1
|
Nguyen L, Schmelzer B, Wilkinson S, Mattanovich D. From natural to synthetic: Promoter engineering in yeast expression systems. Biotechnol Adv 2024; 77:108446. [PMID: 39245291 DOI: 10.1016/j.biotechadv.2024.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Synthetic promoters are particularly relevant for application not only in yeast expression systems designed for high-level heterologous protein production but also in other applications such as metabolic engineering, cell biological research, and stage-specific gene expression control. By designing synthetic promoters, researcher can create customized expression systems tailored to specific needs, whether it is maximizing protein production or precisely controlling gene expression at different stages of a process. While recognizing the limitations of endogenous promoters, they also provide important information needed to design synthetic promoters. In this review, emphasis will be placed on some key approaches to identify endogenous, and to generate synthetic promoters in yeast expression systems. It shows the connection between endogenous and synthetic promoters, highlighting how their interplay contributes to promoter development. Furthermore, this review illustrates recent developments in biotechnological advancements and discusses how this field will evolve in order to develop custom-made promoters for diverse applications. This review offers detailed information, explores the transition from endogenous to synthetic promoters, and presents valuable perspectives on the next generation of promoter design strategies.
Collapse
Affiliation(s)
- Ly Nguyen
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria
| | - Bernhard Schmelzer
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria
| | | | - Diethard Mattanovich
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Zhang YS, Gong JS, Jiang JY, Xu ZH, Shi JS. Engineering protein translocation and unfolded protein response enhanced human PH-20 secretion in Pichia pastoris. Appl Microbiol Biotechnol 2024; 108:54. [PMID: 38175240 DOI: 10.1007/s00253-023-12878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Hyaluronidases catalyze the degradation of hyaluronan (HA), which is finding rising applications in medicine, cosmetic, and food industries. Recombinant expression of hyaluronidases in microbial hosts has been given special attention as a sustainable way to substitute animal tissue-derived hyaluronidases. In this study, we focused on optimizing the secretion of hyaluronidase from Homo sapiens in Pichia pastoris by secretion pathway engineering. The recombinant hyaluronidase was first expressed under the control of a constitutive promoter PGCW14. Then, two endoplasmic reticulum-related secretory pathways were engineered to improve the secretion capability of the recombinant strain. Signal peptide optimization suggested redirecting the protein into co-translational translocation using the ost1-proα signal sequence improved the secretion level by 20%. Enhancing the co-translational translocation by overexpressing signal recognition particle components further enhanced the secretory capability by 48%. Then, activating the unfolded protein response by overexpressing a transcriptional factor ScHac1p led to a secreted hyaluronidase activity of 4.06 U/mL, which was 2.1-fold higher than the original strain. Finally, fed-batch fermentation elevated the production to 19.82 U/mL. The combined engineering strategy described here could be applied to enhance the secretion capability of other proteins in yeast hosts. KEY POINTS: • Improving protein secretion by enhancing co-translational translocation in P. pastoris was reported for the first time. • Overexpressing Hac1p homologous from different origins improved the rhPH-20 secretion. • A 4.9-fold increase in rhPH-20 secretion was achieved after fermentation optimization and fed-batch fermentation.
Collapse
Affiliation(s)
- Yue-Sheng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China.
| |
Collapse
|
3
|
Koshiba A, Nakano M, Hirata Y, Konishi R, Matsuoka Y, Miwa Y, Mori A, Kondo A, Tanaka T. Enhanced production of isobutyl and isoamyl acetate using Yarrowia lipolytica. Biotechnol Prog 2024; 40:e3499. [PMID: 39056525 DOI: 10.1002/btpr.3499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Short-chain esters, particularly isobutyl acetate and isoamyl acetate, hold significant industrial value due to their wide-ranging applications in flavors, fragrances, solvents, and biofuels. In this study, we demonstrated the biosynthesis of acetate esters using Yarrowia lipolytica as a host by feeding alcohols to the yeast culture. Initially, we screened for optimal alcohol acyltransferases for ester biosynthesis in Y. lipolytica. Strains of Y. lipolytica expressing atf1 from Saccharomyces cerevisiae, produced 251 or 613 mg/L of isobutyl acetate or of isoamyl acetate, respectively. We found that introducing additional copies of ATF1 enhanced ester production. Furthermore, by increasing the supply of acetyl-CoA and refining the culture conditions, we achieved high production of isoamyl acetate, reaching titers of 3404 mg/L. We expanded our study to include the synthesis of a range of acetate esters, facilitated by enriching the culture medium with various alcohols. This study underscores the versatility and potential of Y. lipolytica in the industrial production of acetate esters.
