1
|
Borghi-Pangoni FB, Bassi da Silva J, Dos Santos RS, Trevisan AP, Hott FCDC, Gonçalves MC, Kobayashi RK, de Souza MVF, Consolaro MEL, Castro-Hoshino LVD, Baesso ML, Bruschi ML. Thermosensitive gel based on cellulose derivative for topical delivery of propolis in acne treatment. Pharm Dev Technol 2022; 27:490-501. [PMID: 35587564 DOI: 10.1080/10837450.2022.2080221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Thermosensitive bioadhesive formulations can display increased retention time, skin permeation, and improve the topical therapy of many drugs. Acne is an inflammatory process triggered by several factors like the proliferation of the bacteria Propionibacterium acnes. Aiming a new alternative treatment with a natural source, propolis displays great potential due to its antibiotic, anti-inflammatory and healing properties. This study describes the development of bioadhesive thermoresponsive platform with cellulose derivatives and poloxamer 407 for propolis skin delivery. Propolis ethanolic extract (PES) was added to the formulations with sodium carboxymethylcellulose (CMC) or hydroxypropyl methylcellulose (HPMC) and poloxamer 407 (Polox). The formulations were characterized as rheology, bioadhesion and mechanical analysis. The selected formulations were investigated as in vitro propolis release, cytotoxicity, ex vivo skin permeation by Fourier Transform Infrared Photoacoustic Spectroscopy, and the activity against P. acnes. Formulations showed suitable sol-gel transition temperature, shear-thinning behavior and texture profile. CMC presence decreased cohesiveness and adhesiveness of formulations. Polox/HPMC/PES system displayed less cytotoxicity, modified propolis release governed by anomalous transport, skin permeation and activity against P. acnes. These results indicate important advantages in the topical treatment of acne and suggest a potential formulation for clinical evaluation.
Collapse
Affiliation(s)
- Fernanda Belincanta Borghi-Pangoni
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, 87020-900, Maringa, Parana, Brazil
| | - Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, 87020-900, Maringa, Parana, Brazil
| | - Rafaela Said Dos Santos
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, 87020-900, Maringa, Parana, Brazil
| | - Ana Paula Trevisan
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, 87020-900, Maringa, Parana, Brazil
| | - Francyelle Carolyne de Castro Hott
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, 87020-900, Maringa, Parana, Brazil
| | - Marcelly Chue Gonçalves
- Laboratory of basic and applied bacteriology NIP3, Department of Microbiology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Parana, Brazil
| | - Renata KatsukoTakayama Kobayashi
- Laboratory of basic and applied bacteriology NIP3, Department of Microbiology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Parana, Brazil
| | - Maria Vitória Felipe de Souza
- Laboratory of Clinical Cytology, building B09, Department of Clinical Analysis, Center of Health Sciences, State University of Maringa, 87020-900, Maringa, Parana, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Laboratory of Clinical Cytology, building B09, Department of Clinical Analysis, Center of Health Sciences, State University of Maringa, 87020-900, Maringa, Parana, Brazil
| | | | - Mauro Luciano Baesso
- Postgraduate Program in Physics, Department of Physics, State University of Maringa, 87020-900, Maringa, Parana, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, 87020-900, Maringa, Parana, Brazil
| |
Collapse
|
2
|
T908 Polymeric Micelles Improved the Uptake of Sgc8-c Aptamer Probe in Tumor-Bearing Mice: A Co-Association Study between the Probe and Preformed Nanostructures. Pharmaceuticals (Basel) 2021; 15:ph15010015. [PMID: 35056072 PMCID: PMC8780797 DOI: 10.3390/ph15010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Aptamers are oligonucleotides that have the characteristic of recognizing a target with high affinity and specificity. Based on our previous studies, the aptamer probe Sgc8-c-Alexa647 is a promising tool for molecular imaging of PTK7, which is an interesting biomarker in cancer. In order to improve the delivery of this probe as well as create a novel drug delivery nanosystem targeted to the PTK7 receptor, we evaluate the co-association between the probe and preformed nanostructures. In this work, preformed pegylated liposomes (PPL) and linear and branched pristine polymeric micelles (PMs), based on PEO–PPO–PEO triblock copolymers were used: poloxamer F127® and poloxamines T1307® and T908®. For it, Sgc8-c-Alexa647 and its co-association with the different nanostructures was exhaustively analyzed. DLS analysis showed nanometric sizes, and TEM and AFM showed notable differences between free- and co-associated probe. Likewise, all nanosystems were evaluated on A20 lymphoma cell line overexpressing PTK7, and the confocal microscopy images showed distinctness in cellular uptake. Finally, the biodistribution in BALB/c mice bearing lymphoma-tumor and pharmacokinetic study revealed an encouraging profile for T908-probe. All data obtained from this work suggested that PMs and, more specifically T908 ones, are good candidates to improve the pharmacokinetics and the tumor uptake of aptamer-based probes.
