1
|
Wang G, Wu Z, Li M, Liang X, Wen Y, Zheng Q, Li D, An T. Microbial production of 5- epi-jinkoheremol, a plant-derived antifungal sesquiterpene. Appl Environ Microbiol 2024; 90:e0119124. [PMID: 39283105 PMCID: PMC11497823 DOI: 10.1128/aem.01191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Synthetic biology using microbial chassis is emerging as a powerful tool for the production of natural chemicals. In the present study, we constructed a microbial platform for the high-level production of a sesquiterpene from Catharanthus roseus, 5-epi-jinkoheremol, which exhibits strong fungicidal activity. First, the mevalonate and sterol biosynthesis pathways were optimized in engineered yeast to increase the metabolic flux toward the biosynthesis of the precursor farnesyl pyrophosphate. Then, the transcription factor Hac1- and m6A writer Ime4-based metabolic engineering strategies were implemented in yeast to increase 5-epi-jinkoheremol production further. Next, protein engineering was performed to improve the catalytic activity and enhance the stability of the 5-epi-jinkoheremol synthase TPS18, resulting in the variant TPS18I21P/T414S, with the most improved properties. Finally, the titer of 5-epi-jinkoheremol was elevated to 875.25 mg/L in a carbon source-optimized medium in shake flask cultivation. To the best of our knowledge, this is the first study to construct an efficient microbial cell factory for the sustainable production of this antifungal sesquiterpene.IMPORTANCEBiofungicides represent a new and sustainable tool for the control of crop fungal diseases. However, hindered by the high cost of biofungicide production, their use is not as popular as expected. Synthetic biology using microbial chassis is emerging as a powerful tool for the production of natural chemicals. We previously identified a promising sesquiterpenoid biofungicide, 5-epi-jinkoheremol. Here, we constructed a microbial platform for the high-level production of this chemical. The metabolic engineering of the terpene biosynthetic pathway was firstly employed to increase the metabolic flux toward 5-epi-jinkoheremol production. However, the limited catalytic activity of the key enzyme, TPS18, restricted the further yield of 5-epi-jinkoheremol. By using protein engineering, we improved its catalytic efficiency, and combined with the optimization of regulation factors, the highest production of 5-epi-jinkoheremol was achieved. Our work was useful for the larger-scale efficient production of this antifungal sesquiterpene.
Collapse
Affiliation(s)
- Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Yiwei Wen
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Jia S, Lu C, Tong X, Li Q, Yan S, Pei J, Dai Y, Zhao L. Efficient and green production of flavone-5-O-glycosides by glycosyltransferases in Escherichia coli. Int J Biol Macromol 2024; 277:134477. [PMID: 39116985 DOI: 10.1016/j.ijbiomac.2024.134477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
O-Glycosylflavonoids exhibit diverse biological activities but their low content in plants is difficult to extract and isolate, and chemical synthesis steps are cumbersome, which are harmful to the environment. Therefore, the biosynthesis of O-glycosylflavonoids represents a green and sustainable alternative strategy, with glycosyltransferases playing a crucial role in this process. However, there are few studies on flavone 5-O-glycosyltransferases, which limits the synthesis of rare flavone 5-O glycosides by microorganisms. In this study, we characterized a highly regioselectivity flavone 5-O glycosyltransferase from Panicum hallii. Site-directed mutagenesis at residue P141 switches glucosylation to xylosylation. Using a combinatorial strategy of metabolic engineering, we generated a series of Escherichia coli recombinant strains to biocatalyze glycosylation of the typical flavone apigenin. Ultimately, further optimization of transformation conditions, apigenin-5-O-glucoside and apigenin-5-O-xyloside were biosynthesized for the first time so far, and the yields were 1490 mg/L and 1210 mg/L, respectively. This study provides a biotechnological component for the biosynthesis of flavone-5-O-glycosides, and established a green and sustainable approach for the industrial production of high-value O-glycosylflavones by engineering, which lays a foundation for their further development and application in food and pharmaceutical fields.