Collapse
Affiliation(s)
- Ayumi Koshiba
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Rie Konishi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuta Matsuoka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuta Miwa
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Ayana Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
4
|
Xu L, Bai X, Joong Oh E. Strategic approaches for designing yeast strains as protein secretion and display platforms. Crit Rev Biotechnol 2024:1-18. [PMID: 39138023 DOI: 10.1080/07388551.2024.2385996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Yeast has been established as a versatile platform for expressing functional molecules, owing to its well-characterized biology and extensive genetic modification tools. Compared to prokaryotic systems, yeast possesses advanced cellular mechanisms that ensure accurate protein folding and post-translational modifications. These capabilities are particularly advantageous for the expression of human-derived functional proteins. However, designing yeast strains as an expression platform for proteins requires the integration of molecular and cellular functions. By delving into the complexities of yeast-based expression systems, this review aims to empower researchers with the knowledge to fully exploit yeast as a functional platform to produce a diverse range of proteins. This review includes an exploration of the host strains, gene cassette structures, as well as considerations for maximizing the efficiency of the expression system. Through this in-depth analysis, the review anticipates stimulating further innovation in the field of yeast biotechnology and protein engineering.
Collapse
Affiliation(s)
- Luping Xu
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | | | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
O’Riordan N, Jurić V, O’Neill SK, Roche AP, Young PW. A Yeast Modular Cloning (MoClo) Toolkit Expansion for Optimization of Heterologous Protein Secretion and Surface Display in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:1246-1258. [PMID: 38483353 PMCID: PMC11036508 DOI: 10.1021/acssynbio.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
Saccharomyces cerevisiae is an attractive host for the expression of secreted proteins in a biotechnology context. Unfortunately, many heterologous proteins fail to enter, or efficiently progress through, the secretory pathway, resulting in poor yields. Similarly, yeast surface display has become a widely used technique in protein engineering but achieving sufficient levels of surface expression of recombinant proteins is often challenging. Signal peptides (SPs) and translational fusion partners (TFPs) can be used to direct heterologous proteins through the yeast secretory pathway, however, selection of the optimal secretion promoting sequence is largely a process of trial and error. The yeast modular cloning (MoClo) toolkit utilizes type IIS restriction enzymes to facilitate an efficient assembly of expression vectors from standardized parts. We have expanded this toolkit to enable the efficient incorporation of a panel of 16 well-characterized SPs and TFPs and five surface display anchor proteins into S. cerevisiae expression cassettes. The secretion promoting signals are validated by using five different proteins of interest. Comparison of intracellular and secreted protein levels reveals the optimal secretion promoting sequence for each individual protein. Large, protein of interest-specific variations in secretion efficiency are observed. SP sequences are also used with the five surface display anchors, and the combination of SP and anchor protein proves critical for efficient surface display. These observations highlight the value of the described panel of MoClo compatible parts to allow facile screening of SPs and TFPs and anchor proteins for optimal secretion and/or surface display of a given protein of interest in S. cerevisiae.