Collapse
|
3
|
Bedford JG, Heinlein M, Garnham AL, Nguyen THO, Loudovaris T, Ge C, Mannering SI, Elliott M, Tangye SG, Kedzierska K, Gray DHD, Heath WR, Wakim LM. Unresponsiveness to inhaled antigen is governed by conventional dendritic cells and overridden during infection by monocytes. Sci Immunol 2020; 5:5/52/eabb5439. [DOI: 10.1126/sciimmunol.abb5439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
The nasal-associated lymphoid tissues (NALTs) are mucosal-associated lymphoid organs embedded in the submucosa of the nasal passage. NALTs represent a known site for the deposition of inhaled antigens, but little is known of the mechanisms involved in the induction of immunity within this lymphoid tissue. We find that during the steady state, conventional dendritic cells (cDCs) within the NALTs suppress T cell responses. These cDCs, which are also prevalent within human NALTs (tonsils/adenoids), express a unique transcriptional profile and inhibit T cell proliferation via contact-independent mechanisms that can be diminished by blocking the actions of reactive oxygen species and prostaglandin E2. Although the prevention of unrestrained immune activation to inhaled antigens appears to be the default function of NALT cDCs, inflammation after localized virus infection recruited monocyte-derived DCs (moDCs) to this region, which diluted out the suppressive DC pool, and permitted local T cell priming. Accommodating for inflammation-induced temporal changes in NALT DC composition and function, we developed an intranasal vaccine delivery system that coupled the recruitment of moDCs with the sustained release of antigen into the NALTs, and we were able to substantially improve T cell responses after intranasal immunization. Thus, homeostasis and immunity to inhaled antigens is tuned by inflammatory signals that regulate the balance between conventional and moDC populations within the NALTs.
Collapse
Affiliation(s)
- James G. Bedford
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Melanie Heinlein
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alexandra L. Garnham
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Thi H. O. Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Tom Loudovaris
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Chenghao Ge
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- School of Medicine, Tsinghua University, Beijing, China
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Michael Elliott
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Chris O’Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - Stuart G. Tangye
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Daniel H. D. Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - William R. Heath
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Linda M. Wakim
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Bedford JG, Caminschi I, Wakim LM. Intranasal Delivery of a Chitosan-Hydrogel Vaccine Generates Nasal Tissue Resident Memory CD8 + T Cells That Are Protective against Influenza Virus Infection. Vaccines (Basel) 2020; 8:vaccines8040572. [PMID: 33019568 PMCID: PMC7712318 DOI: 10.3390/vaccines8040572] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Rapid antigen clearance from the nasal mucosa is one of the major challenges in the development of intranasal vaccines. Here, we tested whether intranasal immunization with a chitosan-hydrogel vaccine, with in situ gelling properties, extended antigen retention time within the nasal mucosa. Intranasal immunization with a chitosan-hydrogel vaccine retained antigen within the upper respiratory tract (URT), while intranasal delivery of less viscous vaccines led to antigen accumulation within the lower airways. Interestingly, sustained antigen retention within the URT following chitosan-hydrogel vaccination boosted the number of vaccine-specific, tissue resident memory (Trm) CD8+ T cells that developed within the nasal mucosa. Mice immunized with a chitosan-hydrogel vaccine loaded with influenza virus peptides developed a large pool of influenza-specific CD8+ nasal Trm and these cells were highly protective during an influenza challenge. Our results describe an effective vaccine formulation that can be utilized to boost local immunity in the nasal mucosa.
