1
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
2
|
Polêto MD, Lemkul JA. Differences in Conformational Sampling and Intrinsic Electric Fields Drive Ion Binding in Telomeric and TERRA G-Quadruplexes. J Chem Inf Model 2023; 63:6851-6862. [PMID: 37847037 PMCID: PMC10841373 DOI: 10.1021/acs.jcim.3c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The formation of G-quadruplexes (GQs) occurs in guanine-rich sequences of DNA and RNA, producing highly stable and structurally diverse noncanonical nucleic acid structures. GQs play crucial roles in regulating transcription, translation, and replication and maintaining the genome, among others; thus, changes to their structures can lead to diseases such as cancer. Previous studies using polarizable molecular dynamics simulations have shown differences in ion binding properties between telomeric and telomeric repeat-containing RNA GQs despite architectural similarities. Here, we used volume-based metadynamics and repulsive potential simulations in conjunction with polarizable force fields to quantify the impact of ion binding on the GQ dynamics and ion binding free energies. Furthermore, we describe how GQs exert electric fields on their surroundings to link dynamics with variations in the electronic structure. Our findings provide new insights into the energetic, physical, and conformational properties of GQs and expose subtle but important differences between DNA and RNA GQs with the same fold.
Collapse
Affiliation(s)
- Marcelo D Polêto
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Hu W, Jing H, Fu W, Wang Z, Zhou J, Zhang N. Conversion to Trimolecular G-Quadruplex by Spontaneous Hoogsteen Pairing-Based Strand Displacement Reaction between Bimolecular G-Quadruplex and Double G-Rich Probes. J Am Chem Soc 2023; 145:18578-18590. [PMID: 37553999 DOI: 10.1021/jacs.3c05617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bimolecular or tetramolecular G-quadruplexes (GQs) are predominantly self-assembled by the same sequence-identical G-rich oligonucleotides and usually remain inert to the strand displacement reaction (SDR) with other short G-rich invading fragments of DNA or RNA. Appealingly, in this study, we demonstrate that a parallel homomeric bimolecular GQ target of Tub10 d(CAGGGAGGGT) as the starting reactant, although completely folded in K+ solution and sufficiently stable (melting temperature of 57.7 °C), can still spontaneously accept strand invasion by a pair of short G-rich invading probes of P1 d(TGGGA) near room temperature. The final SDR product is a novel parallel heteromeric trimolecular GQ (tri-GQ) of Tub10/2P1 reassembled between one Tub10 strand and two P1 strands. Here we present, to the best of our knowledge, the first NMR solution structure of such a discrete heteromeric tri-GQ and unveil a unique mode of two probes vs one target in mutual recognition among G-rich canonical DNA oligomers. As a model system, the short invading probe P1 can spontaneously trap G-rich target Tub10 from a Watson-Crick duplex completely hybridized between Tub10 and its fully complementary strand d(ACCCTCCCTG). The Tub10 sequence of d(CAGGGAGGGT) is a fragment from the G-rich promoter region of the human β2-tubulin gene. Our findings provide new insights into the Hoogsteen pairing-based SDR between a GQ target and double invading probes of short G-rich DNA fragments and are expected to grant access to increasingly complex architectures in GQ-based DNA nanotechnology.
Collapse
Affiliation(s)
- Wenxuan Hu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Haitao Jing
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenqiang Fu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zengrong Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Anhui Province for High Field Magnetic Resonance Imaging, Hefei 230031, China
- High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
4
|
Polêto MD, Lemkul JA. Differences in Conformational Sampling and Intrinsic Electric Fields Drive Ion Binding in Telomeric and TERRA G-Quadruplexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552810. [PMID: 37645825 PMCID: PMC10461924 DOI: 10.1101/2023.08.10.552810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The formation of G-quadruplexes (GQs) occurs in guanine-rich sequences of DNA and RNA, producing highly stable and structurally diverse noncanonical nucleic acid structures. GQs play crucial roles in regulating transcription, translation, and replication; and maintaining the genome, among others, thus changes to their structures can lead to diseases such as cancer. Previous studies using polarizable molecular dynamics simulations have shown differences in ion binding properties between telomeric and TERRA GQs despite architectural similarities. Here, we used volume-based metadynamics and repulsive potential simulations in conjunction with polarizable force fields to quantify the impact of ion binding on GQ dynamics and ion binding free energies. Furthermore, we describe how GQs exert electric fields on their surroundings to link dynamics with variations in electronic structure. Our findings provide new insights into the energetic, physical, and conformational properties of GQs and expose subtle, but important, differences between DNA and RNA GQs with the same fold.
Collapse
Affiliation(s)
- Marcelo D Polêto
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
5
|
Green AT, Pickard AJ, Li R, MacKerell AD, Bierbach U, Cho SS. Computational and Experimental Characterization of rDNA and rRNA G-Quadruplexes. J Phys Chem B 2022; 126:609-619. [PMID: 35026949 DOI: 10.1021/acs.jpcb.1c08340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA G-quadruplexes in human telomeres and gene promoters are being extensively studied for their role in controlling the growth of cancer cells. G-quadruplexes have been unambiguously shown to exist both in vitro and in vivo, including in the guanine (G)-rich DNA genes encoding pre-ribosomal RNA (pre-rRNA), which is transcribed in the cell's nucleolus. Recent studies strongly suggest that these DNA sequences ("rDNA"), and the transcribed rRNA, are a potential anticancer target through the inhibition of RNA polymerase I (Pol I) in ribosome biogenesis, but the structures of ribosomal G-quadruplexes at atomic resolution are unknown and very little biophysical characterization has been performed on them to date. In the present study, circular dichroism (CD) spectroscopy is used to show that two putative rDNA G-quadruplex sequences, NUC 19P and NUC 23P and their counterpart rRNAs, predominantly adopt parallel topologies, reminiscent of the analogous telomeric quadruplex structures. Based on this information, we modeled parallel topology atomistic structures of the putative ribosomal G-quadruplexes. We then validated and refined the modeled ribosomal G-quadruplex structures using all-atom molecular dynamics (MD) simulations with the CHARMM36 force field in the presence and absence of stabilizing K+. Motivated by preliminary MD simulations of the telomeric parallel G-quadruplex (TEL 24P) in which the K+ ion is expelled, we used updated CHARMM36 force field K+ parameters that were optimized, targeting the data from quantum mechanical calculations and the polarizable Drude model force field. In subsequent MD simulations with optimized CHARMM36 parameters, the K+ ions are predominantly in the G-quadruplex channel and the rDNA G-quadruplexes have more well-defined, predominantly parallel-topology structures as compared to rRNA. In addition, NUC 19P is more structured than NUC 23P, which contains extended loops. Results from this study set the structural foundation for understanding G-quadruplex functions and the design of novel chemotherapeutics against these nucleolar targets and can be readily extended to other DNA and RNA G-quadruplexes.
Collapse
Affiliation(s)
- Adam T Green
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Amanda J Pickard
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Rongzhong Li
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Samuel S Cho
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
6
|
Asha H, Stadlbauer P, Martínez-Fernández L, Banáš P, Šponer J, Improta R, Esposito L. Early steps of oxidative damage in DNA quadruplexes are position-dependent: Quantum mechanical and molecular dynamics analysis of human telomeric sequence containing ionized guanine. Int J Biol Macromol 2022; 194:882-894. [PMID: 34838862 DOI: 10.1016/j.ijbiomac.2021.11.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Abstract
Guanine radical cation (G•+) is a key intermediate in many oxidative processes occurring in nucleic acids. Here, by combining mixed Quantum Mechanical/Molecular Mechanics calculations and Molecular Dynamics (MD) simulations, we study how the structural behaviour of a tract GGG(TTAGGG)3 (hereafter Tel21) of the human telomeric sequence, folded in an antiparallel quadruple helix, changes when one of the G bases is ionized to G•+ (Tel21+). Once assessed that the electron-hole is localized on a single G, we perform MD simulations of twelve Tel21+ systems, differing in the position of G•+ in the sequence. When G•+ is located in the tetrad adjacent to the diagonal loop, we observe substantial structural rearrangements, which can decrease the electrostatic repulsion with the inner Na+ ions and increase the solvent exposed surface of G•+. Analysis of solvation patterns of G•+ provides new insights on the main reactions of G•+, i.e. the deprotonation at two different sites and hydration at the C8 atom, the first steps of the processes producing 8oxo-Guanine. We suggest the main structural determinants of the relative reactivity of each position and our conclusions, consistent with the available experimental trends, can help rationalizing the reactivity of other G-quadruplex topologies.
