1
|
Lacueva-Aparicio A, Lindoso RS, Mihăilă SM, Giménez I. Role of extracellular matrix components and structure in new renal models in vitro. Front Physiol 2022; 13:1048738. [PMID: 36569770 PMCID: PMC9767975 DOI: 10.3389/fphys.2022.1048738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM), a complex set of fibrillar proteins and proteoglycans, supports the renal parenchyma and provides biomechanical and biochemical cues critical for spatial-temporal patterning of cell development and acquisition of specialized functions. As in vitro models progress towards biomimicry, more attention is paid to reproducing ECM-mediated stimuli. ECM's role in in vitro models of renal function and disease used to investigate kidney injury and regeneration is discussed. Availability, affordability, and lot-to-lot consistency are the main factors determining the selection of materials to recreate ECM in vitro. While simpler components can be synthesized in vitro, others must be isolated from animal or human tissues, either as single isolated components or as complex mixtures, such as Matrigel or decellularized formulations. Synthetic polymeric materials with dynamic and instructive capacities are also being explored for cell mechanical support to overcome the issues with natural products. ECM components can be used as simple 2D coatings or complex 3D scaffolds combining natural and synthetic materials. The goal is to recreate the biochemical signals provided by glycosaminoglycans and other signaling molecules, together with the stiffness, elasticity, segmentation, and dimensionality of the original kidney tissue, to support the specialized functions of glomerular, tubular, and vascular compartments. ECM mimicking also plays a central role in recent developments aiming to reproduce renal tissue in vitro or even in therapeutical strategies to regenerate renal function. Bioprinting of renal tubules, recellularization of kidney ECM scaffolds, and development of kidney organoids are examples. Future solutions will probably combine these technologies.
Collapse
Affiliation(s)
- Alodia Lacueva-Aparicio
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, Zaragoza, Spain
| | - Rafael Soares Lindoso
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ignacio Giménez
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain,School of Medicine, University of Zaragoza, Zaragoza, Spain,*Correspondence: Ignacio Giménez,
| |
Collapse
|
2
|
Huling J, Min SI, Kim DS, Ko IK, Atala A, Yoo JJ. Kidney regeneration with biomimetic vascular scaffolds based on vascular corrosion casts. Acta Biomater 2019; 95:328-336. [PMID: 30953799 DOI: 10.1016/j.actbio.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
We have developed a biomimetic renal vascular scaffold based on a vascular corrosion casting technique. This study evaluated the feasibility of using this novel biomimetic scaffold for kidney regeneration in a rat kidney cortical defect model. Vascular corrosion casts were prepared from normal rat kidneys by perfusion with 10% polycaprolactone (PCL) solution, followed by tissue digestion. The corrosion PCL cast was coated with collagen, and PCL was removed from within the collagen coating, leaving only a hollow collagen-based biomimetic vascular scaffold. The fabricated scaffolds were pre-vascularized with MS1 endothelial cell coating, incorporated into 3D renal constructs, and subsequently implanted either with or without human renal cells in the renal cortex of nude rats. The implanted collagen-based vascular scaffold was easily identified and integrated into native kidney tissue. The biomimetic vascular scaffold coated with endothelial cells (MS1) showed significantly enhanced vascularization, as compared to the uncoated scaffold and hydrogel only groups (P < 0.001). Along with the improved vascularization effects, the MS1-coated scaffolds showed a significant renal cell infiltration from the neighboring host tissue, as compared to the other groups (P < 0.05). Moreover, addition of human renal cells to the MS1-coated scaffold resulted in further enhancement of vascularization and tubular structure regeneration within the implanted constructs. The biomimetic collagen vascular scaffolds coated with endothelial cells are able to enhance vascularization and facilitate the formation of renal tubules after 14 days when combined with human renal cells. This study shows the feasibility of bioengineering vascularized functional renal tissues for kidney regeneration. STATEMENT OF SIGNIFICANCE: Vascularization is one of the major hurdles affecting the survival and integration of implanted three-dimensional tissue constructs in vivo. A novel, biomimetic, collagen-based vascular scaffold that is structurally identical to native kidney tissue was developed and tested. This biomimetic vascularized scaffold system facilitates the development of new vessels and renal cell viability in vivo when implanted in a partial renal defect. The use of this scaffold system could address the challenges associated with vascularization, and may be an ideal treatment strategy for partial augmentation of renal function in patients with chronic kidney disease.