Collapse
Affiliation(s)
- James G. Bedford
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia; (J.G.B.); (I.C.)
| | - Irina Caminschi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia; (J.G.B.); (I.C.)
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - Linda M. Wakim
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia; (J.G.B.); (I.C.)
- Correspondence: ; Tel.: +61-3-9035-4141
| |
Collapse
|
5
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
6
|
Formulation and development of thermosensitive cyclodextrin-based in situ gel of voriconazole for vaginal delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
De Souza Ferreira SB, Da Silva JB, Volpato Junqueira M, Belincanta Borghi-Pangoni F, Guttierres Gomes R, Luciano Bruschi M. The importance of the relationship between mechanical analyses and rheometry of mucoadhesive thermoresponsive polymeric materials for biomedical applications. J Mech Behav Biomed Mater 2017; 74:142-153. [DOI: 10.1016/j.jmbbm.2017.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/28/2017] [Accepted: 05/31/2017] [Indexed: 01/14/2023]
|
8
|
De Souza Ferreira SB, Moço TD, Borghi-Pangoni FB, Junqueira MV, Bruschi ML. Rheological, mucoadhesive and textural properties of thermoresponsive polymer blends for biomedical applications. J Mech Behav Biomed Mater 2015; 55:164-178. [PMID: 26590909 DOI: 10.1016/j.jmbbm.2015.10.026] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022]
Abstract
The development of binary polymeric mixtures (polymer blends) containing bioadhesive and thermoresponsive polymers can provide new materials for biomedical applications, with higher contact, increased adhesion, prolonged residence time, protection, and in determined cases, secured absorption of an active agent from the site of application. Mixtures were prepared using a wide range of poloxamer 407 and Carbopol 971P(®) amounts. The rheological (flow and oscillatory), sol-gel transition temperature, mechanical (hardness, compressibility, adhesiveness, cohesiveness and elasticity), softness, and mucoadhesive properties of formulations were investigated. Moreover, the interaction between the different proportions of polymers was also analyzed. Continuous shear and oscillatory rheometry identified the plastic flow with various degrees of thixotropy, besides the viscoelastic behavior of formulations. The determination of gelation temperature displayed values ranged from 27.17 to 41.09°C. It was also found that low carbomer concentrations were enough to provide positive interaction parameter. However, the highest values were obtained for the polymeric blends with higher concentration of poloxamer 407. The mucoadhesion and softness index were greater in preparations containing 20% (w/w) poloxamer 407. The rheological, mechanical and mucoadhesive properties of the polymeric blends can be manipulated by changing the concentrations of the polymers and they suggest the blends are worthy of biomedical applications.
Collapse
Affiliation(s)
- Sabrina Barbosa De Souza Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Maringá, Paraná, Brazil; Laboratory of Research and Development of Drug Delivery Systems, Maringá, Paraná, Brazil
| | - Talita Dias Moço
- Laboratory of Research and Development of Drug Delivery Systems, Maringá, Paraná, Brazil
| | - Fernanda Belincanta Borghi-Pangoni
- Postgraduate Program in Pharmaceutical Sciences, Maringá, Paraná, Brazil; Laboratory of Research and Development of Drug Delivery Systems, Maringá, Paraná, Brazil
| | - Mariana Volpato Junqueira
- Postgraduate Program in Pharmaceutical Sciences, Maringá, Paraná, Brazil; Laboratory of Research and Development of Drug Delivery Systems, Maringá, Paraná, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Maringá, Paraná, Brazil; Laboratory of Research and Development of Drug Delivery Systems, Maringá, Paraná, Brazil; Department of Pharmacy, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
9
|
Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization. Colloids Surf B Biointerfaces 2015; 130:229-36. [DOI: 10.1016/j.colsurfb.2015.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 11/18/2022]
|
10
|
Chitosan hydrogel vaccine generates protective CD8 T cell memory against mouse melanoma. Immunol Cell Biol 2015; 93:634-40. [PMID: 25708538 DOI: 10.1038/icb.2015.14] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 12/22/2022]
Abstract
CD8(+) T cells are important in the control of viral infections and cancers because of their cytolytic activity. A vaccine able to generate these cells could be beneficial in the prevention or treatment of these diseases. Chitosan hydrogel is a promising vaccine formulation that has previously been shown to generate effector CD8(+) T cells in a mouse model. This vaccine promotes sustained release of antigen and adjuvant, which generates a robust effector response. For longer lasting immunity, a memory population of these CD8(+) T cells is required to control further disease. We found that vaccination with chitosan hydrogel or dendritic cells using ovalbumin protein as a model antigen and Quil-A adjuvant provided protection in a subcutaneous melanoma challenge 30 days later. Ovalbumin-specific memory CD8(+) T cells were detectable following vaccination with the chitosan hydrogel but not the dendritic cell vaccine and an in vivo cytotoxicity assay demonstrated specific lysis of target cells in chitosan hydrogel vaccinated mice but not those receiving dendritic cell vaccination. These results demonstrate that vaccination with chitosan hydrogel is equally effective as dendritic cell vaccination in tumour protection but has more readily detectable immune correlates of protection. This may be advantageous in predetermining protection in vaccinated individuals.