Collapse
Affiliation(s)
- Nicola
M. O’Riordan
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
| | - Vanja Jurić
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Sarah K. O’Neill
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
| | - Aoife P. Roche
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
| | - Paul W. Young
- School
of Biochemistry and Cell Biology, University
College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
6
|
Pham DN, Linova MY, Smith WK, Brown H, Elhanafi D, Fan J, Lavoie J, Woodley JM, Carbonell RG. Novel multimodal cation-exchange membrane for the purification of a single-chain variable fragment from Pichia pastoris supernatant. J Chromatogr A 2024; 1718:464682. [PMID: 38341900 DOI: 10.1016/j.chroma.2024.464682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
A novel salt-tolerant cation-exchange membrane, prepared with a multimodal ligand, 2-mercaptopyridine-3-carboxylic acid (MMC-MPCA), was examined for its purification properties in a bind-and-elute mode from the high conductivity supernatant of a Pichia pastoris fermentation producing and secreting a single-chain variable fragment (scFv). If successful, this approach would eliminate the need for a buffer exchange prior to product capture by ion-exchange. Two fed-batch fermentations of Pichia pastoris resulted in fermentation supernatants reaching an scFv titer of 395.0 mg/L and 555.7 mg/L, both with a purity of approximately 83 %. The MMC-MPCA membrane performance was characterized in terms of pH, residence time (RT), scFv load, and scFv concentration to identify the resulting dynamic binding capacity (DBC), yield, and purity achieved under optimal conditions. The MMC-MPCA membrane exhibited the highest DBC of 39.06 mg/mL at pH 5.5, with a residence time of 1 min, while reducing the pH below 5.0 resulted in a significant decrease of the DBC to around 2.5 mg/mL. With almost no diffusional limitations, reducing the RT from 2 to 0.2 min did not negatively impact the DBC of the MMC-MPCA membrane, resulting in a significant improvement in productivity of up to 180 mg/mL/min at 0.2 min RT. Membrane fouling was observed when reusing the membranes at 0.2 and 0.5 min RT, likely due to the enhanced adsorption of impurities on the membrane. Changing the amount of scFv loaded onto the membrane column did not show any changes in yield, instead a 10-20 % loss of scFv was observed, which suggested that some of the produced scFv were fragmented or had aggregated. When performing the purification under the optimized conditions, the resulting purity of the product improved from 83 % to approximately 92-95 %.
Collapse
Affiliation(s)
- Dan N Pham
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marina Y Linova
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - William K Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Hunter Brown
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Driss Elhanafi
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jinxin Fan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| | - Joseph Lavoie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA.
| |
Collapse
|
7
|
Rebnegger C, Coltman BL, Kowarz V, Peña DA, Mentler A, Troyer C, Hann S, Schöny H, Koellensperger G, Mattanovich D, Gasser B. Protein production dynamics and physiological adaptation of recombinant Komagataella phaffii at near-zero growth rates. Microb Cell Fact 2024; 23:43. [PMID: 38331812 PMCID: PMC10851509 DOI: 10.1186/s12934-024-02314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Specific productivity (qP) in yeast correlates with growth, typically peaking at intermediate or maximum specific growth rates (μ). Understanding the factors limiting productivity at extremely low μ might reveal decoupling strategies, but knowledge of production dynamics and physiology in such conditions is scarce. Retentostats, a type of continuous cultivation, enable the well-controlled transition to near-zero µ through the combined retention of biomass and limited substrate supply. Recombinant Komagataella phaffii (syn Pichia pastoris) secreting a bivalent single domain antibody (VHH) was cultivated in aerobic, glucose-limited retentostats to investigate recombinant protein production dynamics and broaden our understanding of relevant physiological adaptations at near-zero growth conditions. RESULTS By the end of the retentostat cultivation, doubling times of approx. two months were reached, corresponding to µ = 0.00047 h-1. Despite these extremely slow growth rates, the proportion of viable cells remained high, and de novo synthesis and secretion of the VHH were observed. The average qP at the end of the retentostat was estimated at 0.019 mg g-1 h-1. Transcriptomics indicated that genes involved in protein biosynthesis were only moderately downregulated towards zero growth, while secretory pathway genes were mostly regulated in a manner seemingly detrimental to protein secretion. Adaptation to near-zero growth conditions of recombinant K. phaffii resulted in significant changes in the total protein, RNA, DNA and lipid content, and lipidomics revealed a complex adaptation pattern regarding the lipid class composition. The higher abundance of storage lipids as well as storage carbohydrates indicates that the cells are preparing for long-term survival. CONCLUSIONS In conclusion, retentostat cultivation proved to be a valuable tool to identify potential engineering targets to decouple growth and protein production and gain important insights into the physiological adaptation of K. phaffii to near-zero growth conditions.