Collapse
|
3
|
Constructing an Isogenic 3D Human Nephrogenic Progenitor Cell Model Composed of Endothelial, Mesenchymal, and SIX2-Positive Renal Progenitor Cells. Stem Cells Int 2019; 2019:3298432. [PMID: 31191670 PMCID: PMC6525793 DOI: 10.1155/2019/3298432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Urine has become the source of choice for noninvasive renal epithelial cells and renal stem cells which can be used for generating induced pluripotent stem cells. The aim of this study was to generate a 3D nephrogenic progenitor cell model composed of three distinct cell types—urine-derived SIX2-positive renal progenitor cells, iPSC-derived mesenchymal stem cells, and iPSC-derived endothelial cells originating from the same individual. Characterization of the generated mesenchymal stem cells revealed plastic adherent growth and a trilineage differentiation potential to adipocytes, chondrocytes, and osteoblasts. Furthermore, these cells express the typical MSC markers CD73, CD90, and CD105. The induced endothelial cells express the endothelial cell surface marker CD31. Upon combination of urine-derived renal progenitor cells, induced mesenchymal stem cells, and induced endothelial cells at a set ratio, the cells self-condensed into three-dimensional nephrogenic progenitor cells which we refer to as 3D-NPCs. Immunofluorescence-based stainings of sectioned 3D-NPCs revealed cells expressing the renal progenitor cell markers (SIX2 and PAX8), podocyte markers (Nephrin and Podocin), the endothelial marker (CD31), and mesenchymal markers (Vimentin and PDGFR-β). These 3D-NPCs share kidney progenitor characteristics and thus the potential to differentiate into podocytes and proximal and distal tubules. As urine-derived renal progenitor cells can be easily obtained from cells shed into urine, the generation of 3D-NPCs directly from renal progenitor cells instead of pluripotent stem cells or kidney biopsies holds a great potential for the use in nephrotoxicity tests, drug screening, modelling nephrogenesis and diseases.
Collapse
|
4
|
Jia Z, Wang X, Wei X, Zhao G, Foster KW, Qiu F, Gao Y, Yuan F, Yu F, Thiele GM, Bronich TK, O’Dell JR, Wang D. Micelle-Forming Dexamethasone Prodrug Attenuates Nephritis in Lupus-Prone Mice without Apparent Glucocorticoid Side Effects. ACS NANO 2018; 12:7663-7681. [PMID: 29965725 PMCID: PMC6117746 DOI: 10.1021/acsnano.8b01249] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 05/27/2023]
Abstract
Nephritis is one of the major complications of systemic lupus erythematosus. While glucocorticoids (GCs) are frequently used as the first-line treatment for lupus nephritis (LN), long-term GC usage is often complicated by severe adverse effects. To address this challenge, we have developed a polyethylene glycol-based macromolecular prodrug (ZSJ-0228) of dexamethasone, which self-assembles into micelles in aqueous media. When compared to the dose equivalent daily dexamethasone 21-phosphate disodium (Dex) treatment, monthly intravenous administration of ZSJ-0228 for two months significantly improved the survival of lupus-prone NZB/W F1 mice and was much more effective in normalizing proteinuria, with clear histological evidence of nephritis resolution. Different from the dose equivalent daily Dex treatment, monthly ZSJ-0228 administration has no impact on the serum anti-double-stranded DNA (anti-dsDNA) antibody level but can significantly reduce renal immune complex deposition. No significant systemic toxicities of GCs ( e. g., total IgG reduction, adrenal gland atrophy, and osteopenia) were found to be associated with ZSJ-0228 treatment. In vivo imaging and flow cytometry studies revealed that the fluorescent-labeled ZSJ-0228 primarily distributed to the inflamed kidney after systemic administration, with renal myeloid cells and proximal tubular epithelial cells mainly responsible for its kidney retention. Collectively, these data suggest that the ZSJ-0228's potent local anti-inflammatory/immunosuppressive effects and improved safety may be attributed to its nephrotropicity and cellular sequestration at the inflamed kidney tissues. Pending further optimization, it may be developed into an effective and safe therapy for improved clinical management of LN.
Collapse
Affiliation(s)
- Zhenshan Jia
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaobei Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xin Wei
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Gang Zhao
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Kirk W. Foster
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Fang Qiu
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Yangyang Gao
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Fang Yuan
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Fang Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Geoffrey M. Thiele
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Tatiana K. Bronich
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - James R. O’Dell
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Dong Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| |
Collapse
|
5
|
Burton TP, Callanan A. A Non-woven Path: Electrospun Poly(lactic acid) Scaffolds for Kidney Tissue Engineering. Tissue Eng Regen Med 2018; 15:301-310. [PMID: 30603555 PMCID: PMC6171675 DOI: 10.1007/s13770-017-0107-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/15/2017] [Accepted: 12/03/2017] [Indexed: 01/26/2023] Open
Abstract
Chronic kidney disease is a major global health problem affecting millions of people; kidney tissue engineering provides an opportunity to better understand this disease, and has the capacity to provide a cure. Two-dimensional cell culture and decellularised tissue have been the main focus of this research thus far, but despite promising results these methods are not without their shortcomings. Polymer fabrication techniques such as electrospinning have the potential to provide a non-woven path for kidney tissue engineering. In this experiment we isolated rat primary kidney cells which were seeded on electrospun poly(lactic acid) scaffolds. Our results showed that the scaffolds were capable of sustaining a multi-population of kidney cells, determined by the presence of: aquaporin-1 (proximal tubules), aquaporin-2 (collecting ducts), synaptopodin (glomerular epithelia) and von Willebrand factor (glomerular endothelia cells), viability of cells appeared to be unaffected by fibre diameter. The ability of electrospun polymer scaffold to act as a conveyor for kidney cells makes them an ideal candidate within kidney tissue engineering; the non-woven path provides benefits over decellularised tissue by offering a high morphological control as well as providing superior mechanical properties with degradation over a tuneable time frame.
