1
|
Bhat A, Shah R, Sharma M, Mahajan K, Kumar R. The current status and future trends in immunotoxicogenomics. IMMUNOTOXICOGENOMICS 2025:261-277. [DOI: 10.1016/b978-0-443-18502-1.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Trencsényi G, Csikos C, Képes Z. Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results. Int J Mol Sci 2024; 25:664. [PMID: 38203834 PMCID: PMC10779852 DOI: 10.3390/ijms25010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes-Radium-223 and Radium-224 (223/224Ra)-in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| | - Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| |
Collapse
|
3
|
Bou Zerdan M, Moussa S, Atoui A, Assi HI. Mechanisms of Immunotoxicity: Stressors and Evaluators. Int J Mol Sci 2021; 22:8242. [PMID: 34361007 PMCID: PMC8348050 DOI: 10.3390/ijms22158242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system defends the body against certain tumor cells and against foreign agents such as fungi, parasites, bacteria, and viruses. One of its main roles is to distinguish endogenous components from non-self-components. An unproperly functioning immune system is prone to primary immune deficiencies caused by either primary immune deficiencies such as genetic defects or secondary immune deficiencies such as physical, chemical, and in some instances, psychological stressors. In the manuscript, we will provide a brief overview of the immune system and immunotoxicology. We will also describe the biochemical mechanisms of immunotoxicants and how to evaluate immunotoxicity.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| | - Sara Moussa
- Faculty of Medicine, University of Balamand, 1100 Beirut, Lebanon;
| | - Ali Atoui
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| | - Hazem I. Assi
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| |
Collapse
|
4
|
Lankoff A, Czerwińska M, Walczak R, Karczmarczyk U, Tomczyk K, Brzóska K, Fracasso G, Garnuszek P, Mikołajczak R, Kruszewski M. Design and Evaluation of 223Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy-Part II. Toxicity, Pharmacokinetics and Biodistribution. Int J Mol Sci 2021; 22:5702. [PMID: 34071854 PMCID: PMC8198605 DOI: 10.3390/ijms22115702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is a progressive and incurable disease with poor prognosis for patients. Despite introduction of novel therapies, the mortality rate remains high. An attractive alternative for extension of the life of mCRPC patients is PSMA-based targeted radioimmunotherapy. In this paper, we extended our in vitro study of 223Ra-labeled and PSMA-targeted NaA nanozeolites [223RaA-silane-PEG-D2B] by undertaking comprehensive preclinical in vitro and in vivo research. The toxicity of the new compound was evaluated in LNCaP C4-2, DU-145, RWPE-1 and HPrEC prostate cells and in BALB/c mice. The tissue distribution of 133Ba- and 223Ra-labeled conjugates was studied at different time points after injection in BALB/c and LNCaP C4-2 tumor-bearing BALB/c Nude mice. No obvious symptoms of antibody-free and antibody-functionalized nanocarriers cytotoxicity and immunotoxicity was found, while exposure to 223Ra-labeled conjugates resulted in bone marrow fibrosis, decreased the number of WBC and platelets and elevated serum concentrations of ALT and AST enzymes. Biodistribution studies revealed high accumulation of 223Ra-labeled conjugates in the liver, lungs, spleen and bone tissue. Nontargeted and PSMA-targeted radioconjugates exhibited a similar, marginal uptake in tumour lesions. In conclusion, despite the fact that NaA nanozeolites are safe carriers, the intravenous administration of NaA nanozeolite-based radioconjugates is dubious due to its high accumulation in the lungs, liver, spleen and bones.
Collapse
Affiliation(s)
- Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (K.B.); (M.K.)
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland
| | - Malwina Czerwińska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (K.B.); (M.K.)
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
| | - Urszula Karczmarczyk
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Sołtana 7, 05-400 Otwock, Poland; (U.K.); (K.T.); (P.G.); (R.M.)
| | - Kamil Tomczyk
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Sołtana 7, 05-400 Otwock, Poland; (U.K.); (K.T.); (P.G.); (R.M.)
| | - Kamil Brzóska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (K.B.); (M.K.)
| | - Giulio Fracasso
- Department of Medicine, University of Verona, 37129 Verona, Italy;
| | - Piotr Garnuszek
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Sołtana 7, 05-400 Otwock, Poland; (U.K.); (K.T.); (P.G.); (R.M.)
| | - Renata Mikołajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Sołtana 7, 05-400 Otwock, Poland; (U.K.); (K.T.); (P.G.); (R.M.)
