1
|
Zhang Y, Ma W, Ma C, Zhang Q, Tian Z, Tian Z, Chen H, Guo J, Wan F, Zhou Z. The hsp70 new functions as a regulator of reproduction both female and male in Ophraella communa. Front Mol Biosci 2022; 9:931525. [PMID: 36203880 PMCID: PMC9531545 DOI: 10.3389/fmolb.2022.931525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Heat shock proteins (Hsps) function as molecular chaperones that enable organisms to withstand stress and maintain normal life activities. In this study, we identified heat shock protein 70 (encoded by hsp70), which exhibits a higher expression in the mature male testis than in the unmature testis of Ophraella communa. Tissue expression profile revealed that Ochsp70 levels in males were highest in the testis, whereas those in females were highest in the head. Moreover, the expression of Ochsp70 was found to be significantly induced in female bursa copulatrix after mating. Double-stranded RNA dsOchsp70 was injected into males to performance RNA interference, which significantly decreased the male Ochsp70 expression levels within 20 d post-injection, whereas no effect was observed on the Ochsp70 expression level in the females after mating with dsOchsp70-injected males. However, significant downregulation of female fertility was marked simultaneously. Furthermore, knockdown of female Ochsp70 expression also led to a significant reduction in fertility. Finally, comparative transcriptomic analysis identified glucose dehydrogenase and insulin-like growth factor binding protein as putative downstream targets of Ochsp70. Overall, we deduced that Ochsp70 is an indispensable gene and a potential male mating factor in O. communa, which regulates reproduction.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinglu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenya Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhenqi Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongsong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- *Correspondence: Zhongshi Zhou,
| |
Collapse
|
2
|
Wolfram L, Fischbeck A, Frey-Wagner I, Wojtal KA, Lang S, Fried M, Vavricka SR, Hausmann M, Rogler G. Regulation of the expression of chaperone gp96 in macrophages and dendritic cells. PLoS One 2013; 8:e76350. [PMID: 24146856 PMCID: PMC3797789 DOI: 10.1371/journal.pone.0076350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/26/2013] [Indexed: 11/23/2022] Open
Abstract
The chaperone function of the ER-residing heat shock protein gp96 plays an important role in protein physiology and has additionally important immunological functions due to its peptide-binding capacity. Low amounts of gp96 stimulate immunity; high quantities induce tolerance by mechanisms not fully understood. A lack of gp96 protein in intestinal macrophages (IMACs) from Crohn`s disease (CD) patients correlates with loss of tolerance against the host gut flora, leading to chronic inflammation. Since gp96 shows dose-dependent direction of immunological reactions, we studied primary IMACs and developed cell models to understand the regulation of gp96 expression. Induction of gp96-expression was higher in in vitro differentiated dendritic cells (i.v.DCs) than in in vitro differentiated macrophages (i.v.MACs), whereas monocytes (MOs) expressed only low gp96 levels. The highest levels of expression were found in IMACs. Lipopolysaccharide (LPS), muramyl dipeptide (MDP), tumour necrosis factor (TNF), and Interleukin (IL)-4 induced gp96-expression, while IL12, IL-17, IL-23 and interferon (IFN)-γ were not effective indicating that Th1 and Th17 cells are probably not involved in the induction of gp96. Furthermore, gp96 was able to induce its own expression. The ER-stress inducer tunicamycin increased gp96-expression in a concentration- and time-dependent manner. Both ulcerative colitis (UC) and CD patients showed significantly elevated gp96 mRNA levels in intestinal biopsies which correlated positively with the degree of inflammation of the tissue. Since gp96 is highly expressed on the one hand upon stress induction as during inflammation and on the other hand possibly mediating tolerance, these results will help to understand the whether gp96 plays a role in the pathophysiology of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Lutz Wolfram
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Anne Fischbeck
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Kacper A. Wojtal
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Fried
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Stephan R. Vavricka
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
3
|
McNulty S, Colaco CA, Blandford LE, Bailey CR, Baschieri S, Todryk S. Heat-shock proteins as dendritic cell-targeting vaccines--getting warmer. Immunology 2013; 139:407-15. [PMID: 23551234 PMCID: PMC3719058 DOI: 10.1111/imm.12104] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/08/2013] [Accepted: 02/15/2013] [Indexed: 12/22/2022] Open
Abstract
Heat-shock proteins (hsp) provide a natural link between innate and adaptive immune responses by combining the ideal properties of antigen carriage (chaperoning), targeting and activation of antigen-presenting cells (APC), including dendritic cells (DC). Targeting is achieved through binding of hsp to distinct cell surface receptors and is followed by antigen internalization, processing and presentation. An improved understanding of the interaction of hsp with DC has driven the development of numerous hsp-containing vaccines, designed to deliver antigens directly to DC. Studies in mice have shown that for cancers, such vaccines generate impressive immune responses and protection from tumour challenge. However, translation to human use, as for many experimental immunotherapies, has been slow partly because of the need to perform trials in patients with advanced cancers, where demonstration of efficacy is challenging. Recently, the properties of hsp have been used for development of prophylactic vaccines against infectious diseases including tuberculosis and meningitis. These hsp-based vaccines, in the form of pathogen-derived hsp-antigen complexes, or recombinant hsp combined with selected antigens in vitro, offer an innovative approach against challenging diseases where broad antigen coverage is critical.