Collapse
Affiliation(s)
- Haritha Asha
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80136 Napoli, Italy
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Lara Martínez-Fernández
- Departamento de Quimica, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autonoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 8, 779 00 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80136 Napoli, Italy.
| | - Luciana Esposito
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80136 Napoli, Italy.
| |
Collapse
|
7
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
8
|
Li N, Gao Y, Qiu F, Zhu T. Benchmark Force Fields for the Molecular Dynamic Simulation of G-Quadruplexes. Molecules 2021; 26:5379. [PMID: 34500812 PMCID: PMC8434458 DOI: 10.3390/molecules26175379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
G-quadruplexes have drawn widespread attention for serving as a potential anti-cancer target and their application in material science. Molecular dynamics (MD) simulation is the key theoretical tool in the study of GQ's structure-function relationship. In this article, we systematically benchmarked the five force fields of parmbsc0, parmbsc1, OL15, AMOEBA, and Drude2017 on the MD simulation of G-quadruplex from four aspects: structural stability, central ion channel stability, description of Hoogsteen hydrogen bond network, and description of the main chain dihedral angle. The results show that the overall performance of the Drude force field is the best. Although there may be a certain over-polarization effect, it is still the best choice for the MD simulation of G-quadruplexes.
Collapse
Affiliation(s)
- Na Li
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China;
| | - Ya Gao
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Feng Qiu
- Institute of Artificial Intelligence on Education, Shanghai Normal University, Shanghai 200234, China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China;
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
9
|
Gaurav K, Adhikary T, Satpati P. dUMP/F-dUMP Binding to Thymidylate Synthase: Human Versus Mycobacterium tuberculosis. ACS OMEGA 2020; 5:17182-17192. [PMID: 32715203 PMCID: PMC7376888 DOI: 10.1021/acsomega.0c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Thymidylate synthase is an enzyme that catalyzes deoxythymidine monophosphate (dTMP) synthesis from substrate deoxyuridine monophosphate (dUMP). Thymidylate synthase of Mycobacterium tuberculosis (MtbThyX) is structurally distinct from its human analogue human thymidylate synthase (hThyA), thus drawing attention as an attractive drug target for combating tuberculosis. Fluorodeoxyuridylate (F-dUMP) is a successful inhibitor of both MtbThyX and hThyA, thus limited by poor selectivity. Understanding the dynamics and energetics associated with substrate/inhibitor binding to thymidylate synthase in atomic details remains a fundamental unsolved problem, which is necessary for a new selective inhibitor design. Structural studies of MtbThyX and hThyA bound substrate/inhibitor complexes not only revealed the extensive specific interaction network between protein and ligands but also opened up the possibility of directly computing the energetics of the substrate versus inhibitor recognition. Using experimentally determined structures as a template, we report extensive computer simulations (∼4.5 μs) that allow us to quantitatively estimate ligand selectivity (dUMP vs F-dUMP) by MtbThyX and hThyA. We show that MtbThyX prefers deprotonated dUMP (enolate form) as the substrate, whereas hThyA binds to the keto form of dUMP. Computed energetics clearly show that MtbThyX is less selective between dUMP and F-dUMP, favoring the latter, relative to hThyA. The simulations reveal the role of tyrosine at position 135 (Y135) of hThyA in amplifying the selectivity. The protonation state of the pyrimidine base of the ligand (i.e., keto or enolate) seems to have no role in MtbThyX ligand selectivity. A molecular gate (consists of Y108, K165, H203, and a water molecule) restricts water accessibility and offers a desolvated dry ligand-binding pocket for MtbThyX. The ligand-binding pocket of hThyA is relatively wet and exposed to bulk water.
Collapse
|
10
|
Islam B, Stadlbauer P, Vorlíčková M, Mergny JL, Otyepka M, Šponer J. Stability of Two-Quartet G-Quadruplexes and Their Dimers in Atomistic Simulations. J Chem Theory Comput 2020; 16:3447-3463. [PMID: 32163706 DOI: 10.1021/acs.jctc.9b01068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G-quadruplexes (GQs) are four-stranded noncanonical DNA and RNA architectures that can be formed by guanine-rich sequences. The stability of GQs increases with the number of G-quartets, and three G-quartets generally form stable GQs. However, the stability of two-quartet GQs is an open issue. To understand the intrinsic stability of two-quartet GQ stems, we have carried out a series of unbiased molecular dynamics (MD) simulations (505 μs in total) of two- and four-quartet DNA and RNA GQs, with attention paid mainly to parallel-stranded arrangements. We used AMBER DNA parmOL15 and RNA parmOL3 force fields and tested different ion and water models. Two-quartet parallel-stranded DNA GQs unfolded in all the simulations, while the equivalent RNA GQ was stable in most of the simulations. GQs composed of two stacked units of two-quartet GQs were stable for both DNA and RNA. The simulations suggest that a minimum of three quartets are needed to form an intrinsically stable all-anti parallel-stranded DNA GQ. Parallel two-quartet DNA GQ may exist if substantially stabilized by another molecule or structural element, including multimerization. On the other hand, we predict that isolated RNA two-quartet parallel GQs may form, albeit being weakly stable. We also show that ionic parameters and water models should be chosen with caution because some parameter combinations can cause spurious instability of GQ stems. Some in-so-far unnoticed limitations of force-field description of multiple ions inside the GQs are discussed, which compromise the capability of simulations to fully capture the effect of increase in the number of quartets on the GQ stability.
Collapse
Affiliation(s)
- Barira Islam
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Michaela Vorlíčková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic.,Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
11
|
Milovanović B, Stanojević A, Etinski M, Petković M. Intriguing Intermolecular Interplay in Guanine Quartet Complexes with Alkali and Alkaline Earth Cations. J Phys Chem B 2020; 124:3002-3014. [DOI: 10.1021/acs.jpcb.0c01165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Branislav Milovanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Ana Stanojević
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Milena Petković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
12
|
Chen B, Fountain G, Sullivan HJ, Paradis N, Wu C. To probe the binding pathway of a selective compound (D089-0563) to c-MYC Pu24 G-quadruplex using free ligand binding simulations and Markov state model analysis. Phys Chem Chem Phys 2020; 22:22567-22583. [DOI: 10.1039/d0cp03863f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
D089-0563 is a highly promising anti-cancer compound that selectively binds the transcription-silencing G-quadruplex element (Pu27) at the promoter region of the human c-MYC oncogene; however, its binding mechanism remains elusive.
