities of both superoxide dismutase and catalase, and a higher level of proline content. Our enzymatic assay revealed a relatively higher activity of Δ1-pyrroline-5-carboxylate synthase (P5CS), a rate-limiting enzyme for proline biosynthesis, in drought-stressed OE seedlings, compared with the WT and or lines. We further demonstrated that the P5CS activity could be enhanced by supplementing exogenous OR in our in vitro assays. Taken together, our results indicated a novel contribution of OR to drought tolerance, through its impact on proline biosynthesis.
Collapse
|
22
|
Kang NK, Baek K, Koh HG, Atkinson CA, Ort DR, Jin YS. Microalgal metabolic engineering strategies for the production of fuels and chemicals. BIORESOURCE TECHNOLOGY 2022; 345:126529. [PMID: 34896527 DOI: 10.1016/j.biortech.2021.126529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Microalgae are promising sustainable resources because of their ability to convert CO2 into biofuels and chemicals directly. However, the industrial production and economic feasibility of microalgal bioproducts are still limited. As such, metabolic engineering approaches have been undertaken to enhance the productivities of microalgal bioproducts. In the last decade, impressive advances in microalgae metabolic engineering have been made by developing genetic engineering tools and multi-omics analysis. This review presents comprehensive microalgal metabolic pathways and metabolic engineering strategies for producing lipids, long chain-polyunsaturated fatty acids, terpenoids, and carotenoids. Additionally, promising metabolic engineering approaches specific to target products are summarized. Finally, this review discusses current challenges and provides future perspectives for the effective production of chemicals and fuels via microalgal metabolic engineering.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kwangryul Baek
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Gi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christine Anne Atkinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Global Change and Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, IL, USA; Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
23
|
Fordjour E, Mensah EO, Hao Y, Yang Y, Liu X, Li Y, Liu CL, Bai Z. Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories. BIORESOUR BIOPROCESS 2022; 9:6. [PMID: 38647812 PMCID: PMC10992668 DOI: 10.1186/s40643-022-00493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 02/22/2023] Open
Abstract
Terpenoids form the most diversified class of natural products, which have gained application in the pharmaceutical, food, transportation, and fine and bulk chemical industries. Extraction from naturally occurring sources does not meet industrial demands, whereas chemical synthesis is often associated with poor enantio-selectivity, harsh working conditions, and environmental pollutions. Microbial cell factories come as a suitable replacement. However, designing efficient microbial platforms for isoprenoid synthesis is often a challenging task. This has to do with the cytotoxic effects of pathway intermediates and some end products, instability of expressed pathways, as well as high enzyme promiscuity. Also, the low enzymatic activity of some terpene synthases and prenyltransferases, and the lack of an efficient throughput system to screen improved high-performing strains are bottlenecks in strain development. Metabolic engineering and synthetic biology seek to overcome these issues through the provision of effective synthetic tools. This review sought to provide an in-depth description of novel strategies for improving cell factory performance. We focused on improving transcriptional and translational efficiencies through static and dynamic regulatory elements, enzyme engineering and high-throughput screening strategies, cellular function enhancement through chromosomal integration, metabolite tolerance, and modularization of pathways.
Collapse
Affiliation(s)
- Eric Fordjour
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Emmanuel Osei Mensah
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yunpeng Hao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
24
|
Velmurugan A, Kodiveri Muthukaliannan G. Genetic manipulation for carotenoid production in microalgae an overview. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
25
|
Ramsey JS, Fish TL, Thannhauser TW, Giovannoni JJ. Laser capture of tomato pericarp tissues for microscale carotenoid analysis by supercritical fluid chromatography. Methods Enzymol 2022; 670:213-233. [DOI: 10.1016/bs.mie.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|