Collapse
Affiliation(s)
- Shutong Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changning Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyi Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Siyang Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuan Dai
- Yanghe Distillery Co. Ltd, Suqian, Jiangsu 223800, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jinpu Research institute, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
3
|
Chen Q, Lei J, Li X, Zhang J, Liu D, Cui X, Ge F. Heterologous synthesis of ginsenoside F1 and its precursors in Nicotiana benthamiana. JOURNAL OF PLANT PHYSIOLOGY 2024; 299:154276. [PMID: 38801806 DOI: 10.1016/j.jplph.2024.154276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ginsenoside F1 has high medicinal values, which is a kind of rare triterpene saponin isolated from Panax plants. The extremely low content of ginsenoside F1 in herbs has limited its research and application in medical field. In this work, we constructed a pathway in tobacco for the biosynthesis of ginsenoside F1 by metabolic engineering. Four enzyme genes (PnDDS, CYP716A47, CYP716S1 and UGT71A56) isolated from Panax notoginseng were introduced into tobacco. Thus, a biosynthetic pathway for ginsenoside F1 synthesis was artificially constructed in tobacco cells; moreover, the four exogenous genes could be expressed in the roots, stems and leaves of transgenic plants. Consequently, ginsenoside F1 and its precursors were successfully synthesized in the transgenic tobacco, compared with Panax plants, the content of ginsenoside F1 in transgenic tobacco was doubled. In addition, accumulation of ginsenoside F1 and its precursors in transgenic tobacco shows organ specificity. Based on these results, a new approach was established to produce rare ginsenoside F1; meanwhile, such strategy could also be employed in plant hosts for the heterologous synthesis of other important or rare natural products.
Collapse
Affiliation(s)
- Qin Chen
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun Lei
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaolei Li
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Analytical & Testing Research Center, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jinyu Zhang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Diqiu Liu
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| | - Feng Ge
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
4
|
Aktar A, Bhuia S, Chowdhury R, Hasan R, Islam Rakib A, Al Hasan S, Akter Sonia F, Torequl Islam M. Therapeutic Promises of Bioactive Rosavin: A Comprehensive Review with Mechanistic Insight. Chem Biodivers 2024; 21:e202400286. [PMID: 38752614 DOI: 10.1002/cbdv.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Rosavin is an alkylbenzene diglycoside primarily found in Rhodiola rosea (L.), demonstrating various pharmacological properties in a number of preclinical test systems. This study focuses on evaluating the pharmacological effects of rosavin and the underlying molecular mechanisms based on different preclinical and non-clinical investigations. The findings revealed that rosavin has anti-microbial, antioxidant, and different protective effects, including neuroprotective effects against various neurodegenerative ailments such as mild cognitive disorders, neuropathic pain, depression, and stress, as well as gastroprotective, osteoprotective, pulmoprotective, and hepatoprotective activities. This protective effect of rosavin is due to its capability to diminish inflammation and oxidative stress. The compound also manifested anticancer properties against various cancer via exerting cytotoxicity, apoptotic cell death, arresting the different phases (G0/G1) of the cancerous cell cycle, inhibiting migration, and invading other organs. Rosavin also regulated MAPK/ERK signaling pathways to exert suppressing effect of cancer cell. However, because of its high-water solubility, which lowers its permeability, the phytochemical has low oral bioavailability. The compound's relevant drug likeness was evaluated by the in silico ADME, revealing appropriate drug likeness. We suggest more extensive investigation and clinical studies to determine safety, efficacy, and human dose to establish the compound as a reliable therapeutic agent.