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (K.B.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
5
|
Mandarapu R, Prakhya BM. Exposure to cypermethrin and mancozeb alters the expression profile of THBS1, SPP1, FEZ1 and GPNMB in human peripheral blood mononuclear cells. J Immunotoxicol 2016; 13:463-73. [PMID: 26796295 DOI: 10.3109/1547691x.2015.1130088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The complex immune system displays a coordinated transcriptional response to xenobiotic exposure by altering expression of designated transcription factors that, in turn, trigger immune responses. Despite the identification of several transcription factors that contribute to regulatory response, very little is known about the specific role of factors that are triggered due to exposure to obnoxious pesticides. Here, for the first time, alterations in human peripheral blood lymphocyte expression of transcriptional factors - thrombospondin-1 (THBS-1), secretory phospho-protein-1 (SPP-1), glycoprotein non-metastatic-β (GPNMB) and fasciculation and elongation factor ζ-1 (FEZ-1), due to in vitro exposure to the crop protection chemicals cypermethrin and mancozeb are reported. Results revealed significant changes in expression profiles due to mancozeb exposure, supporting its immune dysfunction potential; in contrast, cypermethrin exposure did not cause significant changes. Based on these effects on gene expression across the doses tested, it was likely key components of immune mechanisms such as proliferation, cell adhesion, apoptosis and cell activation in human PBMC were affected. Although these data are from in vitro experiments, the results point out the potential role for changes in these factors in the etiology of defective T-cell immune function seen in humans occupationally exposed to crop protection chemicals like mancozeb. These studies suggest the involvement of transcription factors in regulation of pesticide-induced immune dysfunction; these studies also represent a novel approach for identifying potential immune-related dysfunctions due to exposure to pesticides. Further studies are needed to better understand the functional significance of these in vitro findings.
Collapse
Affiliation(s)
| | - Balakrishna Murthy Prakhya
- a Prakhya Research Laboratories, Selaiyur, Chennai, India ;,b SRM University , Kattankulathur , Chennai , India
| |
Collapse
|
6
|
Khan SR, Baghdasarian A, Fahlman RP, Michail K, Siraki AG. Current status and future prospects of toxicogenomics in drug discovery. Drug Discov Today 2014; 19:562-78. [DOI: 10.1016/j.drudis.2013.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/27/2013] [Accepted: 11/01/2013] [Indexed: 01/03/2023]
|
7
|
Zaccaria KJ, McClure PR. Using Immunotoxicity Information to Improve Cancer Risk Assessment for Polycyclic Aromatic Hydrocarbon Mixtures. Int J Toxicol 2013; 32:236-50. [DOI: 10.1177/1091581813492829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estimating cancer risk from environmental mixtures containing polycyclic aromatic hydrocarbons (PAHs) is challenging. Ideally, each mixture would undergo toxicity testing to derive a cancer slope factor (CSF) for use in site-specific cancer risk assessments. However, this whole mixture approach is extremely costly in terms of finances, time, and animal usage. Alternatively, if an untested mixture is “sufficiently similar” to a well-characterized mixture with a CSF, the “surrogate” CSF can be used in risk assessments. We propose that similarity between 2 mixtures could be established using an in vitro battery of genotoxic and nongenotoxic tests. An observed association between carcinogenicity and immunosuppression of PAHs suggests that the addition of immune suppression assays may improve this battery. First, using published studies of benzo[a]pyrene (BaP) and other PAHs, we demonstrated a correlation between the derived immune suppression relative potency factors (RPFs) for 9 PAHs and their respective cancer RPFs, confirming observations published previously. Second, we constructed an integrated knowledge map for immune suppression by BaP based on the available mechanistic information. The map illustrates the mechanistic complexities involved in BaP immunosuppression, suggesting that multiple in vitro tests of immune suppression involving different processes, cell types, and tissues will have greater predictive value for immune suppression in vivo than a single test. Based on these observations, research strategies are recommended to validate a battery of in vitro immune suppression tests that, along with tests for genotoxic and other nongenotoxic modes of cancer action, could be used to establish “sufficient similarity” of 2 mixtures for site-specific cancer risk assessments.