Collapse
Affiliation(s)
- Todd P. Burton
- Institute of Bioengineering, School of Engineering, The University of Edinburgh, Faraday Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL UK
| | - Anthony Callanan
- Institute of Bioengineering, School of Engineering, The University of Edinburgh, Faraday Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL UK
| |
Collapse
|
6
|
Weber HM, Tsurkan MV, Magno V, Freudenberg U, Werner C. Heparin-based hydrogels induce human renal tubulogenesis in vitro. Acta Biomater 2017; 57:59-69. [PMID: 28526628 DOI: 10.1016/j.actbio.2017.05.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 12/01/2022]
Abstract
Dialysis or kidney transplantation is the only therapeutic option for end stage renal disease. Accordingly, there is a large unmet clinical need for new causative therapeutic treatments. Obtaining robust models that mimic the complex nature of the human kidney is a critical step in the development of new therapeutic strategies. Here we establish a synthetic in vitro human renal tubulogenesis model based on a tunable glycosaminoglycan-hydrogel platform. In this system, renal tubulogenesis can be modulated by the adjustment of hydrogel mechanics and degradability, growth factor signaling, and the presence of insoluble adhesion cues, potentially providing new insights for regenerative therapy. Different hydrogel properties were systematically investigated for their ability to regulate renal tubulogenesis. Hydrogels based on heparin and matrix metalloproteinase cleavable peptide linker units were found to induce the morphogenesis of single human proximal tubule epithelial cells into physiologically sized tubule structures. The generated tubules display polarization markers, extracellular matrix components, and organic anion transport functions of the in vivo renal proximal tubule and respond to nephrotoxins comparable to the human clinical response. The established hydrogel-based human renal tubulogenesis model is thus considered highly valuable for renal regenerative medicine and personalized nephrotoxicity studies. STATEMENT OF SIGNIFICANCE The only cure for end stage kidney disease is kidney transplantation. Hence, there is a huge need for reliable human kidney models to study renal regeneration and establish alternative treatments. Here we show the development and application of an in vitro human renal tubulogenesis model using heparin-based hydrogels. To the best of our knowledge, this is the first system where human renal tubulogenesis can be monitored from single cells to physiologically sized tubule structures in a tunable hydrogel system. To validate the efficacy of our model as a drug toxicity platform, a chemotherapy drug was incubated with the model, resulting in a drug response similar to human clinical pathology. The established model could have wide applications in the field of nephrotoxicity and renal regenerative medicine and offer a reliable alternative to animal models.
Collapse
Affiliation(s)
- Heather M Weber
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Mikhail V Tsurkan
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Valentina Magno
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.
| |
Collapse
|
7
|
Huling J, Yoo JJ. Comparing adult renal stem cell identification, characterization and applications. J Biomed Sci 2017; 24:32. [PMID: 28511675 PMCID: PMC5434527 DOI: 10.1186/s12929-017-0339-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022] Open
Abstract
Despite growing interest and effort, a consensus has yet to be reached in regards to the identification of adult renal stem cells. Organ complexity and low turnover of renal cells has made stem cell identification difficult and lead to the investigation of multiple possible populations. In this review, we summarize the work that has been done toward finding and characterizing an adult renal stem cell population. In addition to giving a general overview of what has been done, we aim to highlight the variation in methods and outcomes. The methods used to locate potential stem cell populations can vary widely, but even within the relatively standard practice of BrdU labeling of slowly dividing cells, there are significant differences in protocols and results. Additional diversity exists in cell marker profiles and apparent differentiation potential seen in potential stem cell sources. Cataloging the variety of methods and outcomes seen so far may help to streamline future investigation and stear the field toward consensus. But even without firmly defined populations, the application of renal stem cells holds tantalizing potential. Populations of highly proliferative, multipotent cells of renal origin show the ability to engraft in injured kidneys, mitigate functional loss and occasionally show the ability to generate nephrons de novo. The progress toward regenerative medicine applications is also summarized.
Collapse
Affiliation(s)
- Jennifer Huling
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, 27157, USA.