Collapse
|
11
|
Singh J, Michel D, Getson HM, Chitanda JM, Verrall RE, Badea I. Development of amino acid substituted gemini surfactant-based mucoadhesive gene delivery systems for potential use as noninvasive vaginal genetic vaccination. Nanomedicine (Lond) 2015; 10:405-17. [DOI: 10.2217/nnm.14.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Recently, we synthesized amino acid- and peptide-substituted gemini surfactants, ‘biolipids’ that exhibited high transfection efficiency in vitro. In this study, we developed these plasmid DNA and gemini surfactant lipid particles for noninvasive administration in vaginal cavity. Material & methods: Novel formulations of these gene delivery systems were prepared with poloxamer 407 to induce in situ gelling of the formulation and diethylene glycol monoethyl ether to improve their penetration across mucosal tissue. Results: Poloxamer at 16% w/v concentration in diethylene glycol monoethyl ether aqueous solution produced dispersions that gelled near body temperature and had a high yield value, preventing leakage of the formulation from the vaginal cavity. Intravaginal administration in rabbits showed that the glycyl-lysine-substituted gemini surfactant led to a higher gene expression compared with the parent unsubstituted gemini surfactant. Conclusion: This provides a proof-of-concept that amino acid substituted gemini surfactants can be used as noninvasive mucosal (vaginal) gene delivery systems to treat diseases associated with mucosal epithelia.
Collapse
Affiliation(s)
- Jagbir Singh
- Drug Design & Discovery Research Group, College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9, Canada
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, V5Z 1L3, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5, Canada
| | - Deborah Michel
- Drug Design & Discovery Research Group, College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9, Canada
| | - Heather M Getson
- Drug Design & Discovery Research Group, College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9, Canada
| | - Jackson M Chitanda
- Department of Chemistry, University of Saskatchewan, Saskatoon, S7N 5C9, Canada
| | - Ronald E Verrall
- Department of Chemistry, University of Saskatchewan, Saskatoon, S7N 5C9, Canada
| | - Ildiko Badea
- Drug Design & Discovery Research Group, College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9, Canada
| |
Collapse
|
12
|
Ozbılgın ND, Saka OM, Bozkır A. Preparation and in vitro/in vivo evaluation of mucosal adjuvant in situ forming gels with diphtheria toxoid. Drug Deliv 2014; 21:140-7. [PMID: 24559517 DOI: 10.3109/10717544.2013.834754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Studies on preparation of in situ gel formulations containing diphtheria toxoid as the model active substance and their intranasal administration have been conducted in this study. The objective of mucosal vaccination is to stimulate both systemic and mucosal immune responses. In situ gel formulations were prepared by using, in different ratios, mixtures of Poloxamer 407 and Poloxamer 188 polymers, which gelate in a temperature-dependent manner, and mucoadhesive polymers carbopol 934, hydroxypropyl methyl cellulose, hydroxypropyl cellulose or chitosan. Following pre-formulation studies, F1, F2, F3, F4, F5, F6 and F7 formulations, which gelate at intervals and temperatures in accordance with nasal temperatures, were subjected to more comprehensive studies. For this purpose, organoleptic characteristics of the formulations were identified, their pH and mucoadhesive potencies were measured and rheological behaviors were characterized. Calculated amounts of diphtheria toxoid were added to formulations after optimization of formulations was achieved, and assay and in vitro release studies were carried out. Formulations coded F3 and F7 were considered to be superior to other formulations given the in vitro test results. Therefore, these formulations were tested in guinea pigs to determine immune responses, which they would produce following intranasal and subcutaneous administration. Absorbance values of ELISA tests and antibody neutralization test showed that formulations coded F3 and F7 were unable to stimulate adequate systemic immune response when either of the formulations was administered alone intranasally, whereas F7 resulted in significantly increased neutralizing antibody titers with intranasal administration as a booster dose following subcutaneous administration.