Collapse
Affiliation(s)
| | - Peter R. McClure
- SRC, Inc, Defense and Environmental Solutions, North Syracuse, NY, USA
| |
Collapse
|
8
|
Lopparelli RM, Giantin M, Pozza G, Stefani AL, Ravarotto L, Montesissa C, Dacasto M. Target gene expression signatures in neutrophils and lymphocytes from cattle administered with dexamethasone at growth promoting purposes. Res Vet Sci 2011; 93:226-33. [PMID: 21807391 DOI: 10.1016/j.rvsc.2011.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 06/22/2011] [Accepted: 07/09/2011] [Indexed: 01/13/2023]
Abstract
The glucocorticoid dexamethasone (DEX), when used as a growth promoter, cause morphological and functional alterations in cattle lymphoid organs and cells. In the present experiment, the transcriptional effects of an illicit DEX protocol upon six target genes were investigated in cattle neutrophils (NEU) and lymphocytes (LFC). Blood samples were taken before (T(0)) and 2, 3, 10, 19, 31 and 43 days from the beginning of DEX administration (T(1)-T(6)). Leukocytes were counted and cells isolated by gradient centrifugation; then, glutathione peroxidase 1 and 3 (GPX1 and GPX3), glucocorticoid receptor alpha (GRα), l-selectin, nuclear factor κB, subunit p65 (NFκB) and tumor necrosis factor alpha (TNFα) mRNA amounts were measured through a quantitative Real Time RT-PCR approach. A significant change vs controls in NEU/LFC ratio was noticed from T(3) forward. Compared to T(0), DEX significantly increased to a variable extent all candidate gene mRNAs abundances in NEU; in contrast, only l-selectin, GRα and GPX1 were significantly up-regulated in LFC. Present results suggest that illicit DEX affects transcription in cattle immune cells, that might be considered as a promising surrogate tissue for the screening of DEX abuse in cattle farming.
Collapse
Affiliation(s)
- R M Lopparelli
- Dipartimento di Sanità pubblica, Patologia comparata ed Igiene veterinaria, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Chengalvala MV, Chennathukuzhi VM, Johnston DS, Stevis PE, Kopf GS. Gene expression profiling and its practice in drug development. Curr Genomics 2011; 8:262-70. [PMID: 18645595 DOI: 10.2174/138920207781386942] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 04/30/2007] [Accepted: 05/06/2007] [Indexed: 12/11/2022] Open
Abstract
The availability of sequenced genomes of human and many experimental animals necessitated the development of new technologies and powerful computational tools that are capable of exploiting these genomic data and ask intriguing questions about complex nature of biological processes. This gave impetus for developing whole genome approaches that can produce functional information of genes in the form of expression profiles and unscramble the relationships between variation in gene expression and the resulting physiological outcome. These profiles represent genetic fingerprints or catalogue of genes that characterize the cell or tissue being studied and provide a basis from which to begin an investigation of the underlying biology. Among the most powerful and versatile tools are high-density DNA microarrays to analyze the expression patterns of large numbers of genes across different tissues or within the same tissue under a variety of experimental conditions or even between species. The wide spread use of microarray technologies is generating large sets of data that is stimulating the development of better analytical tools so that functions can be predicted for novel genes. In this review, the authors discuss how these profiles are being used at various stages of the drug discovery process and help in the identification of new drug targets, predict the function of novel genes, and understand individual variability in response to drugs.
Collapse
|
10
|
Duramad P, Holland NT. Biomarkers of immunotoxicity for environmental and public health research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:1388-401. [PMID: 21655126 PMCID: PMC3108116 DOI: 10.3390/ijerph8051388] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/26/2011] [Accepted: 04/25/2011] [Indexed: 02/07/2023]
Abstract
The immune response plays an important role in the pathophysiology of numerous diseases including asthma, autoimmunity and cancer. Application of biomarkers of immunotoxicity in epidemiology studies and human clinical trials can improve our understanding of the mechanisms that underlie the associations between environmental exposures and development of these immune-mediated diseases. Immunological biomarkers currently used in environmental health studies include detection of key components of innate and adaptive immunity (e.g., complement, immunoglobulin and cell subsets) as well as functional responses and activation of key immune cells. The use of high-throughput assays, including flow cytometry, Luminex, and Multi-spot cytokine detection methods can further provide quantitative analysis of immune effects. Due to the complexity and redundancy of the immune response, an integrated assessment of several components of the immune responses is needed. The rapidly expanding field of immunoinformatics will also aid in the synthesis of the vast amount of data being generated. This review discusses and provides examples of how the identification and development of immunological biomarkers for use in studies of environmental exposures and immune-mediated disorders can be achieved.