Collapse
Affiliation(s)
- Brian Chen
- Rowan University
- College of Science and Mathematics
- Glassboro
- USA
| | | | | | | | - Chun Wu
- Rowan University
- College of Science and Mathematics
- Glassboro
- USA
| |
Collapse
|
13
|
Zhang ML, Xu YP, Kumar A, Zhang Y, Wu WQ. Studying the Potassium-Induced G-Quadruplex DNA Folding Process Using Microscale Thermophoresis. Biochemistry 2019; 58:3955-3959. [PMID: 31468963 DOI: 10.1021/acs.biochem.9b00447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Guanine (G) quadruplexes (G4s) can be formed by G-rich sequences when stabilized by the binding of cations (typically K+ or Na+) and play an essential role in replication, recombination, transcription, and telomere maintenance. Understanding of the G4 folding process is crucial for determining their cellular functions. However, G4-K+ interactions and folding pathways are still not well understood. By using human telomeric G4 (hTG4) as an example, two binding states corresponding to two K+ cations binding to hTG4 were distinguished clearly and fitted precisely. The basic binding parameters during G4-K+ interactions were measured and calculated by taking advantage of microscale thermophoresis (MST), which monitors the changes in charge and size at the same time. The G-hairpin and G-triplex have been suggested as intermediates during G4 folding and unfolding. We further analyzed the equilibrium dissociation constants of 10 possible folding intermediates using MST; thus, the energetically favorable folding/unfolding pathways were proposed. The results might not only shed new light on G4-K+ interactions and G4 folding pathways but also provide an example for experimentally studying DNA-ion interactions.
Collapse
Affiliation(s)
- Ming-Li Zhang
- School of Life Sciences, Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology , Henan University , Kaifeng 475001 , China
| | - Ya-Peng Xu
- School of Life Sciences, Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology , Henan University , Kaifeng 475001 , China
| | - Arvind Kumar
- School of Life Sciences, Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology , Henan University , Kaifeng 475001 , China
| | - Yu Zhang
- School of Life Sciences, Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology , Henan University , Kaifeng 475001 , China
| | - Wen-Qiang Wu
- School of Life Sciences, Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology , Henan University , Kaifeng 475001 , China
| |
Collapse
|
14
|
Solís-Calero C, Augusto TM, Carvalho HF. Human-specific features of the G-quadruplex in the androgen receptor gene promoter: A comparative structural and dynamics study. J Steroid Biochem Mol Biol 2018; 182:95-105. [PMID: 29709633 DOI: 10.1016/j.jsbmb.2018.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
The androgen receptor (AR) promoter contains guanine-rich regions that are able to fold into polymorphic G-quadruplex (GQ) structures, and whose deletion decreases AR gene transcription. Our attention was focused on this region because of the frequent termination of sequencing reactions during promoter methylation studies. UV and circular dichroism (CD) spectroscopy of synthetic oligonucleotides encompassing these guanine-rich regions suggested a parallel quadruplex topology with three guanine quartets and three side loops in the three cases. Melting curves revealed a lower thermostability of the human GQ compared to the rat/mouse QG structures, which is attributed to the presence of a longer central loop in the former. One molecular model is proposed for the highly similar sequences in the rat/mouse. Due to the polymorphism resulting from possible arrangements of the guanine tracts, two models were derived for the human GQ. Molecular dynamics (MD) simulations determined that both models for the human GQ had higher flexibility and lower stability than the rodent GQ models. These properties result from the presence of a longer central loop in the human GQ models, which contains 11 and 13 nucleotides, in comparison to the 2-nucleotide long loop in the rat/mouse GQ. Overall, the unveiled structural and dynamics features provide sufficient detail for the intelligent design of drugs targeting the human AR promoter.
Collapse
Affiliation(s)
- Christian Solís-Calero
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Taize M Augusto
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
15
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
16
|
Reshetnikov RV, Stolyarova AV, Zalevsky AO, Panteleev DY, Pavlova GV, Klinov DV, Golovin AV, Protopopova AD. A coarse-grained model for DNA origami. Nucleic Acids Res 2018; 46:1102-1112. [PMID: 29267876 PMCID: PMC5814798 DOI: 10.1093/nar/gkx1262] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 12/07/2017] [Indexed: 01/20/2023] Open
Abstract
Modeling tools provide a valuable support for DNA origami design. However, current solutions have limited application for conformational analysis of the designs. In this work we present a tool for a thorough study of DNA origami structure and dynamics. The tool is based on a novel coarse-grained model dedicated to geometry optimization and conformational analysis of DNA origami. We explored the ability of the model to predict dynamic behavior, global shapes, and fine details of two single-layer systems designed in hexagonal and square lattices using atomic force microscopy, Förster resonance energy transfer spectroscopy, and all-atom molecular dynamic simulations for validation of the results. We also examined the performance of the model for multilayer systems by simulation of DNA origami with published cryo-electron microscopy and atomic force microscopy structures. A good agreement between the simulated and experimental data makes the model suitable for conformational analysis of DNA origami objects. The tool is available at http://vsb.fbb.msu.ru/cosm as a web-service and as a standalone version.
Collapse
Affiliation(s)
- Roman V Reshetnikov
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str., 34/5, 119334 Moscow, Russia
- A.N.Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Leninskye gory, 1-40, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, 1-73, 119234 Moscow, Russia
| | - Anastasia V Stolyarova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, 1-73, 119234 Moscow, Russia
- Skolkovo Institute of Science and Technology, Nobel Street 3, 143026 Moscow, Russia
| | - Arthur O Zalevsky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, 1-73, 119234 Moscow, Russia
| | - Dmitry Y Panteleev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str., 34/5, 119334 Moscow, Russia
| | - Galina V Pavlova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str., 34/5, 119334 Moscow, Russia
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya str. 1a, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per. Dolgoprudny, 141700 Moscow Region, Russia
| | - Andrey V Golovin
- A.N.Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Leninskye gory, 1-40, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, 1-73, 119234 Moscow, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8-2, 119991 Moscow, Russia
| | - Anna D Protopopova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya str. 1a, 119435 Moscow, Russia
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, BRB II/III 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
García-Arriaga M, Acosta-Santiago M, Cruz A, Rivera-Rivera JM, López GE, Rivera JM. Probing the Limits of Supramolecular G-Quadruplexes Using Atomistic Molecular Dynamics Simulations. Inorganica Chim Acta 2017; 468:209-222. [PMID: 29062143 PMCID: PMC5649357 DOI: 10.1016/j.ica.2017.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Guanosine and related derivatives self-assemble in the presence of cations like potassium into supramolecular G-quadruplexes (SGQs), where four guanine moieties form planar tetrads (T) that coaxially stack into columnar aggregates with broad size distributions. However, SGQs made from 8-aryl-2'-deoxyguanosine derivatives (8ArGs), form mostly octamers, or two-tetrad (2T)-SGQs, while some form dodecamers (3T-SGQs), or hexadecamers (4T-SGQs), and none reported to date form higher assemblies. A theoretical model that addresses the configurational space available for the multiple pathways available for 8ArGs to self-assemble into SGQs is used to frame a series of molecular dynamics simulations (MDS) with selected SGQs. Some key insights from this work include: (a) The predicted entropic costs are not significantly higher for SGQs with more subunits due to their hierarchical assembly pathways; (b) The multiple isomeric SGQs vary in the interfacial contacts between consecutive tetrads, due to their two distinct sides (head, h; tail, t), with the MDS supporting the predicted order of stability of hh > ht > tt for octamers. (c) Such order also applies to dodecamers and hexadecamers, but with context-dependent exceptions due to strong allosteric effects. (d) The main factor disfavoring the tt interface is the repulsive dipolar interactions between the O4' from ribose moieties on adjacent tetrads. (e) SGQs with 5 or more tetrads are disfavored because the attractive interactions are not large or strong enough to overcome the many repulsive forces resulting from the addition of further tetrads. We expect these findings provide some guidelines to enable the further development of SGQs into functional materials.