Collapse
Affiliation(s)
- Asma Aktar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
| | - Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
- Pharmacy Discipline, Khulna University, 9208, Khulna, Bangladesh
| |
Collapse
|
5
|
Li L, Liu M, Bi H, Liu T. High-level production of Rhodiola rosea characteristic component rosavin from D-glucose and L-arabinose in engineered Escherichia coli. Metab Eng 2024; 82:274-285. [PMID: 38428730 DOI: 10.1016/j.ymben.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Rosavin is the characteristic component of Rhodiola rosea L., an important medicinal plant used widely in the world that has been reported to possess multiple biological activities. However, the endangered status of wild Rhodiola has limited the supply of rosavin. In this work, we successfully engineered an Escherichia coli strain to efficiently produce rosavin as an alternative production method. Firstly, cinnamate: CoA ligase from Hypericum calycinum, cinnamoyl-CoA reductase from Lolium perenne, and uridine diphosphate (UDP)-glycosyltransferase (UGT) from Bacillus subtilis (Bs-YjiC) were selected to improve the titer of rosin in E. coli. Subsequently, four UGTs from the UGT91R subfamily were identified to catalyze the formation of rosavin from rosin, with SlUGT91R1 from Solanum lycopersicum showing the highest activity level. Secondly, production of rosavin was achieved for the first time in E. coli by incorporating the SlUGT91R1 and UDP-arabinose pathway, including UDP-glucose dehydrogenase, UDP-xylose synthase, and UDP-xylose 4-epimerase, into the rosin-producing stain, and the titer reached 430.5 ± 91.4 mg/L. Thirdly, a two-step pathway derived from L-arabinose, composed of L-arabinokinase and UDP-sugar pyrophosphorylase, was developed in E. coli to further optimize the supply of the precursor UDP-arabinose. Furthermore, 1203.7 ± 32.1 mg/L of rosavin was produced from D-glucose and L-arabinose using shake-flask fermentation. Finally, the production of rosavin reached 7539.1 ± 228.7 mg/L by fed-batch fermentation in a 5-L bioreactor. Thus, the microbe-based production of rosavin shows great potential for commercialization. This work provides an effective strategy for the biosynthesis of other valuable natural products with arabinose-containing units from D-glucose and L-arabinose.
Collapse
Affiliation(s)
- Lijun Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Moshi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huiping Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
6
|
Sokolova N, Peng B, Haslinger K. Design and engineering of artificial biosynthetic pathways-where do we stand and where do we go? FEBS Lett 2023; 597:2897-2907. [PMID: 37777818 DOI: 10.1002/1873-3468.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
The production of commodity and specialty chemicals relies heavily on fossil fuels. The negative impact of this dependency on our environment and climate has spurred a rising demand for more sustainable methods to obtain such chemicals from renewable resources. Herein, biotransformations of these renewable resources facilitated by enzymes or (micro)organisms have gained significant attention, since they can occur under mild conditions and reduce waste. These biotransformations typically leverage natural metabolic processes, which limits the scope and production capacity of such processes. In this mini-review, we provide an overview of advancements made in the past 5 years to expand the repertoire of biotransformations in engineered microorganisms. This ranges from redesign of existing pathways driven by retrobiosynthesis and computational design to directed evolution of enzymes and de novo pathway design to unlock novel routes for the synthesis of desired chemicals. We highlight notable examples of pathway designs for the production of commodity and specialty chemicals, showcasing the potential of these approaches. Lastly, we provide an outlook on future pathway design approaches.