Collapse
Affiliation(s)
- Paurene Duramad
- Genentech, Inc., 1 DNA Way MS #59, South San Francisco, CA 94080, USA; E-Mail:
| | - Nina T. Holland
- School of Public Health, University of California, Berkeley, 733 University Hall, Berkeley, CA 94720-7360, USA
| |
Collapse
|
11
|
|
12
|
Vandebriel RJ, Pennings JLA, Baken KA, Pronk TE, Boorsma A, Gottschalk R, Van Loveren H. Keratinocyte Gene Expression Profiles Discriminate Sensitizing and Irritating Compounds. Toxicol Sci 2010; 117:81-9. [DOI: 10.1093/toxsci/kfq182] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
13
|
Vandebriel RJ, Loveren HV. Non-animal sensitization testing: State-of-the-art. Crit Rev Toxicol 2010; 40:389-404. [DOI: 10.3109/10408440903524262] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Effects. Clin Toxicol (Phila) 2010. [DOI: 10.3109/9781420092264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Cheng F, Cho SH, Lee JK. Multi-gene expression-based statistical approaches to predicting patients' clinical outcomes and responses. Methods Mol Biol 2010; 620:471-484. [PMID: 20652516 DOI: 10.1007/978-1-60761-580-4_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Gene expression profiling technique now enables scientists to obtain a genome-wide picture of cellular functions on various human disease mechanisms which has also proven to be extremely valuable in forecasting patients' prognosis and therapeutic responses. A wide range of multivariate techniques have been employed in biomedical applications on such expression profiling data in order to identify expression biomarkers that are highly associated with patients' clinical outcome and to train multi-gene prediction models that can forecast various human disease outcome and drug toxicities. We provide here a brief overview on some of these approaches, succinctly summarizing relevant basic concepts, statistical algorithms, and several practical applications. We also introduce our recent in vitro molecular expression-based algorithm, the so-called COXEN technique, which uses specialized gene profile signatures as a Rosetta Stone for translating the information between two different biological systems or populations.
Collapse
Affiliation(s)
- Feng Cheng
- Department of Biophysics, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
16
|
Lankveld DPK, Van Loveren H, Baken KA, Vandebriel RJ. In vitro testing for direct immunotoxicity: state of the art. Methods Mol Biol 2010; 598:401-23. [PMID: 19967527 DOI: 10.1007/978-1-60761-401-2_26] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunotoxicity is defined as the toxicological effects of xenobiotics including pharmaceuticals on the functioning of the immune system and can be induced in either direct or indirect ways. Direct immunotoxicity is caused by the effects of chemicals on the immune system, leading to immunosuppression and subsequently to reduced resistance to infectious diseases or certain forms of nongenotoxic carcinogenicity.In vitro testing has several advantages over in vivo testing, such as detailed mechanistic understanding, species extrapolation (parallelogram approach), and reduction, refinement, and replacement of animal experiments. In vitro testing for direct immunotoxicity can be done in a two-tiered approach, the first tier measuring myelotoxicity. If this type of toxicity is apparent, the compound can be designated immunotoxic. If not, the compound is tested for lymphotoxicity (second tier). Several in vitro assays for lymphotoxicity exist, each comprising specific functions of the immune system (cytokine production, cell proliferation, cytotoxic T-cell activity, natural killer cell activity, antibody production, and dendritic cell maturation). A brief description of each assay is provided. Only one assay, the human whole blood cytokine release assay, has undergone formal prevalidation, while another one, the lymphocyte proliferation assay, is progressing towards that phase.Progress in in vitro testing for direct immunotoxicity includes prevalidation of existing assays and selection of the assay (or combination of assays) that performs best. To avoid inter-species extrapolation, assays should preferably use human cells. Furthermore, the use of whole blood has the advantage of comprising multiple cell types in their natural proportion and environment. The so-called "omics" techniques provide additional mechanistic understanding and hold promise for the characterization of classes of compounds and prediction of specific toxic effects. Technical innovations such as high-content screening and high-throughput analysis will greatly expand the opportunities for in vitro testing.