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, 27157, USA
| |
Collapse
|
8
|
King SM, Higgins JW, Nino CR, Smith TR, Paffenroth EH, Fairbairn CE, Docuyanan A, Shah VD, Chen AE, Presnell SC, Nguyen DG. 3D Proximal Tubule Tissues Recapitulate Key Aspects of Renal Physiology to Enable Nephrotoxicity Testing. Front Physiol 2017; 8:123. [PMID: 28337147 PMCID: PMC5340751 DOI: 10.3389/fphys.2017.00123] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/15/2017] [Indexed: 01/09/2023] Open
Abstract
Due to its exposure to high concentrations of xenobiotics, the kidney proximal tubule is a primary site of nephrotoxicity and resulting attrition in the drug development pipeline. Current pre-clinical methods using 2D cell cultures and animal models are unable to fully recapitulate clinical drug responses due to limited in vitro functional lifespan, or species-specific differences. Using Organovo's proprietary 3D bioprinting platform, we have developed a fully cellular human in vitro model of the proximal tubule interstitial interface comprising renal fibroblasts, endothelial cells, and primary human renal proximal tubule epithelial cells to enable more accurate prediction of tissue-level clinical outcomes. Histological characterization demonstrated formation of extensive microvascular networks supported by endogenous extracellular matrix deposition. The epithelial cells of the 3D proximal tubule tissues demonstrated tight junction formation and expression of renal uptake and efflux transporters; the polarized localization and function of P-gp and SGLT2 were confirmed. Treatment of 3D proximal tubule tissues with the nephrotoxin cisplatin induced loss of tissue viability and epithelial cells in a dose-dependent fashion, and cimetidine rescued these effects, confirming the role of the OCT2 transporter in cisplatin-induced nephrotoxicity. The tissues also demonstrated a fibrotic response to TGFβ as assessed by an increase in gene expression associated with human fibrosis and histological verification of excess extracellular matrix deposition. Together, these results suggest that the bioprinted 3D proximal tubule model can serve as a test bed for the mechanistic assessment of human nephrotoxicity and the development of pathogenic states involving epithelial-interstitial interactions, making them an important adjunct to animal studies.
Collapse
|
9
|
He M, Callanan A, Lagaras K, Steele JAM, Stevens MM. Optimization of SDS exposure on preservation of ECM characteristics in whole organ decellularization of rat kidneys. J Biomed Mater Res B Appl Biomater 2016; 105:1352-1360. [DOI: 10.1002/jbm.b.33668] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 11/12/2022]
Affiliation(s)
- M. He
- Department of Bioengineering; Imperial College London; London UK
- Department of Materials and Institute of Biomedical Engineering; Imperial College London; London UK
| | - A. Callanan
- Institute for BioEngineering (IBioE), School of Engineering, University of Edinburgh; Edinburgh UK
| | - K. Lagaras
- Department of Bioengineering; Imperial College London; London UK
- Department of Materials and Institute of Biomedical Engineering; Imperial College London; London UK
| | - J. A. M. Steele
- Department of Bioengineering; Imperial College London; London UK
- Department of Materials and Institute of Biomedical Engineering; Imperial College London; London UK
| | - M. M. Stevens
- Department of Bioengineering; Imperial College London; London UK
- Department of Materials and Institute of Biomedical Engineering; Imperial College London; London UK
| |
Collapse
|
10
|
Huling J, Ko IK, Atala A, Yoo JJ. Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts. Acta Biomater 2016; 32:190-197. [PMID: 26772527 DOI: 10.1016/j.actbio.2016.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/28/2015] [Accepted: 01/05/2016] [Indexed: 11/26/2022]
Abstract
Vascularization is among the most pressing technical challenges facing tissue engineering of 3D organs. While small engineered constructs can rely solely on vascular infiltration and diffusion from host tissues following implantation, larger avascular constructs do not survive long enough for vessel ingrowth to occur. To address this challenge, strategies for pre-vascularization of engineered constructs have been developed. Various biofabrication techniques have been utilized for pre-vascularization, but limitations exist with respect to the size and complexity of the resulting vessels. To this end, we developed a simple and novel fabrication method to create biomimetic microvascular scaffolds using vascular corrosion casting as a template for pre-vascularization of engineered tissue constructs. Gross and electron microscopic analysis demonstrates that polycaprolactone (PCL)-derived kidney vascular corrosion casts are able to capture the architecture of normal renal tissue and can serve as a sacrificial template for the creation of a collagen-based vascular scaffold. Histological analysis demonstrates that the collagen vascular scaffolds are biomimetic in structure and can be perfused, endothelialized, and embedded in hydrogel tissue constructs. Our scaffold creation method is simple, cost effective, and provides a biomimetic, tissue-specific option for pre-vascularization that is broadly applicable in tissue engineering. STATEMENT OF SIGNIFICANCE Tissues in the body are vascularized to provide nutrients to the cells within the tissues and carry away waste, but creating tissue engineered constructs with functional vascular networks has been challenging. Current biofabrication techniques can incorporate blood vessel-like structures with straight or simple branching patterns into tissue constructs. Unfortunately, these techniques are expensive, complicated and create simplified versions of the complex vessel structures seen in native tissue. Our technique uses novel vascular corrosion casts of normal tissue as templates to create vascular scaffolds that are a copy of normal vessels. These vascular scaffolds can be easily incorporated into 3D tissue constructs. Our process is simple, inexpensive and inherently tissue-specific, making it widely applicable in the field of tissue engineering.