Collapse
Affiliation(s)
- Corinna Rebnegger
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Benjamin L Coltman
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Viktoria Kowarz
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - David A Peña
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Axel Mentler
- Department of Forest- and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82, 1190, Vienna, Austria
| | - Christina Troyer
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Harald Schöny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Diethard Mattanovich
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Brigitte Gasser
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
8
|
Flores-Villegas M, Rebnegger C, Kowarz V, Prielhofer R, Mattanovich D, Gasser B. Systematic sequence engineering enhances the induction strength of the glucose-regulated GTH1 promoter of Komagataella phaffii. Nucleic Acids Res 2023; 51:11358-11374. [PMID: 37791854 PMCID: PMC10639056 DOI: 10.1093/nar/gkad752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
The promoter of the high-affinity glucose transporter Gth1 (PGTH1) is tightly repressed on glucose and glycerol surplus, and strongly induced in glucose-limitation, thus enabling regulated methanol-free production processes in the yeast production host Komagataella phaffii. To further improve this promoter, an intertwined approach of nucleotide diversification through random and rational engineering was pursued. Random mutagenesis and fluorescence activated cell sorting of PGTH1 yielded five variants with enhanced induction strength. Reverse engineering of individual point mutations found in the improved variants identified two single point mutations with synergistic action. Sequential deletions revealed the key promoter segments for induction and repression properties, respectively. Combination of the single point mutations and the amplification of key promoter segments led to a library of novel promoter variants with up to 3-fold higher activity. Unexpectedly, the effect of gaining or losing a certain transcription factor binding site (TFBS) was highly dependent on its context within the promoter. Finally, the applicability of the novel promoter variants for biotechnological production was proven for the secretion of different recombinant model proteins in fed batch cultivation, where they clearly outperformed their ancestors. In addition to advancing the toolbox for recombinant protein production and metabolic engineering of K. phaffii, we discovered single nucleotide positions and correspondingly affected TFBS that distinguish between glycerol- and glucose-mediated repression of the native promoter.
Collapse
Affiliation(s)
- Mirelle Flores-Villegas
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Corinna Rebnegger
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria
| | - Viktoria Kowarz
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Roland Prielhofer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria
| | - Brigitte Gasser
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
9
|
Gorczyca M, Nicaud JM, Celińska E. Transcription factors enhancing synthesis of recombinant proteins and resistance to stress in Yarrowia lipolytica. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12607-z. [PMID: 37318637 DOI: 10.1007/s00253-023-12607-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Resistance to environmental stress and synthesis of recombinant proteins (r-Prots) are both complex, strongly interconnected biological traits relying on orchestrated contribution of multiple genes. This, in turn, makes their engineering a challenging task. One of the possible strategies is to modify the operation of transcription factors (TFs) associated with these complex traits. The aim of this study was to examine the potential implications of selected five TFs (HSF1-YALI0E13948g, GZF1-YALI0D20482g, CRF1-YALI0B08206g, SKN7-YALI0D14520g, and YAP-like-YALI0D07744g) in stress resistance and/or r-Prot synthesis in Yarrowia lipolytica. The selected TFs were over-expressed or deleted (OE/KO) in a host strain synthesizing a reporter r-Prot. The strains were subjected to phenotype screening under different environmental conditions (pH, oxygen availability, temperature, and osmolality), and the obtained data processing was assisted by mathematical modeling. The results demonstrated that growth and the r-Prot yields under specific conditions can be significantly increased or decreased due to the TFs' engineering. Environmental factors "awakening" individual TFs were indicated, and their contribution was mathematically described. For example, OE of Yap-like TF was proven to alleviate growth retardation under high pH, while Gzf1 and Hsf1 were shown to serve as universal enhancers of r-Prot production in Y. lipolytica. On the other hand, KO of SKN7 and HSF1 disabled growth under hyperosmotic stress. This research demonstrates the usefulness of the TFs engineering approach in the manipulation of complex traits and evidences newly identified functions of the studied TFs. KEY POINTS: • Function and implication in complex traits of 5 TFs in Y. lipolytica were studied. • Gzf1 and Hsf1 are the universal r-Prots synthesis enhancers in Y. lipolytica. • Yap-like TF's activity is pH-dependent; Skn7 and Hsf1 act in osmostress response.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland.