Collapse
Affiliation(s)
- Marilyn García-Arriaga
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, PR, 00926
| | - Maxier Acosta-Santiago
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, PR, 00926
| | - Antony Cruz
- School of Natural and Social Sciences, Department of Chemistry, Lehman College-CUNY, Bronx, NY 10468
| | - José M Rivera-Rivera
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, PR, 00926
| | - Gustavo E López
- School of Natural and Social Sciences, Department of Chemistry, Lehman College-CUNY, Bronx, NY 10468
| | - José M Rivera
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, PR, 00926
| |
Collapse
|
18
|
Adrian M, Winnerdy FR, Heddi B, Phan AT. Rotation of Guanine Amino Groups in G-Quadruplexes: A Probe for Local Structure and Ligand Binding. Biophys J 2017; 113:775-784. [PMID: 28834714 DOI: 10.1016/j.bpj.2017.05.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/25/2022] Open
Abstract
Nucleic acids are dynamic molecules whose functions may depend on their conformational fluctuations and local motions. In particular, amino groups are dynamic components of nucleic acids that participate in the formation of various secondary structures such as G-quadruplexes. Here, we present a cost-efficient NMR method to quantify the rotational dynamics of guanine amino groups in G-quadruplex nucleic acids. An isolated spectrum of amino protons from a specific tetrad-bound guanine can be extracted from the nuclear Overhauser effect spectroscopy spectrum based on the close proximity between the intra-residue imino and amino protons. We apply the method in different structural contexts of G-quadruplexes and their complexes. Our results highlight the role of stacking and hydrogen-bond interactions in restraining amino-group rotation. The measurement of the rotation rate of individual amino groups could give insight into the dynamic processes occurring at specific locations within G-quadruplex nucleic acids, providing valuable probes for local structure, dynamics, and ligand binding.
Collapse
Affiliation(s)
- Michael Adrian
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Fernaldo Richtia Winnerdy
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Brahim Heddi
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anh Tuân Phan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
19
|
Stadlbauer P, Mazzanti L, Cragnolini T, Wales DJ, Derreumaux P, Pasquali S, Šponer J. Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes. J Chem Theory Comput 2016; 12:6077-6097. [DOI: 10.1021/acs.jctc.6b00667] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Petr Stadlbauer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Departments of Physical
Chemistry, Faculty of Science, Palacký University, 17. listopadu
1192/12, 771 46 Olomouc, Czech Republic
| | - Liuba Mazzanti
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Tristan Cragnolini
- Department
of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - David J. Wales
- Department
of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Philippe Derreumaux
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Samuela Pasquali
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| |
Collapse
|
20
|
Largy E, Mergny JL, Gabelica V. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. Met Ions Life Sci 2016; 16:203-58. [PMID: 26860303 DOI: 10.1007/978-3-319-21756-7_7] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G-quadruplexes are guanine-rich nucleic acids that fold by forming successive quartets of guanines (the G-tetrads), stabilized by intra-quartet hydrogen bonds, inter-quartet stacking, and cation coordination. This specific although highly polymorphic type of secondary structure deviates significantly from the classical B-DNA duplex. G-quadruplexes are detectable in human cells and are strongly suspected to be involved in a number of biological processes at the DNA and RNA levels. The vast structural polymorphism exhibited by G-quadruplexes, together with their putative biological relevance, makes them attractive therapeutic targets compared to canonical duplex DNA. This chapter focuses on the essential and specific coordination of alkali metal cations by G-quadruplex nucleic acids, and most notably on studies highlighting cation-dependent dissimilarities in their stability, structure, formation, and interconversion. Section 1 surveys G-quadruplex structures and their interactions with alkali metal ions while Section 2 presents analytical methods used to study G-quadruplexes. The influence of alkali cations on the stability, structure, and kinetics of formation of G-quadruplex structures of quadruplexes will be discussed in Sections 3 and 4. Section 5 focuses on the cation-induced interconversion of G-quadruplex structures. In Sections 3 to 5, we will particularly emphasize the comparisons between cations, most often K(+) and Na(+) because of their prevalence in the literature and in cells.
Collapse
Affiliation(s)
- Eric Largy
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France.,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| | - Valérie Gabelica
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| |
Collapse
|
21
|
Reshetnikov R, Golovin A, Spiridonova V, Kopylov A, Šponer J. Structural Dynamics of Thrombin-Binding DNA Aptamer d(GGTTGGTGTGGTTGG) Quadruplex DNA Studied by Large-Scale Explicit Solvent Simulations. J Chem Theory Comput 2015; 6:3003-14. [PMID: 26616765 DOI: 10.1021/ct100253m] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The thrombin-binding aptamer (15-TBA) is a 15-mer DNA oligonucleotide with sequence d(GGTTGGTGTGGTTGG). 15-TBA folds into a quadruplex DNA (G-DNA) structure with two planar G-quartets connected by three single-stranded loops. The arrangement of the 15-TBA-thrombin complex is unclear, particularly with respect to the precise 15-TBA residues that interact with the thrombin structure. Our present understanding suggests either the 15-TBA single stranded loops containing sequential thymidines (TT) or alternatively a single-stranded loop, containing a guanine flanked by 2 thymidines (TGT), physically associates with thrombin protein. In the present study, the explicit solvent molecular dynamics (MD) simulation method was utilized to further analyze the 15-TBA-thrombin three-dimensional structure. Functional annotation of the loop residues was made with long simulations in the parmbsc0 force field. In total, the elapsed time of simulations carried out in this study exceeds 12 microseconds, substantially surpassing previous G-DNA simulation reports. Our simulations suggest that the TGT-loop function is to stabilize the structure of the aptamer, while the TT-loops participate in direct binding to thrombin. The findings of the present report advance our understanding of the molecular structure of the 15-TBA-thrombin structure further enabling the construction of biosensors for aptamer bases and the development of anticoagulant agents.
Collapse
Affiliation(s)
- Roman Reshetnikov
- Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,A.N.Belozersky Institute of Physical Chemical Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Chemistry Department, Lomonosov Moscow State University, Gsp-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Andrey Golovin
- Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,A.N.Belozersky Institute of Physical Chemical Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Chemistry Department, Lomonosov Moscow State University, Gsp-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Vera Spiridonova
- Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,A.N.Belozersky Institute of Physical Chemical Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Chemistry Department, Lomonosov Moscow State University, Gsp-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Alexei Kopylov
- Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,A.N.Belozersky Institute of Physical Chemical Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Chemistry Department, Lomonosov Moscow State University, Gsp-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Jiří Šponer
- Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,A.N.Belozersky Institute of Physical Chemical Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Chemistry Department, Lomonosov Moscow State University, Gsp-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| |
Collapse
|
22
|
Islam B, Stadlbauer P, Krepl M, Koca J, Neidle S, Haider S, Sponer J. Extended molecular dynamics of a c-kit promoter quadruplex. Nucleic Acids Res 2015; 43:8673-93. [PMID: 26245347 PMCID: PMC4605300 DOI: 10.1093/nar/gkv785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023] Open
Abstract
The 22-mer c-kit promoter sequence folds into a parallel-stranded quadruplex with a unique structure, which has been elucidated by crystallographic and NMR methods and shows a high degree of structural conservation. We have carried out a series of extended (up to 10 μs long, ∼50 μs in total) molecular dynamics simulations to explore conformational stability and loop dynamics of this quadruplex. Unfolding no-salt simulations are consistent with a multi-pathway model of quadruplex folding and identify the single-nucleotide propeller loops as the most fragile part of the quadruplex. Thus, formation of propeller loops represents a peculiar atomistic aspect of quadruplex folding. Unbiased simulations reveal μs-scale transitions in the loops, which emphasizes the need for extended simulations in studies of quadruplex loops. We identify ion binding in the loops which may contribute to quadruplex stability. The long lateral-propeller loop is internally very stable but extensively fluctuates as a rigid entity. It creates a size-adaptable cleft between the loop and the stem, which can facilitate ligand binding. The stability gain by forming the internal network of GA base pairs and stacks of this loop may be dictating which of the many possible quadruplex topologies is observed in the ground state by this promoter quadruplex.