Collapse
|
11
|
Hariharan K, Kurtz A, Schmidt-Ott KM. Assembling Kidney Tissues from Cells: The Long Road from Organoids to Organs. Front Cell Dev Biol 2015; 3:70. [PMID: 26618157 PMCID: PMC4641242 DOI: 10.3389/fcell.2015.00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022] Open
Abstract
The field of regenerative medicine has witnessed significant advances that can pave the way to creating de novo organs. Organoids of brain, heart, intestine, liver, lung and also kidney have been developed by directed differentiation of pluripotent stem cells. While the success in producing tissue-specific units and organoids has been remarkable, the maintenance of an aggregation of such units in vitro is still a major challenge. While cell cultures are maintained by diffusion of oxygen and nutrients, three- dimensional in vitro organoids are generally limited in lifespan, size, and maturation due to the lack of a vascular system. Several groups have attempted to improve vascularization of organoids. Upon transplantation into a host, ramification of blood supply of host origin was observed within these organoids. Moreover, sustained circulation allows cells of an in vitro established renal organoid to mature and gain functionality in terms of absorption, secretion and filtration. Thus, the coordination of tissue differentiation and vascularization within developing organoids is an impending necessity to ensure survival, maturation, and functionality in vitro and tissue integration in vivo. In this review, we inquire how the foundation of circulation is laid down during the course of organogenesis, with special focus on the kidney. We will discuss whether nature offers a clue to assist the generation of a nephro-vascular unit that can attain functionality even prior to receiving external blood supply from a host. We revisit the steps that have been taken to induce nephrons and provide vascularity in lab grown tissues. We also discuss the possibilities offered by advancements in the field of vascular biology and developmental nephrology in order to achieve the long-term goal of producing transplantable kidneys in vitro.
Collapse
Affiliation(s)
- Krithika Hariharan
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Andreas Kurtz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin BerlinBerlin, Germany
- College of Veterinary Medicine, Seoul National UniversitySeoul, South Korea
| | - Kai M. Schmidt-Ott
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin BerlinBerlin, Germany
- Department of Nephrology, Charité- UniversitätsmedizinBerlin, Germany
- Max Delbrueck Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| |
Collapse
|
12
|
Webb CF, Ratliff ML, Powell R, Wirsig-Wiechmann CR, Lakiza O, Obara T. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures. Biochem Biophys Res Commun 2015; 463:1334-1340. [PMID: 26111446 DOI: 10.1016/j.bbrc.2015.06.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 12/21/2022]
Abstract
Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a-/- kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development.
Collapse
Affiliation(s)
- Carol F Webb
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michelle L Ratliff
- Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rebecca Powell
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Olga Lakiza
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tomoko Obara
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
13
|
Moradi M, Hood B, Moradi M, Atala A. The potential role of regenerative medicine in the man-agement of traumatic patients. J Inj Violence Res 2015; 7:27-35. [PMID: 25618439 PMCID: PMC4288293 DOI: 10.5249/jivr.v7i1.704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/13/2014] [Indexed: 11/10/2022] Open
Abstract
Traumatic injury represents the most common cause of death in ages 1 to 44 years and a significant proportion of patients treated in hospital emergency wards each year. Unfortunately, for patients who survive their injuries, survival is not equal to complete recovery. Many traumatic injuries are difficult to treat with conventional therapy and result in permanent disability. In such situations, regenerative medicine has the potential to play an important role in recovery of function. Regenerative medicine is a field that seeks to maintain or restore function with the development of biological substitutes for diseased or damaged tissues. Several regenerative approaches are currently under investigation, with a few achieving clinical application. For example, engineered skin has gained FDA approval, and more than 20 tissue engineered skin substitutes are now commercially available. Other organ systems with promising animal models and small human series include the central and peripheral nervous systems, the musculoskeletal system, the respiratory and genitourinary tracts, and others. This paper will be a clinically oriented review of the regenerative approaches currently under investigation of special interest to those caring for traumatic patients.
Collapse
Affiliation(s)
| | | | | | - Anthony Atala
- Department of Urology, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC,USA.