Collapse
Affiliation(s)
- Nika Sokolova
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | - Bo Peng
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| |
Collapse
|
7
|
Wang S, Feng Y, Zheng L, He P, Tan J, Cai J, Wu M, Ye X. Rosavin: Research Advances in Extraction and Synthesis, Pharmacological Activities and Therapeutic Effects on Diseases of the Characteristic Active Ingredients of Rhodiola rosea L. Molecules 2023; 28:7412. [PMID: 37959831 PMCID: PMC10648587 DOI: 10.3390/molecules28217412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Rhodiola rosea L. (RRL) is a popular plant in traditional medicine, and Rosavin, a characteristic ingredient of RRL, is considered one of the most important active ingredients in it. In recent years, with deepening research on its pharmacological actions, the clinical application value and demand for Rosavin have been steadily increasing. Various routes for the extraction and all-chemical or biological synthesis of Rosavin have been gradually developed for the large-scale production and broad application of Rosavin. Pharmacological studies have demonstrated that Rosavin has a variety of biological activities, including antioxidant, lipid-lowering, analgesic, antiradiation, antitumor and immunomodulation effects. Rosavin showed significant therapeutic effects on a range of chronic diseases, including neurological, digestive, respiratory and bone-related disorders during in vitro and vivo experiments, demonstrating the great potential of Rosavin as a therapeutic drug for diseases. This paper gives a comprehensive and insightful overview of Rosavin, focusing on its extraction and synthesis, pharmacological activities, progress in disease-treatment research and formulation studies, providing a reference for the production and preparation, further clinical research and applications of Rosavin in the future.
Collapse
Affiliation(s)
- Shen Wang
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; (S.W.); (J.T.); (J.C.)
| | - Yanmin Feng
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524023, China; (Y.F.); (L.Z.); (P.H.)
| | - Lin Zheng
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524023, China; (Y.F.); (L.Z.); (P.H.)
| | - Panfeng He
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524023, China; (Y.F.); (L.Z.); (P.H.)
| | - Jingyi Tan
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; (S.W.); (J.T.); (J.C.)
| | - Jinhui Cai
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; (S.W.); (J.T.); (J.C.)
| | - Minhua Wu
- School of Basic Medicine, Guangdong Medical University, Zhanjiang 524023, China;
| | - Xiaoxia Ye
- School of Basic Medicine, Guangdong Medical University, Zhanjiang 524023, China;
| |
Collapse
|
8
|
Han R, Fang H, Fan Z, Ji Y, Schwaneberg U, Ni Y. Coupled reaction of glycosyltransferase and sucrose synthase for high-yielding and cost-effective synthesis of rosin. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
Fu C, Xu X, Xie Y, Liu Y, Liu M, Chen A, Blamey JM, Shi J, Zhao S, Sun J. Rational design of GDP‑D‑mannose mannosyl hydrolase for microbial L‑fucose production. Microb Cell Fact 2023; 22:56. [PMID: 36964553 PMCID: PMC10037897 DOI: 10.1186/s12934-023-02060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND L‑Fucose is a rare sugar that has beneficial biological activities, and its industrial production is mainly achieved with brown algae through acidic/enzymatic fucoidan hydrolysis and a cumbersome purification process. Fucoidan is synthesized through the condensation of a key substance, guanosine 5'‑diphosphate (GDP)‑L‑fucose. Therefore, a more direct approach for biomanufacturing L‑fucose could be the enzymatic degradation of GDP‑L‑fucose. However, no native enzyme is known to efficiently catalyze this reaction. Therefore, it would be a feasible solution to engineering an enzyme with similar function to hydrolyze GDP‑L‑fucose. RESULTS Herein, we constructed a de novo L‑fucose synthetic route in Bacillus subtilis by introducing heterologous GDP‑L‑fucose synthesis pathway and engineering GDP‑mannose mannosyl hydrolase (WcaH). WcaH displays a high binding affinity but low catalytic activity for GDP‑L‑fucose, therefore, a substrate simulation‑based structural analysis of the catalytic center was employed for the rational design and mutagenesis of selected positions on WcaH to enhance its GDP‑L‑fucose‑splitting efficiency. Enzyme mutants were evaluated in vivo by inserting them into an artificial metabolic pathway that enabled B. subtilis to yield L‑fucose. WcaHR36Y/N38R was found to produce 1.6 g/L L‑fucose during shake‑flask growth, which was 67.3% higher than that achieved by wild‑type WcaH. The accumulated L‑fucose concentration in a 5 L bioreactor reached 6.4 g/L. CONCLUSIONS In this study, we established a novel microbial engineering platform for the fermentation production of L‑fucose. Additionally, we found an efficient GDP‑mannose mannosyl hydrolase mutant for L‑fucose biosynthesis that directly hydrolyzes GDP‑L‑fucose. The engineered strain system established in this study is expected to provide new solutions for L‑fucose or its high value‑added derivatives production.