Collapse
Affiliation(s)
- Barira Islam
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jaroslav Koca
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic National Center for Biomolecular Research, Faculty of Science, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Shozeb Haider
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiri Sponer
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
23
|
Lee D, Kim M, Kim SY, Shin H, Kim SW, Park I. Investigation of the nanoviscosity effect of a G-quadruplex and single-strand DNA using fluorescence correlation spectroscopy. J Chem Phys 2015; 142:025101. [PMID: 25591385 DOI: 10.1063/1.4905113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Guanine (G)-quadruplexes are of interest because of their presence in the telomere sequence and the oncogene promoter region. Their diffusion and change of structure, especially in high viscosity solutions, are important for understanding their dynamics. G-quadruplexes may have less effective viscosity (nanoviscosity) when they are smaller than the solvent molecules. In this paper, we report the difference in the diffusion dynamics of the G-rich DNA sequences of single-strand DNA (ssDNA) and the G-quadruplex in aqueous, sucrose, and polyethylene glycol (PEG) solutions. From experiments with aqueous and sucrose solutions, we confirm that a simple diffusion model according to the viscosity is appropriate. In the PEG experiments, the nanoviscosity effect is observed according to PEG's molecular weight. In the PEG 200 solution, both the ssDNA and the G-quadruplex possess macroviscosity. In the PEG 10,000 solution, the G-quadruplex possesses nanoviscosity and the ssDNA possesses macroviscosity, whereas, in the PEG 35,000 solution, both ssDNA and the G-quadruplex possess nanoviscosity. The experimental results are consistent with the theoretical predictions.
Collapse
Affiliation(s)
- Dongkeun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Minjung Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Soo Yong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Hyosup Shin
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Sok Won Kim
- Department of Physics, University of Ulsan, Ulsan 680-749, South Korea
| | - Inho Park
- Department of Physics, University of Incheon, Incheon 406-772, South Korea
| |
Collapse
|
24
|
Martín-Hidalgo M, García-Arriaga M, González F, Rivera JM. Tuning supramolecular G-quadruplexes with mono- and divalent cations. Supramol Chem 2015; 27:174-180. [PMID: 27708503 DOI: 10.1080/10610278.2014.924626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Supramolecular G-quadruplexes (SGQs) are formed via the cation promoted self-assembly of guanine derivatives into stacks of planar hydrogen-bonded tetramers. Here, we present results on the formation of SGQs made from the 8-(m-acetylphenyl)-2'-deoxyguanosine (mAGi) derivative in the presence of various mono- and divalent cations. NMR and HR ESI-MS data indicate that varying the cation can efficiently tune the molecularity, the fidelity and stability (thermal and kinetic) of the resulting SGQs. The results show that, parallel to the previously reported potassium-templated hexadecamer (mAGi16·3K+), Na+, Rb+ and [Formula: see text] also promote the formation of similar supramolecules with high fidelity and molecularity. In contrast, the divalent cations Pb2+, Sr2+ and Ba2+ template the formation of octamers (mAGi8), with the latter two inducing higher thermal stabilities. Molecular dynamics simulations for the hexadecamers containing monovalent cations enabled critical insights that help explain the experimental observations.
Collapse
Affiliation(s)
- Mariana Martín-Hidalgo
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras 00931, Puerto Rico
| | - Marilyn García-Arriaga
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras 00931, Puerto Rico
| | - Fernando González
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras 00931, Puerto Rico
| | - José M Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras 00931, Puerto Rico
| |
Collapse
|
25
|
dos Santos DJ, Cordeiro MND. Effect of replacing [NTf2] by [PF6] anion on the [BMIm][NTf2] ionic liquid confined by gold. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.986122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Bergonzo C, Galindo-Murillo R, Cheatham TE. Molecular modeling of nucleic Acid structure: electrostatics and solvation. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2014; 55:7.9.1-27. [PMID: 25631536 DOI: 10.1002/0471142700.nc0709s55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit.
Collapse
Affiliation(s)
- Christina Bergonzo
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah
| | | | | |
Collapse
|
27
|
Rebič M, Mocci F, Laaksonen A, Uličný J. Multiscale simulations of human telomeric G-quadruplex DNA. J Phys Chem B 2014; 119:105-13. [PMID: 25469629 DOI: 10.1021/jp5103274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present a coarse-grain (CG) model of human telomeric G-quadruplex, obtained using the inverse Monte Carlo (IMC) and iterative Boltzmann inversion (IBI) techniques implemented within the software package called MagiC. As a starting point, the 2HY9 human telomeric [3 + 1] hybrid, a 26-nucleobase sequence, was modeled performing a 1 μs long atomistic molecular dynamics (MD) simulation. The chosen quadruplex includes two kinds of loops and all possible combinations of relative orientations of guanine strands that can be found in quadruplexes. The effective CG potential for a one bead per nucleotide model has been developed from the radial distribution functions of this reference system. The obtained potentials take into account explicitly the interaction with counterions, while the effect of the solvent is included implicitly. The structural properties of the obtained CG model of the quadruplex provided a perfect match to those resulting from the reference atomistic MD simulation. The same set of interaction potentials was then used to simulate at the CG level another quadruplex topology (PDB id 1KF1 ) that can be formed by the human telomeric DNA sequence. This quadruplex differs from 2HY9 in the loop topology and G-strand relative orientation. The results of the CG MD simulations of 1KF1 are very encouraging and suggest that the CG model based on 2HY9 can be used to simulate quadruplexes with different topologies. The CG model was further applied to a higher order human telomeric quadruplex formed by the repetition, 20 times, of the 1KF1 quadruplex structure. In all cases, the developed model, which to the best of our knowledge is the first model of quadruplexes at the CG level presented in the literature, reproduces the main structural features remarkably well.
Collapse
Affiliation(s)
- Matúš Rebič
- Department of Biophysics, Faculty of Science, P. J. Šafárik University , Jesenná 5, 041 54 Košice, Slovakia
| | | | | | | |
Collapse
|
28
|
Musiani F, Rossetti G, Capece L, Gerger TM, Micheletti C, Varani G, Carloni P. Molecular dynamics simulations identify time scale of conformational changes responsible for conformational selection in molecular recognition of HIV-1 transactivation responsive RNA. J Am Chem Soc 2014; 136:15631-7. [PMID: 25313638 PMCID: PMC5521259 DOI: 10.1021/ja507812v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S(2). This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457-5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.
Collapse
Affiliation(s)
- Francesco Musiani
- Scuola Internazionale Superiore di Studi Avanzati (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
- Institute of Neuroscience and Medicine INM-9 and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Computational Biophysics, German Research School for Simulation Sciences, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Giulia Rossetti
- Institute of Neuroscience and Medicine INM-9 and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Computational Biophysics, German Research School for Simulation Sciences, Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Luciana Capece
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Thomas Martin Gerger
- Institute of Neuroscience and Medicine INM-9 and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Computational Biophysics, German Research School for Simulation Sciences, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Gabriele Varani
- Department of Chemistry and Department of Biochemistry, University of Washington, Seattle, 98195 WA, USA
| | - Paolo Carloni
- Institute of Neuroscience and Medicine INM-9 and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Computational Biophysics, German Research School for Simulation Sciences, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
29
|
Improta R. Quantum mechanical calculations unveil the structure and properties of the absorbing and emitting excited electronic states of guanine quadruplex. Chemistry 2014; 20:8106-15. [PMID: 24828154 DOI: 10.1002/chem.201400065] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Indexed: 12/20/2022]
Abstract
Herein, a full quantum mechanical study, in solution, of several models of guanine-quadruplex helices, both parallel and antiparallel, containing up to eight guanine residues, in their electronic excited state is reported. By exploiting TD-DFT calculations and including solvent effects by the polarizable continuum model, we provide the first atomistic description of the processes triggered by the absorption of UV light, reproducing and assigning the experimental optical and electronic circular dichroism spectra. The absorbing excited states are delocalized over multiple bases, whereas emission involves a stacked guanine dimer or a monomer. Several states, with a varying degree of localization and charge-transfer character, rule the photoexcited dynamics, which are deeply affected by the quadruplex topology. The lowest excited-state minimum for parallel quadruplex is an asymmetric excimer involving two stacked guanines, with a small charge transfer character, whereas for the anti-parallel structure, with the same topology of the thrombin binding aptamer, it is a fully symmetric excimer, characterized by a strong decrease of the stacking distance. A monomer-like decay path is the most relevant nonradiative decay pathway. Insights on the effect of the ions (K(+) or Na(+)) on the excited state decay are also provided.