| |
Collapse
|
10
|
Sosa-Carrillo S, Galez H, Napolitano S, Bertaux F, Batt G. Maximizing protein production by keeping cells at optimal secretory stress levels using real-time control approaches. Nat Commun 2023; 14:3028. [PMID: 37231013 PMCID: PMC10212943 DOI: 10.1038/s41467-023-38807-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Optimizing the production of recombinant proteins is a problem of major industrial and pharmaceutical importance. Secretion of the protein by the host cell considerably simplifies downstream purification processes. However, for many proteins, this is also the limiting production step. Current solutions involve extensive engineering of the chassis cell to facilitate protein trafficking and limit protein degradation triggered by excessive secretion-associated stress. Here, we propose instead a regulation-based strategy in which induction is dynamically adjusted to an optimal strength based on the current stress level of the cells. Using a small collection of hard-to-secrete proteins, a bioreactor-based platform with automated cytometry measurements, and a systematic assay to quantify secreted protein levels, we demonstrate that the secretion sweet spot is indicated by the appearance of a subpopulation of cells that accumulate high amounts of proteins, decrease growth, and face significant stress, that is, experience a secretion burnout. In these cells, adaptations capabilities are overwhelmed by a too strong production. Using these notions, we show for a single-chain antibody variable fragment that secretion levels can be improved by 70% by dynamically keeping the cell population at optimal stress levels using real-time closed-loop control.
Collapse
Affiliation(s)
| | - Henri Galez
- Institut Pasteur, Inria, Université Paris Cité, 75015, Paris, France
| | - Sara Napolitano
- Institut Pasteur, Inria, Université Paris Cité, 75015, Paris, France
| | - François Bertaux
- Institut Pasteur, Inria, Université Paris Cité, 75015, Paris, France
- Lesaffre International, 101 rue de Menin, Marcq-en-Baroeul, France
| | - Gregory Batt
- Institut Pasteur, Inria, Université Paris Cité, 75015, Paris, France.
| |
Collapse
|
11
|
Zahrl RJ, Prielhofer R, Burgard J, Mattanovich D, Gasser B. Synthetic activation of yeast stress response improves secretion of recombinant proteins. N Biotechnol 2023; 73:19-28. [PMID: 36603701 DOI: 10.1016/j.nbt.2023.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023]
Abstract
Yeasts, such as Pichia pastoris (syn Komagataella spp.), are particularly suitable expression systems for emerging classes of recombinant proteins. Among them, recombinant antibody fragments, such as single-chain variable fragments (scFv) and single-domain antibodies (VHH), are credible alternatives to monoclonal antibodies. The availability of powerful genetic engineering and synthetic biology tools has facilitated improvement of this cell factory to overcome certain limitations. However, cell engineering to improve secretion often remains a trial-and-error approach and improvements are often specific to the protein produced. Where multiple genetic interventions are needed to remove bottlenecks in the process of recombinant protein secretion, this leads to a high number of combinatorial possibilities for creation of new production strains. Therefore, our aim was to exploit whole transcriptional programs (stress response pathways) in order to simplify the strain engineering of new production strains. Indeed, the artificial activation of the general stress response transcription factor Msn4, as well as synthetic versions thereof, could replace the secretion enhancing effect of several cytosolic chaperones. Greater than 4-fold improvements in recombinant protein secretion were achieved by overexpression of MSN4 or synMSN4, either alone or in combination with Hac1 or ER chaperones. With this concept we were able to successfully engineer strains reaching titers of more than 2.5 g/L scFv and 8 g/L VHH in bioreactor cultivations. This increased secretion capacity of different industrially relevant model proteins indicates that MSN4 overexpression most likely represents a general concept to improve recombinant protein production in yeast.
Collapse
Affiliation(s)
- Richard J Zahrl
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Roland Prielhofer
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jonas Burgard
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|