Collapse
Affiliation(s)
- Nalan Deniz Ozbılgın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University , Ankara , Turkey
| | | | | |
Collapse
|
13
|
Gebril A, Alsaadi M, Acevedo R, Mullen AB, Ferro VA. Optimizing efficacy of mucosal vaccines. Expert Rev Vaccines 2014; 11:1139-55. [DOI: 10.1586/erv.12.81] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Babiuch K, Gottschaldt M, Werz O, Schubert US. Particulate transepithelial drug carriers: barriers and functional polymers. RSC Adv 2012. [DOI: 10.1039/c2ra20726e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
15
|
Gordon S, Young K, Wilson R, Rizwan S, Kemp R, Rades T, Hook S. Chitosan hydrogels containing liposomes and cubosomes as particulate sustained release vaccine delivery systems. J Liposome Res 2011; 22:193-204. [DOI: 10.3109/08982104.2011.637502] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
|
17
|
Ebensen T, Libanova R, Schulze K, Yevsa T, Morr M, Guzmán CA. Bis-(3',5')-cyclic dimeric adenosine monophosphate: strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine 2011; 29:5210-20. [PMID: 21619907 DOI: 10.1016/j.vaccine.2011.05.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/07/2011] [Accepted: 05/11/2011] [Indexed: 12/24/2022]
Abstract
New effective adjuvants are required to improve the performance of subunit vaccines. Here, we showed that bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP), a second messenger molecule in bacteria and archaea, exerts strong adjuvant activities when delivered by mucosal route. In vitro studies showed that c-di-AMP was able to both stimulate pre-activated murine macrophages and promote the activation and maturation of dendritic cells of murine and human origin. Co-administration of c-di-AMP with β-galactosidase (β-Gal) by intranasal route to BALB/c mice resulted in the elicitation of significantly higher serum antigen-specific IgG titres than in controls. The induction of local immune responses was shown by the production of antigen-specific secretory IgA in different mucosal territories. In addition, strong cellular immune responses were observed against both the β-Gal protein and a peptide encompassing its MHC class I-restricted epitope. The ratio of β-Gal-specific antibodies and the secreted cytokine profiles by in vitro re-stimulated splenocytes suggested that a balanced Th1/Th2/Th17 response pattern is promoted by c-di-AMP. When C57BL/6 mice were immunized with OVA and c-di-AMP, vigorous in vivo CTL responses were also observed. These results indicated that c-di-AMP exhibits a high potential as adjuvant for the development of mucosal vaccines, in particular when cellular immunity is needed.