| |
Collapse
|
14
|
Junttila S, Saarela U, Halt K, Manninen A, Pärssinen H, Lecca MR, Brändli AW, Sims-Lucas S, Skovorodkin I, Vainio SJ. Functional genetic targeting of embryonic kidney progenitor cells ex vivo. J Am Soc Nephrol 2014; 26:1126-37. [PMID: 25201883 DOI: 10.1681/asn.2013060584] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/23/2014] [Indexed: 01/11/2023] Open
Abstract
The embryonic mammalian metanephric mesenchyme (MM) is a unique tissue because it is competent to generate the nephrons in response to Wnt signaling. An ex vivo culture in which the MM is separated from the ureteric bud (UB), the natural inducer, can be used as a classic tubule induction model for studying nephrogenesis. However, technological restrictions currently prevent using this model to study the molecular genetic details before or during tubule induction. Using nephron segment-specific markers, we now show that tubule induction in the MM ex vivo also leads to the assembly of highly segmented nephrons. This induction capacity was reconstituted when MM tissue was dissociated into a cell suspension and then reaggregated (drMM) in the presence of human recombinant bone morphogenetic protein 7/human recombinant fibroblast growth factor 2 for 24 hours before induction. Growth factor-treated drMM also recovered the capacity for organogenesis when recombined with the UB. Cell tracking and time-lapse imaging of chimeric drMM cultures indicated that the nephron is not derived from a single progenitor cell. Furthermore, viral vector-mediated transduction of green fluorescent protein was much more efficient in dissociated MM cells than in intact mesenchyme, and the nephrogenic competence of transduced drMM progenitor cells was preserved. Moreover, drMM cells transduced with viral vectors mediating Lhx1 knockdown were excluded from the nephric tubules, whereas cells transduced with control vectors were incorporated. In summary, these techniques allow reproducible cellular and molecular examinations of the mechanisms behind nephrogenesis and kidney organogenesis in an ex vivo organ culture/organoid setting.
Collapse
Affiliation(s)
- Sanna Junttila
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kimmo Halt
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Aki Manninen
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heikki Pärssinen
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M Rita Lecca
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - André W Brändli
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany; and
| | - Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ilya Skovorodkin
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland;
| |
Collapse
|
15
|
Nowacki M, Kloskowski T, Pokrywczyńska M, Nazarewski Ł, Jundziłł A, Pietkun K, Tyloch D, Rasmus M, Warda K, Habib SL, Drewa T. Is regenerative medicine a new hope for kidney replacement? J Artif Organs 2014; 17:123-34. [DOI: 10.1007/s10047-014-0767-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/01/2014] [Indexed: 12/24/2022]
|
16
|
Aggarwal S, Moggio A, Bussolati B. Concise review: stem/progenitor cells for renal tissue repair: current knowledge and perspectives. Stem Cells Transl Med 2013; 2:1011-9. [PMID: 24167320 DOI: 10.5966/sctm.2013-0097] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The kidney is a specialized low-regenerative organ with several different types of cellular lineages; however, the identity of renal stem/progenitor cells with nephrogenic potential and their preferred niche(s) are largely unknown and debated. Most of the therapeutic approaches to kidney regeneration are based on administration of cells proven to enhance intrinsic reparative capabilities of the kidney. Endogenous or exogenous cells of different sources were tested in rodent models of ischemia-reperfusion, acute kidney injury, or chronic disease. The translation to clinics is at the moment focused on the role of mesenchymal stem cells. In addition, bioproducts from stem/progenitor cells, such as extracellular vesicles, are likely a new promising approach for reprogramming resident cells. This concise review reports the current knowledge about resident or exogenous stem/progenitor populations and their derived bioproducts demonstrating therapeutic effects in kidney regeneration upon injury. In addition, possible approaches to nephrogenesis and organ generation using organoids, decellularized kidneys, and blastocyst complementation are surveyed.
Collapse
Affiliation(s)
- Shikhar Aggarwal
- Department of Molecular Biotechnology and Life Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | | |
Collapse
|
17
|
Sekiya S, Sachiko S, Shimizu T, Yamato M, Okano T. Hormone supplying renal cell sheet in vivo produced by tissue engineering technology. Biores Open Access 2013; 2:12-9. [PMID: 23514782 PMCID: PMC3569960 DOI: 10.1089/biores.2012.0296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regenerative medicine is a new medical field and is expected to have a profoundly positive effect in curing difficult-to-treat diseases. Cell sheet fabrication is an important tissue engineering technology used in regenerative medicine. This study investigated the creation of a hormone-releasing tissue using cell sheet technology, which could be utilized in future therapy for chronic renal disease. Renal cell sheets were fabricated on a temperature-responsive cell culture surface with primary renal cells from adult porcine kidney. These sheets contained various kinds of renal cells that showed cyst-like formation. An important renal function is the synthesis of 1,25-dihydroxyvitamin D3, and this was confirmed in the cell sheets in vitro. Erythropoietin (EPO) production is another important renal function. This ability was also observed in the renal cell sheets in vitro, and then again after transplantation in a nude rat. In particular, the relative expression of EPO mRNA increased more under cell sheet culture conditions compared with exponential cell growth conditions. Histological analysis of the implanted renal cell sheets showed them to be Dolichos biflorus agglutinin-positive and to have regenerated renal tubular-like morphology. These results indicated that both functional and morphological regenerative renal tissues were fabricated by cell sheet technology. This study introduces a hormone-supplying treatment for renal dysfunctional diseases using engineered renal tissues. Moreover, since our renal cell sheets developed renal tubular-like structures in vivo, it holds promise for fabricating artificially engineered true renal tissue in the future.