Collapse
Affiliation(s)
- Shaun McNulty
- ImmunoBiology Ltd., Babraham Research Campus, Babraham, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
4
|
Jia H, Halilou AI, Hu L, Cai W, Liu J, Huang B. Heat shock protein 10 (Hsp10) in immune-related diseases: one coin, two sides. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 2:47-57. [PMID: 21969171 PMCID: PMC3180030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/22/2010] [Indexed: 05/31/2023]
Abstract
Heat shock protein 10 (Hsp10) in eukaryotes, originally identified as a mitochondrial chaperone, now is also known to be present in cytosol, cell surface, extracellular space and peripheral blood. Functionally besides participating in mitochondrial protein folding in association with Hsp60, Hsp10 appears to be related to pregnancy, cancer and autoimmune inhibition. Hsp10 can be released to peripheral blood at very early time point of pregnancy and given another name called early pregnancy factor (EPF), which seems to play a critical role in developing a pregnant niche. In malignant disorders, Hsp10 is usually abnormally expressed in the cytosol of malignant cells and further released to extracellular space, resulting in tumor-promoting effect from various aspects. Furthermore, distinct from other heat shock protein members, whose soluble form is recognized as danger signal by immune cells and triggers immune responses, Hsp10 after release, however, is designed to be an inhibitory signal by limiting immune response. This review discusses how Hsp10 participates in various physiological and pathological processes from basic protein molecule folding to pregnancy, cancer and autoimmune diseases, and emphasizes how important the location is for the function exertion of a molecule.
Collapse
Affiliation(s)
- Haibo Jia
- Department of Biology Science, College of Life Science and Technology
| | - Amadou I. Halilou
- Department of Biochemistry & Molecular Biology, Tongji Medical College; Huazhong University of Science & TechnologyWuhan 430030, The People's Republic of China
| | - Liang Hu
- Department of Biochemistry & Molecular Biology, Tongji Medical College; Huazhong University of Science & TechnologyWuhan 430030, The People's Republic of China
| | - Wenqian Cai
- Department of Biochemistry & Molecular Biology, Tongji Medical College; Huazhong University of Science & TechnologyWuhan 430030, The People's Republic of China
| | - Jing Liu
- Department of Biochemistry & Molecular Biology, Tongji Medical College; Huazhong University of Science & TechnologyWuhan 430030, The People's Republic of China
| | - Bo Huang
- Department of Biochemistry & Molecular Biology, Tongji Medical College; Huazhong University of Science & TechnologyWuhan 430030, The People's Republic of China
| |
Collapse
|
5
|
Corrao S, Campanella C, Anzalone R, Farina F, Zummo G, Conway de Macario E, Macario AJL, Cappello F, La Rocca G. Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives. Life Sci 2009; 86:145-52. [PMID: 19913561 DOI: 10.1016/j.lfs.2009.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/29/2009] [Accepted: 11/05/2009] [Indexed: 02/02/2023]
Abstract
This article is about Hsp10 and its intracellular and extracellular forms focusing on the relationship of the latter with Early Pregnancy Factor and on their roles in cancer and immunity. Cellular physiology and survival are finely regulated and depend on the correct functioning of the entire set of proteins. Misfolded or unfolded proteins can cause deleterious effects and even cell death. The chaperonins Hsp10 and Hsp60 act together inside the mitochondria to assist protein folding. Recent studies demonstrated that these proteins have other roles inside and outside the cell, either together or independently of each other. For example, Hsp10 was found increased in the cytosol of different tumors (although in other tumors it was found decreased). Moreover, Hsp10 localizes extracellularly during pregnancy and is often indicated as Early Pregnancy Factor (EPF), which is released during the first stages of gestation and is involved in the establishment of pregnancy. Various reports show that extracellular Hsp10 and EPF modulate certain aspects of the immune response with anti-inflammatory effects in patients with autoimmune conditions improving clinically after treatment with recombinant Hsp10. Moreover, Hsp10 and EPF are involved in embryonic development, acting as a growth factor, and in cell proliferation/differentiation mechanisms. Therefore, it becomes evident that Hsp10 is not only a co-chaperonin, but an active player in its own right in various cellular functions. In this article, we present an overview of various aspects of Hsp10 and EPF as they participate in physiological and pathological processes such as the antitumor response and autoimmune diseases.
Collapse
Affiliation(s)
- Simona Corrao
- Dipartimento di Medicina Sperimentale, Università degli Studi di Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|