Collapse
|
17
|
de Jonge JD, Pennings JLA, Baken KA, Konings J, Ezendam J, Van Loveren H. Gene expression changes in the mesenteric lymph nodes of rats after oral peanut extract exposure. J Immunotoxicol 2009; 5:385-94. [PMID: 19404872 DOI: 10.1080/15476910802586126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
New techniques are needed to broaden the understanding of the food allergic response. The capacity of peanut extract to influence gene expression profiles was investigated in a Brown Norway rat model for food allergy. Brown Norway rats were sensitized to peanut extract (0, 1 and 10 mg/rat/d) by daily oral gavage and were dissected after 3, 7 or 14 days of exposure. RNA extracted from mesenteric lymph nodes of individual rats were hybridized against a common reference pool on Agilent whole rat genome (4*44k) arrays. The raw data were normalized and statistically analyzed using the statistical program R. A False Discovery Rate of 10% and a Fold Ratio of - 1.5 < or = Fold Ratio or Fold Ratio > or = 1.5 between the experimental groups and their respective control groups were applied. Differentially expressed genes were clustered into a heatmap. Functional annotation and GeneOntology term enrichment were examined. Furthermore, the involvement of the differentially expressed genes in specific cellular pathways was investigated with MetaCore. Gene expression changes, which were both dose- and time-dependent, were detected after sensitization to peanut. A total of 64 genes were differentially expressed, of which 60 were up-regulated and four were down-regulated. These changes were related to the regulation of immunological processes, most notably increased cell division. The findings indicate that responses to peanut include proliferation of immunologically relevant tissues, which can be identified by analysis of gene expression profiles. This may lay a basis for further research into possibilities for discrimination of allergenic from non-allergenic proteins.
Collapse
Affiliation(s)
- Jonathan D de Jonge
- University Maastricht, Nutrition and Toxicology Research Institute Maastricht, Department of Health Risk Analysis and Toxicology, Maastricht, Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Zhou T, Chou J, Watkins PB, Kaufmann WK. Toxicogenomics: transcription profiling for toxicology assessment. EXS 2009; 99:325-66. [PMID: 19157067 DOI: 10.1007/978-3-7643-8336-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxicogenomics, the application of transcription profiling to toxicology, has been widely used for elucidating the molecular and cellular actions of chemicals and other environmental stressors on biological systems, predicting toxicity before any functional damages, and classification of known or new toxicants based on signatures of gene expression. The success of a toxicogenomics study depends upon close collaboration among experts in different fields, including a toxicologist or biologist, a bioinformatician, statistician, physician and, sometimes, mathematician. This review is focused on toxicogenomics studies, including transcription profiling technology, experimental design, significant gene extraction, toxicological results interpretation, potential pathway identification, database input and the applications of toxicogenomics in various fields of toxicological study.
Collapse
Affiliation(s)
- Tong Zhou
- Center for Drug Safety Sciences, The Hamner Institutes for Health Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
19
|
Functional assays are mandatory for a correct prediction of immunotoxic properties of compounds in vitro. Food Chem Toxicol 2009; 47:110-8. [DOI: 10.1016/j.fct.2008.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/15/2008] [Accepted: 10/15/2008] [Indexed: 11/19/2022]
|
20
|
Boverhof DR, Gollapudi BB, Hotchkiss JA, Osterloh-Quiroz M, Woolhiser MR. Evaluation of a toxicogenomic approach to the local lymph node assay (LLNA). Toxicol Sci 2008; 107:427-39. [DOI: 10.1093/toxsci/kfn247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Phillips KP, Foster WG. Key developments in endocrine disrupter research and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:322-344. [PMID: 18368559 DOI: 10.1080/10937400701876194] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Environmental etiologies involving exposures to chemicals that mimic endogenous hormones are proposed for a number of adverse human health effects, including infertility, abnormal prenatal and childhood development, and reproductive cancers (National Research Council, 1999; World Health Organization, 2002). Endocrine disrupters represent a significant area of environmental research with important implications for human health. This article provides an overview of some of the key developments in this field that may enhance our ability to assess the human health risks posed by exposure to endocrine disrupters. Advances in methodologies of hazard identification (toxicogenomics, transcriptomics, proteomics, metabolomics, bioinformatics) are discussed, as well as epigenetics and emerging biological endpoints.
Collapse
Affiliation(s)
- Karen P Phillips
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| | | |
Collapse
|
22
|
Systems toxicology: using the systems biology approach to assess chemical pollutants in the environment. COMPARATIVE TOXICOGENOMICS 2008. [DOI: 10.1016/s1872-2423(08)00007-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Baken KA, Pennings JL, Jonker MJ, Schaap MM, de Vries A, van Steeg H, Breit TM, van Loveren H. Overlapping gene expression profiles of model compounds provide opportunities for immunotoxicity screening. Toxicol Appl Pharmacol 2008; 226:46-59. [DOI: 10.1016/j.taap.2007.08.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/17/2007] [Accepted: 08/29/2007] [Indexed: 11/28/2022]
|