Collapse
Affiliation(s)
- Roberto Improta
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, I-80134, Napoli (Italy).
| |
Collapse
|
30
|
Adrian M, Ang DJ, Lech CJ, Heddi B, Nicolas A, Phan AT. Structure and conformational dynamics of a stacked dimeric G-quadruplex formed by the human CEB1 minisatellite. J Am Chem Soc 2014; 136:6297-305. [PMID: 24742225 DOI: 10.1021/ja4125274] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CEB1 is a highly polymorphic human minisatellite. In yeast, the size variation of CEB1 tandem arrays has been associated with the capacity of the motif to form G-quadruplexes. Here we report on the NMR solution structure of a G-quadruplex formed by the CEB1 DNA G-rich fragment d(AGGGGGGAGGGAGGGTGG), harboring several G-tracts including one with six continuous guanines. This sequence forms a dimeric G-quadruplex involving the stacking of two subunits, each being a unique snapback parallel-stranded scaffold with three G-tetrad layers, three double-chain-reversal loops, and a V-shaped loop. The two subunits are stacked at their 5'-end tetrads, and multiple stacking rotamers may be present due to a high symmetry at the stacking interface. There is a conformational exchange in the millisecond time scale involving a swapping motion between two bases of the six-guanine tract. Our results not only add to the understanding of how the G-quadruplex formation in human minisatellite leads to genetic instability but also address the fundamental questions regarding stacking of G-quadruplexes and how a long continuous G-tract participates in the structure and conformational dynamics of G-quadruplexes.
Collapse
Affiliation(s)
- Michael Adrian
- School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
| | | | | | | | | | | |
Collapse
|
31
|
Sun L, Jin H, Zhao X, Liu Z, Guan Y, Yang Z, Zhang L, Zhang L. Unfolding and conformational variations of thrombin-binding DNA aptamers: synthesis, circular dichroism and molecular dynamics simulations. ChemMedChem 2014; 9:993-1001. [PMID: 24715713 DOI: 10.1002/cmdc.201300564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/14/2014] [Indexed: 01/08/2023]
Abstract
Thrombin-binding DNA aptamer (TBA), with a consensus 15-base sequence: d(GGTTGGTGTGGTTGG), can fold into an antiparallel unimolecular G-quadruplex structure that is necessary for its interaction with thrombin. For the first time, using steered molecular dynamics (SMD) simulations, we have successfully simulated the unfolding process of native TBA G-quadruplex. The unfolding pathway proposed is in agreement with previously reported experimental NMR data. Moreover, the critical intermediate structure in the unfolding pathway, predicted by the NMR results, was identified. The structural characteristics of several TBA oligonucleotides modified with locked nucleoside (LNA) or 2'-O-methyl-nucleoside (MNA) at different positions and number were also investigated by CD spectroscopy. An oligonucleotide substituted with either LNA or MNA at position 2 folds into a native-like G-quadruplex, while doubly substituted derivatives of TBA where LNA or MNA is incorporated at positions 11 and 14 are no longer able to form a G-quadruplex. Starting from the same initial intermediate structure, we successfully overcame sampling limitations, and simulated the large conformational variations in structures of native TBA and modified TBAs by classic MD. Analysis of the models showed that inversion of the glycosyl orientation at position 14 contributes significantly to the disruption of G-quadruplex formation in both of the di-substituted modified TBA systems. Our calculations provide a simple and reliable theoretical model that can be used to investigate and predict the effects of the modifications of an oligonucleotide on the resultant G-quadruplex structure. In addition, the computational protocol described can also be applied for other G-quadruplex systems.
Collapse
Affiliation(s)
- Lidan Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191 (P. R. China)
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gkionis K, Kruse H, Platts JA, Mládek A, Koča J, Šponer J. Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations. J Chem Theory Comput 2014; 10:1326-40. [DOI: 10.1021/ct4009969] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Konstantinos Gkionis
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Holger Kruse
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - James A. Platts
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Arnošt Mládek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Jaroslav Koča
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| |
Collapse
|
33
|
Abstract
An atomistic Molecular Dynamics simulation to study the unfolding and deprotonation mechanism of a single-stranded and fully protonated DNA i-motif.
Collapse
Affiliation(s)
- Jens Smiatek
- Institut für Computerphysik
- Universität Stuttgart
- 70569 Stuttgart, Germany
| | - Andreas Heuer
- Institut für Physikalische Chemie
- Universität Münster
- 48149 Münster, Germany
| |
Collapse
|
34
|
Song J, Ji C, Zhang JZH. The critical effect of polarization on the dynamical structure of guanine quadruplex DNA. Phys Chem Chem Phys 2013; 15:3846-54. [PMID: 23399949 DOI: 10.1039/c2cp44100d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Guanine quadruplex DNA (G-DNA), found in eukaryotic telomeres and recently in non-telomeric genomic DNA, plays important biological roles and their structures are being explored as potential targets for therapeutic intervention. Since the quadruplex structure of G-DNA is stabilized by cations, electrostatic interaction is expected to play important roles in the dynamical structure of G-DNA. In current work, MD simulation was carried out to study the dynamical structure of a special G-DNA (with sequence d(G(4)T(4)G(4))) complexed with five K(+) ions. In order to properly include polarization in MD simulation, a new set of polarized nucleic acid specific charge based on fragment quantum chemistry calculation was developed for G-DNA. Our study showed that polarization of the nucleobases by K(+) enhanced electrostatic attraction between the base and ions. This increased attractive interaction is critical to stabilizing the stem-loop junction ions in G-DNA. Without this polarization effect, as in MD simulation using a standard (nonpolarizable) force field, the top and bottom cations escaped into the solvent within just a few nanoseconds. Furthermore, an incorrect bifurcated bonding geometry of G-DNA, found in previous MD simulation study under a standard force field but not observed in experiments, disappeared in the present stimulation using the new polarized force field. The current study bridged an important gap between the simulation study and experimental observation on the dynamical structure of G-DNA.
Collapse
Affiliation(s)
- Jianing Song
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | | | | |
Collapse
|
35
|
Lech CJ, Phan AT, Michel-Beyerle ME, Voityuk AA. Electron-Hole Transfer in G-Quadruplexes with Different Tetrad Stacking Geometries: A Combined QM and MD Study. J Phys Chem B 2013; 117:9851-6. [DOI: 10.1021/jp404788t] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Christopher J. Lech
- Division of Physics and Applied Physics,
School of
Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Anh Tuân Phan
- Division of Physics and Applied Physics,
School of
Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Maria-Elisabeth Michel-Beyerle
- Division of Physics and Applied Physics,
School of
Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Alexander A. Voityuk
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
and Institute of Computational Chemistry, Universitat de Girona, 17071 Girona, Spain
| |
Collapse
|
36
|
Zhu H, Xiao S, Liang H. Structural dynamics of human telomeric G-quadruplex loops studied by molecular dynamics simulations. PLoS One 2013; 8:e71380. [PMID: 23951152 PMCID: PMC3738534 DOI: 10.1371/journal.pone.0071380] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/30/2013] [Indexed: 11/18/2022] Open
Abstract
Loops which are linkers connecting G-strands and supporting the G-tetrad core in G-quadruplex are important for biological roles of G-quadruplexes. TTA loop is a common sequence which mainly resides in human telomeric DNA (hTel) G-quadruplex. A series of molecular dynamics (MD) simulations were carried out to investigate the structural dynamics of TTA loops. We found that (1) the TA base pair formed in TTA loops are very stable, the occupied of all hydrogen bonds are more than 0.95. (2) The TA base pair makes the adjacent G-quartet more stable than others. (3) For the edgewise loop and the diagonal loop, most loop bases are stacking with others, only few bases have considerable freedom. (4) The stabilities of these stacking structures are distinct. Part of the loops, especially TA base pairs, and bases stacking with the G-quartet, maintain certain stable conformations in the simulation, but other parts, like TT and TA stacking structures, are not stable enough. For the first time, spontaneous conformational switches of TTA edgewise loops were observed in our long time MD simulations. (5) For double chain reversal loop, it is really hard to maintain a stable conformation in the long time simulation under present force fields (parm99 and parmbsc0), as it has multiple conformations with similar free energies.