Collapse
Affiliation(s)
- Sachiko Sekiya
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | | | | | | | | |
Collapse
|
18
|
Wang HJ, Varner A, AbouShwareb T, Atala A, Yoo JJ. Ischemia/reperfusion-induced renal failure in rats as a model for evaluating cell therapies. Ren Fail 2012; 34:1324-32. [PMID: 23030045 DOI: 10.3109/0886022x.2012.725292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic renal failure is a devastating disease that leads to a multitude of complications. Cell therapy has emerged as a potential treatment modality for renal failure. However, efficacy testing on systemic renal function has been challenging due to the limited availability of reliable models that are fully characterized. In this study, we investigated the possibility of using renal ischemia/reperfusion (I/R) injury as a viable model for testing cell therapies. We examined functional and pathological changes in rat kidneys that were exposed to different ischemia times. Male Lewis rats were divided into five groups. Renal failure was induced by clamping both renal pedicles for combinations of 60, 75, and 90 min, followed by reperfusion. Age-matched healthy rats served as controls. Blood was collected at regular intervals for serum chemistry, and kidneys were harvested at the same intervals for histomorphological assessment. Serum creatinine levels of the animals with I/R injury increased significantly after 3 days and returned to normal levels at 4 weeks. Histologically, kidney tissue showed progressive glomerular and tubular deterioration with varying degrees of fibrosis. Animals exposed to 75- and 90-min ischemia combination times consistently generated more severe injury than the 60-min ischemia period. However, these groups resulted in a high mortality rate. A model in which one kidney is exposed to a shorter ischemia time (60 or 90 min) resulted in sustained renal damage with a lower mortality rate. This study shows that kidneys exposed to I/R result in renal tissue damage as well as decreased renal function. This model can be used to study both the short-term and longer-term effects of kidney disease by varying the length of the ischemic time. In particular, the use of longer ischemic times (75 and 90 min) could be used to study new therapies for acute renal disease, whereas shorter ischemic times (60 min) could be used to study therapies for chronic renal insufficiency.
Collapse
Affiliation(s)
- Hung-Jen Wang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | | | | | | | | |
Collapse
|
19
|
Gyabaah K, Aboushwareb T, Guimaraes Souza N, Yamaleyeva L, Varner A, Wang HJ, Atala A, Yoo JJ. Controlled regulation of erythropoietin by primary cultured renal cells for renal failure induced anemia. J Urol 2012; 188:2000-6. [PMID: 22999549 DOI: 10.1016/j.juro.2012.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Indexed: 11/19/2022]
Abstract
PURPOSE Renal failure induced anemia develops as a result of inadequate production of erythropoietin, which is the primary regulator of red blood cell production. We previously noted that culture expanded primary renal cells stably express erythropoietin and suggested that these cells may be used as a potential treatment for renal failure induced anemia. We investigated whether these cells are able to regulate erythropoietin expression in a controlled manner under different oxygen and environmental conditions. MATERIALS AND METHODS Primary rat renal cells were exposed to different hypoxic (0.1% to 1% O(2)) and normoxic environments. Erythropoietin expression was assessed using reverse transcriptase-polymerase chain reaction. Erythropoietin production was measured in culture medium using Meso Scale Discovery® assays. Results were plotted to compare different levels of production to the control. RESULTS Cultured renal cells expressed high levels of erythropoietin under hypoxia for up to 24 hours with a gradual decrease thereafter. However, erythropoietin expression was decreased when cells were switched from a hypoxic to a normoxic environment within the initial 24 hours. This indicated that cultured renal cells have the capacity to sense environmental oxygen tension and regulate erythropoietin expression accordingly. In addition, erythropoietin release in medium followed a pattern similar to that of gene expression under normoxic and hypoxic conditions. CONCLUSIONS These findings indicate that primary renal cells have the ability to regulate erythropoietin gene expression and release through environment dependent mechanisms. This also suggests that with further study the possibility exists of developing these cells as a potential method to treat renal failure induced anemia.
Collapse
Affiliation(s)
- Kenneth Gyabaah
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Basu J, Ludlow JW. Developmental engineering the kidney: leveraging principles of morphogenesis for renal regeneration. ACTA ACUST UNITED AC 2012; 96:30-8. [PMID: 22457175 DOI: 10.1002/bdrc.20224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple methodological approaches are currently under active development for application in tissue engineering and regenerative medicine of tubular and solid organs. Most recently, developmental engineering (TE/RM), or the leveraging of embryonic and morphological paradigms to recapitulate aspects of organ development, has been proposed as a strategy for the sequential, iterative de novo assembly of tissues and organs as discrete developmental modules ex vivo, prior to implantation in vivo. In this article, we focus on the kidney to highlight in detail how principles of developmental biology are impacting approaches to TE of this complex solid organ. Ultimately, such methodologies may facilitate the establishment of clinically relevant therapeutic strategies for regeneration of renal structure and function, greatly impacting treatment regimens for chronic kidney disease.