Collapse
Affiliation(s)
- Cong Fu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuexia Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Yukang Xie
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ai Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jenny M Blamey
- Fundación Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile
- Facultad de Química Y Biología, Universidad de Santiago de Chile, 3363, Alameda, Estación Central, Santiago, Chile
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suwen Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| | - Junsong Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Zhang X, Xie J, Cao S, Zhang H, Pei J, Bu S, Zhao L. Efficient production of the glycosylated derivatives of baicalein in engineered Escherichia coli. Appl Microbiol Biotechnol 2023; 107:2831-2842. [PMID: 36930276 DOI: 10.1007/s00253-023-12464-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Baicalein-7-O-glucoside and baicalein-7-O-rhamnoside have been proven to possess many pharmacological activities and are potential candidate drug leads and herb supplements. However, their further development is largely limited due to low content in host plants. Few studies reported that both bioactive plant components are prepared through the bioconversion of baicalein that is considered as the common biosynthetic precursor of both compounds. Herein, we constructed a series of the engineered whole-cell bioconversion systems in which the deletion of competitive genes and the introduction of exogenous UDP-glucose supply pathway, glucosyltransferase, rhamnosyltransferase, and the UDP-rhamnose synthesis pathway are made. Using these engineered strains, the precursor baicalein is able to be transformed into baicalein-7-O-glucoside and baicalein-7-O-rhamnoside, with high-titer production, respectively. The further optimization of fermentation conditions led to the final production of 568.8 mg/L and 877.0 mg/L for baicalein-7-O-glucoside and baicalein-7-O-rhamnoside, respectively. To the best of our knowledge, it is the highest production in preparation of baicalein-7-O-glucoside from baicalein so far, while the preparation of baicalein-7-O-rhamnoside is the first reported via bioconversion approach. Our study provides a reference for the industrial production of high-value products baicalein-7-O-glucoside and baicalein-7-O-rhamnoside using engineered E. coli. KEY POINTS: • Integrated design for improving the intracellular UDP-glucose pool • High production of rare baicalein glycosides in the engineered E. coli • Baicalein-7-O-glucoside and baicalein-7-O-rhamnoside.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, China
| | - Shiping Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Haiyan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Su Bu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
11
|
Liu Z, Xu J, Feng Z, Wang Y. Multi-strategy engineering unusual sugar TDP-l-mycarose biosynthesis to improve the production of 3-O-α-mycarosylerythronolide B in Escherichia coli. Synth Syst Biotechnol 2022; 7:756-764. [PMID: 35387229 PMCID: PMC8943214 DOI: 10.1016/j.synbio.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 11/21/2022] Open
Abstract
The insufficient supply of sugar units is the key limitation for the biosynthesis of glycosylated products. The unusual sugar TDP-l-mycarose is initially attached to the C3 of the polyketide erythronolide B, resulting in 3-O-α-mycarosylerythronolide B (MEB). Here, we present the de novo biosynthesis of MEB in Escherichia coli and improve its production using multi-strategy metabolic engineering. Firstly, by blocking precursor glucose-1-phosphate competing pathways, the MEB titer of triple knockout strain QC13 was significantly enhanced to 41.2 mg/L, 9.8-fold to that produced by parental strain BAP230. Subsequently, the MEB production was further increased to 48.3 mg/L through overexpression of rfbA and rfbB. Moreover, the CRISPRi was implemented to promote the TDP-l-mycarose biosynthesis via repressing the glycolysis and TDP-l-rhamnose pathway. Our study paves the way for efficient production of erythromycins in E. coli and provides a promising platform that can be applied for biosynthesis of other glycosylated products with unusual sugars.
Collapse
|