Collapse
Affiliation(s)
- Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Thermosensitive hydrogels for nasal drug delivery: The formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm 2011; 77:225-32. [DOI: 10.1016/j.ejpb.2010.11.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 11/11/2010] [Accepted: 11/29/2010] [Indexed: 11/19/2022]
|
19
|
Cho HJ, Oh YK, Kim YB. Advances in human papilloma virus vaccines: a patent review. Expert Opin Ther Pat 2011; 21:295-309. [PMID: 21250872 DOI: 10.1517/13543776.2011.551114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Human papilloma virus (HPV) infection is the main factor associated with the development of cervical cancer. The currently available HPV vaccines, Gardasil and Cervarix, can prevent infection by certain HPV types, but not all. At present, research efforts are being devoted to developing more broad spectrum preventative vaccines, as well as therapeutic vaccines. AREAS COVERED Recent advances in HPV vaccine development are reviewed in this paper, with a focus on worldwide patents and patent applications. In principle, patents that have been granted since 2002 are covered. Exceptions are the patents pending at PCT stage and recent patent applications since 2009. Readers will gain insights into the cutting-edge technologies being used in the development and production of vaccines, as well as adjuvant systems. EXPERT OPINION In the future, the use of mosaic virus-like particles (VLPs,) comprising at least one L1 protein of each HPV type, may be able to prevent infection by all HPV types while patented codon-optimization techniques and the use of edible or DNA-based vaccines may be good places to start for reducing costs. Future vaccines should ideally have both preventive and therapeutic efficacies. Enhanced immunogenicity could be achieved by the use of more effective adjuvants, such as nanoparticle-based delivery systems, or new classes of adjuvants.
Collapse
Affiliation(s)
- Hee-Jeong Cho
- Seoul National University, College of Pharmacy, Daehak-dong, Gwanank-gu, Seoul, South Korea
| | | | | |
Collapse
|
20
|
Gordon S, Saupe A, McBurney W, Rades T, Hook S. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.12.0004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised. The immunostimulatory capacity of these vaccine delivery systems was assessed in-vitro and in-vivo. Particle sizing measurements and SEM images showed that optimised OVA-loaded CNP had a size of approximately 200 nm, a polydispersity index < 0.2, and a positive zeta-potential of approximately 18 mV. The amount of OVA adsorbed onto CNP was high with an adsorption efficacy of greater than 96%. Raman spectroscopy indicated conformational changes of OVA when adsorbed onto the surface of CNP. Uptake of the dispersions and immunological activation of murine dendritic cells in-vitro could be demonstrated. Investigation of the release of fluorescently-labelled OVA (FITC-OVA) from CNP and chitosan hydrogels in-vitro showed that approximately 50% of the total protein was released from CNP within a period of ten days; release of antigen from chitosan gel occurred in a more sustained manner, with < 10% of total protein being released after 10 days. The slow release from gel formulations may be explained by the strong interactions of the protein with chitosan. While OVA-loaded CNP showed no significant immunogenicity, formulations of OVA in chitosan gel were able to stimulate both cell-mediated and humoral immunity in-vivo.
Collapse
Affiliation(s)
- Sarah Gordon
- School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Anne Saupe
- School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Warren McBurney
- School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Thomas Rades
- School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand
| |
Collapse
|
21
|
Enhanced humoral and cellular immune responses after sublingual immunization against human papillomavirus 16 L1 protein with adjuvants. Vaccine 2010; 28:2598-606. [PMID: 20116467 DOI: 10.1016/j.vaccine.2010.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 12/19/2009] [Accepted: 01/11/2010] [Indexed: 01/10/2023]
Abstract
Needle-free nonparenteral vaccines offer a number of practical advantages, especially in developing countries. To address the effects of vaccine administration route, we tested mucosal and systemic immune responses against human papillomavirus 16 L1(HPV16L1) protein using intranasal, intravaginal, transdermal, sublingual (SL) and intramuscular routes. The SL route provided the most effective mucosal secretory IgA (sIgA) and serum IgG responses. After a 150 microg antigen dose via the SL route, saliva sIgA levels were 7.2- and 5.8-fold higher than those achieved via intravaginal and transdermal routes, respectively. Notably, SL administration even produced 4.6-fold higher levels of vaginal sIgA levels than did intravaginal delivery of 150 microg antigen. To enhance the immunogenicity of SL vaccines, we tested the adjuvanticity of nine molecules: three toll-like receptor agonists, three nucleotide-binding oligomerization-domain agonists, vitamin D3, poly-gamma-glutamic acid and cholera toxin subunit B (CTB). Among the molecules tested, CTB provided the most enhanced mucosal sIgA and systemic IgG induction. SL-applied CTB enhanced the production of interleukin-4 and interferon-gamma from stimulated CD4+ T cells. Moreover, interferon-gamma-producing CD8+ T cell responses were increased 1.7-fold after co-treatment with SL CTB and HPV16L1. These results suggest the potential of the SL route for delivery of HPV16L1 vaccines using CTB as an adjuvant.