Collapse
Affiliation(s)
- Hong Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
37
|
Stadlbauer P, Krepl M, Cheatham TE, Koča J, Šponer J. Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Res 2013; 41:7128-43. [PMID: 23700306 PMCID: PMC3737530 DOI: 10.1093/nar/gkt412] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/18/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
Explicit solvent molecular dynamics simulations have been used to complement preceding experimental and computational studies of folding of guanine quadruplexes (G-DNA). We initiate early stages of unfolding of several G-DNAs by simulating them under no-salt conditions and then try to fold them back using standard excess salt simulations. There is a significant difference between G-DNAs with all-anti parallel stranded stems and those with stems containing mixtures of syn and anti guanosines. The most natural rearrangement for all-anti stems is a vertical mutual slippage of the strands. This leads to stems with reduced numbers of tetrads during unfolding and a reduction of strand slippage during refolding. The presence of syn nucleotides prevents mutual strand slippage; therefore, the antiparallel and hybrid quadruplexes initiate unfolding via separation of the individual strands. The simulations confirm the capability of G-DNA molecules to adopt numerous stable locally and globally misfolded structures. The key point for a proper individual folding attempt appears to be correct prior distribution of syn and anti nucleotides in all four G-strands. The results suggest that at the level of individual molecules, G-DNA folding is an extremely multi-pathway process that is slowed by numerous misfolding arrangements stabilized on highly variable timescales.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84124, USA and CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84124, USA and CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Thomas E. Cheatham
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84124, USA and CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jaroslav Koča
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84124, USA and CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84124, USA and CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
38
|
Wen LN, Xie MX. Evidence of different G-quadruplex DNA binding with biogenic polyamines probed by electrospray ionization-quadrupole time of flight mass spectrometry, circular dichroism and atomic force microscopy. Biochimie 2013; 95:1185-95. [PMID: 23352964 DOI: 10.1016/j.biochi.2013.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/14/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Li-Na Wen
- Analytical & Testing Center of Beijing Normal University, Xinjiekouwaidajie No. 19, Beijing 100875, People's Republic of China
| | | |
Collapse
|
39
|
Zhu T, Lee H, Lei H, Jones C, Patel K, Johnson ME, Hevener KE. Fragment-based drug discovery using a multidomain, parallel MD-MM/PBSA screening protocol. J Chem Inf Model 2013; 53:560-72. [PMID: 23432621 PMCID: PMC3752004 DOI: 10.1021/ci300502h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed a rigorous computational screening protocol to identify novel fragment-like inhibitors of N(5)-CAIR mutase (PurE), a key enzyme involved in de novo purine synthesis that represents a novel target for the design of antibacterial agents. This computational screening protocol utilizes molecular docking, graphics processing unit (GPU)-accelerated molecular dynamics, and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) free energy estimations to investigate the binding modes and energies of fragments in the active sites of PurE. PurE is a functional octamer comprised of identical subunits. The octameric structure, with its eight active sites, provided a distinct advantage in these studies because, for a given simulation length, we were able to place eight separate fragment compounds in the active sites to increase the throughput of the MM/PBSA analysis. To validate this protocol, we have screened an in-house fragment library consisting of 352 compounds. The theoretical results were then compared with the results of two experimental fragment screens, Nuclear Magnetic Resonance (NMR) and Surface Plasmon Resonance (SPR) binding analyses. In these validation studies, the protocol was able to effectively identify the competitive binders that had been independently identified by experimental testing, suggesting the potential utility of this method for the identification of novel fragments for future development as PurE inhibitors.
Collapse
Affiliation(s)
- Tian Zhu
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S Ashland Ave., Suite 3100, Chicago, IL 60607-7173 (USA)
| | - Hyun Lee
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S Ashland Ave., Suite 3100, Chicago, IL 60607-7173 (USA)
| | - Hao Lei
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S Ashland Ave., Suite 3100, Chicago, IL 60607-7173 (USA)
| | - Christopher Jones
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S Ashland Ave., Suite 3100, Chicago, IL 60607-7173 (USA)
| | - Kavankumar Patel
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S Ashland Ave., Suite 3100, Chicago, IL 60607-7173 (USA)
| | - Michael E. Johnson
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S Ashland Ave., Suite 3100, Chicago, IL 60607-7173 (USA)
| | - Kirk E. Hevener
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S Ashland Ave., Suite 3100, Chicago, IL 60607-7173 (USA)
| |
Collapse
|
40
|
Islam B, Sgobba M, Laughton C, Orozco M, Sponer J, Neidle S, Haider S. Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale. Nucleic Acids Res 2013; 41:2723-35. [PMID: 23293000 PMCID: PMC3575793 DOI: 10.1093/nar/gks1331] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
The human telomeric DNA sequence with four repeats can fold into a parallel-stranded propeller-type topology. NMR structures solved under molecular crowding experiments correlate with the crystal structures found with crystal-packing interactions that are effectively equivalent to molecular crowding. This topology has been used for rationalization of ligand design and occurs experimentally in a number of complexes with a diversity of ligands, at least in the crystalline state. Although G-quartet stems have been well characterized, the interactions of the TTA loop with the G-quartets are much less defined. To better understand the conformational variability and structural dynamics of the propeller-type topology, we performed molecular dynamics simulations in explicit solvent up to 1.5 μs. The analysis provides a detailed atomistic account of the dynamic nature of the TTA loops highlighting their interactions with the G-quartets including formation of an A:A base pair, triad, pentad and hexad. The results present a threshold in quadruplex simulations, with regards to understanding the flexible nature of the sugar-phosphate backbone in formation of unusual architecture within the topology. Furthermore, this study stresses the importance of simulation time in sampling conformational space for this topology.
Collapse
Affiliation(s)
- Barira Islam
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Miriam Sgobba
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Charlie Laughton
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Modesto Orozco
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Jiri Sponer
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Stephen Neidle
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Shozeb Haider
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
41
|
Abstract
G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes.
Collapse
Affiliation(s)
- Christopher Jacques Lech
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
42
|
New insights from molecular dynamic simulation studies of the multiple binding modes of a ligand with G-quadruplex DNA. J Comput Aided Mol Des 2012; 26:1355-68. [PMID: 23239169 DOI: 10.1007/s10822-012-9619-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/27/2012] [Indexed: 01/06/2023]
Abstract
G-quadruplexes are higher-order DNA and RNA structures formed from guanine-rich sequences. These structures have recently emerged as a new class of potential molecular targets for anticancer drugs. An understanding of the three-dimensional interactions between small molecular ligands and their G-quadruplex targets in solution is crucial for rational drug design and the effective optimization of G-quadruplex ligands. Thus far, rational ligand design has been focused mainly on the G-quartet platform. It should be noted that small molecules can also bind to loop nucleotides, as observed in crystallography studies. Hence, it would be interesting to elucidate the mechanism underlying how ligands in distinct binding modes influence the flexibility of G-quadruplex. In the present study, based on a crystal structure analysis, the models of a tetra-substituted naphthalene diimide ligand bound to a telomeric G-quadruplex with different modes were built and simulated with a molecular dynamics simulation method. Based on a series of computational analyses, the structures, dynamics, and interactions of ligand-quadruplex complexes were studied. Our results suggest that the binding of the ligand to the loop is viable in aqueous solutions but dependent on the particular arrangement of the loop. The binding of the ligand to the loop enhances the flexibility of the G-quadruplex, while the binding of the ligand simultaneously to both the quartet and the loop diminishes its flexibility. These results add to our understanding of the effect of a ligand with different binding modes on G-quadruplex flexibility. Such an understanding will aid in the rational design of more selective and effective G-quadruplex binding ligands.