Collapse
|
22
|
Curran RM, Donnelly L, Morrow RJ, Fraser C, Andrews G, Cranage M, Malcolm RK, Shattock RJ, Woolfson AD. Vaginal delivery of the recombinant HIV-1 clade-C trimeric gp140 envelope protein CN54gp140 within novel rheologically structured vehicles elicits specific immune responses. Vaccine 2009; 27:6791-8. [PMID: 19747994 PMCID: PMC2824087 DOI: 10.1016/j.vaccine.2009.08.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 11/22/2022]
Abstract
Rheologically structured vehicle (RSV) gels were developed as delivery systems for vaginal mucosal vaccination with an HIV-1 envelope glycoprotein (CN54gp140). RSVs comprised a mucoadhesive matrix-forming and vaginal fluid absorbing polymer. The mucoadhesive and rheological properties of the RSVs were evaluated in vitro, and the distribution, antigenicity and release of CN54gp140 were analysed by ELISA. CN54gp140 was uniformly distributed within the RSVs and continuously released in vitro in an antigenically intact form over 24 h. Vaginal administration to rabbits induced specific serum IgG, and IgG and IgA in genital tract secretions. The RSVs are a viable delivery modality for vaginal immunization.
Collapse
Affiliation(s)
- Rhonda M Curran
- The School of Pharmacy, The Queen's University of Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gohel MC, Nagori SA. Fabrication and design of transdermal fluconazole spray. Pharm Dev Technol 2009; 14:208-15. [DOI: 10.1080/10837450802498936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
das Neves J, Amaral MH, Bahia MF. Performance of an in vitro mucoadhesion testing method for vaginal semisolids: Influence of different testing conditions and instrumental parameters. Eur J Pharm Biopharm 2008; 69:622-32. [DOI: 10.1016/j.ejpb.2007.12.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/24/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
25
|
Cho HJ, Shin HJ, Han IK, Jung WW, Kim YB, Sul D, Oh YK. Induction of mucosal and systemic immune responses following oral immunization of mice with Lactococcus lactis expressing human papillomavirus type 16 L1. Vaccine 2007; 25:8049-57. [PMID: 17936447 DOI: 10.1016/j.vaccine.2007.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/04/2007] [Accepted: 09/06/2007] [Indexed: 12/21/2022]
Abstract
Human papillomavirus type 16 L1 (HPV16 L1) has shown considerable promise as a parenteral vaccine for prevention of cervical cancers. Here, we report the possibility of oral vaccination for HPV16 L1 using Lactococcus lactis (L. lactis) as a live vector. L. lactis MG1363 was transformed with two types of HPV16 L1-encoding plasmids for intracellular expression or secretion. L. lactis transformed with HPV16 L1-encoding plasmids retained biochemical lactic acid production capability. The mucosal and systemic immune responses were affected by the cellular location of expressed HPV16 L1 proteins in L. lactis. Serum IgG responses were induced after oral immunizations of L. lactis secreting HPV16 L1. Vaginal IgA immune responses were observed following oral immunization with L. lactis expressing HPV16 L1 in an intracellular form, but not with L. lactis secreting HPV16 L1. Furthermore, induction of HPV16 L1-specific mucosal immune responses was affected by immunization frequency. Six immunizations over 5 weeks were required to induce vaginal immune responses. The levels of HPV16 L1-specific vaginal IgA were maintained until 12 weeks after the first vaccination. These results suggest the feasibility of L. lactis as an oral vaccine vehicle of HPV16 L1 and demonstrate the importance of cellular loci of expressed antigen for induction of vaginal and systemic immune responses.
Collapse
Affiliation(s)
- Hee-Jeong Cho
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, South Korea
| | | | | | | | | | | | | |
Collapse
|