Collapse
|
43
|
Beššeová I, Banáš P, Kührová P, Košinová P, Otyepka M, Šponer J. Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. J Phys Chem B 2012; 116:9899-916. [DOI: 10.1021/jp3014817] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ivana Beššeová
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavlína Košinová
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Michal Otyepka
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
44
|
Akhshi P, Acton G, Wu G. Molecular dynamics simulations to provide new insights into the asymmetrical ammonium ion movement inside of the [d(G3T4G4)]2 G-quadruplex DNA structure. J Phys Chem B 2012; 116:9363-70. [PMID: 22780684 DOI: 10.1021/jp304760k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have used both adaptive biasing force (ABF) and regular molecular dynamics (MD) simulations to investigate the asymmetrical NH(4)(+) ion movement inside of a bimolecular G-quadruplex DNA structure [d(G(3)T(4)G(4))](2). The free-energy landscapes obtained from ABF MD simulations suggest that the NH(4)(+) ion exiting the [d(G(3)T(4)G(4))](2) G-quadruplex stem in the direction toward the edge-type loop (denoted as the upper direction) experiences a lower free-energy barrier than that toward the diagonal loop (denoted as the lower direction) by approximately 3-4 kcal mol(-1). This result is in qualitative agreement with the previous discovery made by Šket and Plavec on the same G-quadruplex structure from (15)N NMR experiments (J. Am. Chem. Soc. 2007, 129, 8794). In the Na(+) form of the same G-quadruplex, Na(+) ion movement was found to be symmetrical, with a free-energy barrier of only 5-7 kcal mol(-1) to cross all three G-quartets, that is, [d(G(3)T(4)G(4))](2) still exhibits ion-channel-like behaviors for Na(+) ions. On the basis of the new computational results, we hypothesize that the stiffness of a G-quartet is primarily determined by the base stacking interactions within the G-quadruplex stem. Therefore, the structural origin for the asymmetrical NH(4)(+) ion movement in [d(G(3)T(4)G(4))](2) is the presence of two different modes of base stacking around the NH(4)(+) binding sites, a more stable 5'-syn-anti mode between lower and central G-quartets and a less stable 5'-anti-anti mode between upper and central G-quartets. Simulations also suggest that loop topology at the end of a G-quadruplex stem only controls the direction at which an exiting NH(4)(+) ion reaches bulk solution but does not impose significant free-energy barriers.
Collapse
Affiliation(s)
- Parisa Akhshi
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
45
|
Krepl M, Zgarbová M, Stadlbauer P, Otyepka M, Banáš P, Koča J, Cheatham TE, Jurečka P, Šponer J. Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA and Z-DNA. J Chem Theory Comput 2012; 8:2506-2520. [PMID: 23197943 PMCID: PMC3506181 DOI: 10.1021/ct300275s] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Refinement of empirical force fields for nucleic acids requires their extensive testing using as wide range of systems as possible. However, finding unambiguous reference data is not easy. In this paper, we analyze four systems which we suggest should be included in standard portfolio of molecules to test nucleic acids force fields, namely, parallel and antiparallel stranded DNA guanine quadruplex stems, RNA quadruplex stem, and Z-DNA. We highlight parameters that should be monitored to assess the force field performance. The work is primarily based on 8.4 μs of 100-250 ns trajectories analyzed in detail followed by 9.6 μs of additional selected back up trajectories that were monitored to verify that the results of the initial analyses are correct. Four versions of the Cornell et al. AMBER force field are tested, including an entirely new parmχ(OL4) variant with χ dihedral specifically reparametrized for DNA molecules containing syn nucleotides. We test also different water models and ion conditions. While improvement for DNA quadruplexes is visible, the force fields still do not fully represent the intricate Z-DNA backbone conformation.
Collapse
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jaroslav Koča
- CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
- National Center for Biomolecular Research, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
46
|
Novotný J, Kulhánek P, Marek R. Biocompatible Xanthine-Quadruplex Scaffold for Ion-Transporting DNA Channels. J Phys Chem Lett 2012; 3:1788-1792. [PMID: 26291860 DOI: 10.1021/jz300559w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Molecular dynamics simulations and adaptive biasing force analysis of the quadruplex DNA dynamics in an explicit solvent reveal fundamentally different mechanisms of Na(+) transport in xanthine- and guanine-based DNA systems. The barrier to the transport of K(+) through the xanthine-based quadruplex is significantly lower than those reported for the guanine-based analogs.
Collapse
Affiliation(s)
- Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| | - Petr Kulhánek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| |
Collapse
|
47
|
šponer J, Cang X, Cheatham TE. Molecular dynamics simulations of G-DNA and perspectives on the simulation of nucleic acid structures. Methods 2012; 57:25-39. [PMID: 22525788 PMCID: PMC3775459 DOI: 10.1016/j.ymeth.2012.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 11/29/2022] Open
Abstract
The article reviews the application of biomolecular simulation methods to understand the structure, dynamics and interactions of nucleic acids with a focus on explicit solvent molecular dynamics simulations of guanine quadruplex (G-DNA and G-RNA) molecules. While primarily dealing with these exciting and highly relevant four-stranded systems, where recent and past simulations have provided several interesting results and novel insight into G-DNA structure, the review provides some general perspectives on the applicability of the simulation techniques to nucleic acids.
Collapse
Affiliation(s)
- Jiří šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Xiaohui Cang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Hall 201, 2000 East 30 South, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
48
|
Adrian M, Heddi B, Phan AT. NMR spectroscopy of G-quadruplexes. Methods 2012; 57:11-24. [DOI: 10.1016/j.ymeth.2012.05.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 12/24/2022] Open
|
49
|
Ferreira R, Marchand A, Gabelica V. Mass spectrometry and ion mobility spectrometry of G-quadruplexes. A study of solvent effects on dimer formation and structural transitions in the telomeric DNA sequence d(TAGGGTTAGGGT). Methods 2012; 57:56-63. [PMID: 22465284 DOI: 10.1016/j.ymeth.2012.03.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/14/2012] [Accepted: 03/17/2012] [Indexed: 11/25/2022] Open
Abstract
We survey here state of the art mass spectrometry methodologies for investigating G-quadruplexes, and will illustrate them with a new study on a simple model system: the dimeric G-quadruplex of the 12-mer telomeric DNA sequence d(TAGGGTTAGGGT), which can adopt either a parallel or an antiparallel structure. We will discuss the solution conditions compatible with electrospray ionisation, the quantification of complexes using ESI-MS, the interpretation of ammonium ion preservation in the complexes in the gas phase, and the use of ion mobility spectrometry to resolve ambiguities regarding the strand stoichiometry, or separate and characterise different structural isomers. We also describe that adding electrospray-compatible organic co-solvents (methanol, ethanol, isopropanol or acetonitrile) to aqueous ammonium acetate increases the stability and rate of formation of dimeric G-quadruplexes, and causes structural transitions to parallel structures. Structural changes were probed by circular dichroism and ion mobility spectrometry, and the excellent correlation between the two techniques validates the use of ion mobility to investigate G-quadruplex folding. We also demonstrate that parallel G-quadruplex structures are easier to preserve in the gas phase than antiparallel structures.
Collapse
Affiliation(s)
- Rubén Ferreira
- Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona), IQAC-CSIC, CIBER-BNN, Baldiri i Reixac 10, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
50
|
Akhshi P, Mosey NJ, Wu G. Free-Energy Landscapes of Ion Movement through a G-Quadruplex DNA Channel. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|