Collapse
Affiliation(s)
- Joydeep Basu
- Tengion, Inc., Winston-Salem, North Carolina 27103, USA. joydeep.
| | | |
Collapse
|
21
|
Ross EA, Abrahamson DR, St John P, Clapp WL, Williams MJ, Terada N, Hamazaki T, Ellison GW, Batich CD. Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis 2012; 8:49-55. [PMID: 22692231 DOI: 10.4161/org.20209] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION To address transplant organ shortage, a promising strategy is to decellularize kidneys in a manner that the scaffold retains signals for seeded pluripotent precursor cells to differentiate and recapitulate native structures: matrix-to-cell signaling followed by cell-cell and cell-matrix interactions, thereby remodeling and replacing the original matrix. This would reduce scaffold antigenicity and enable xeno-allografts. RESULTS DAPI-labeled cells in arterial vessels and glomeruli were positive for both endothelial lineage markers, BsLB4 and VEGFR2. Rat scaffold's basement membrane demonstrated immunolabeling with anti-mouse laminin β1. Labeling intensified over time with 14 day incubations. CONCLUSION We provide new evidence for matrix-to-cell signaling in acellular whole organ scaffolds that induces differentiation of pluripotent precursor cells to endothelial lineage. Production of mouse basement membrane supports remodeling of host (rat)-derived scaffolds and thereby warrants further investigation as a promising approach for xenotransplantation. METHODS We previously showed that murine embryonic stem cells arterially seeded into acellular rat whole kidney scaffolds multiply and demonstrate morphologic, immunohistochemical and gene expression evidence for differentiation. Vascular cell endothelialization was now further tested by endothelial specific BsLB4 lectin and anti-VEGFR2 (Flk1) antibodies. Remodeling of the matrix basement membranes from rat to mouse ("murinization") was assessed by a monoclonal antibody specific for mouse laminin β1 chain.
Collapse
Affiliation(s)
- Edward A Ross
- Division of Nephrology, Hypertension and Renal Transplantation; University of Florida, Gainesville, FL USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Guimaraes-Souza NK, Yamaleyeva LM, AbouShwareb T, Atala A, Yoo JJ. In vitro reconstitution of human kidney structures for renal cell therapy. Nephrol Dial Transplant 2012; 27:3082-90. [PMID: 22287659 DOI: 10.1093/ndt/gfr785] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Recent advances in cell therapies have provided potential opportunities for the treatment of chronic kidney diseases (CKDs). We investigated whether human kidney structures could be preformed in vitro for subsequent implantation in vivo to maximize tissue-forming efficiency. METHODS Human renal cells were isolated from unused donor kidneys. Human renal cells were cultured and expanded. Migration was analyzed using growth factors. To form structures, cells were placed in a three-dimensional culture system. Cells were characterized by immunofluorescence, western blots and fluorescence-activated cell sorting using renal cell-specific markers for podocin, proximal and distal tubules and collecting ducts. An albumin uptake assay was used to analyze function. Three-dimensional cultures were implanted into athymic rat kidneys to evaluate survival. RESULTS Human renal cells were effectively expanded in culture and retained their phenotype, migration ability and albumin uptake functions. Human renal cell in three-dimensional culture-formed tubules, which stained positively for proximal, distal tubule and collecting duct markers, and this was confirmed by western blot. Polarity of the tubular cells was determined by the presence of E-cadherin, N-cadherin and Na-K ATPase. Colocalization of labeled albumin and proximal tubule markers proved functionality and specificity of the newly formed tubules. An in vivo study showed that cells survived in the kidney for up to 6 weeks. CONCLUSIONS These findings demonstrate that human renal cell grown in three-dimensional culture are able to generate kidney structures in vitro. This system may ultimately be developed into an efficient cell-based therapy for patients with CKD.
Collapse
Affiliation(s)
- Nadia K Guimaraes-Souza
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston Salem, NC, USA
| | | | | | | | | |
Collapse
|
23
|
Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Renal tissue engineering with decellularized rhesus monkey kidneys: age-related differences. Tissue Eng Part A 2011; 17:2891-901. [PMID: 21902603 DOI: 10.1089/ten.tea.2010.0714] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
New therapies for severely damaged kidneys are needed due to limited regenerative capacity and organ donor shortages. The goal of this study was to repopulate decellularized kidney sections in vitro and to determine the impact of donor age on recellularization. This was addressed by generating decellularized kidney scaffolds from fetal, juvenile, and adult rhesus monkey kidney sections using a procedure that removes cellular components while preserving the structural and functional properties of the native extracellular matrix (ECM). Kidney scaffolds were recellularized using explants from different age groups (fetal, juvenile, adult) and fetal renal cell fractions. Results showed vimentin+ cytokeratin+ calbindin+ cell infiltration and organization around the scaffold ECM. The extent of cellular repopulation was greatest with scaffolds from the youngest donors, and with seeding of mixed fetal renal aggregates that formed tubular structures within the kidney scaffolds. These findings suggest that decellularized kidney sections from different age groups can be effectively repopulated with donor cells and the age of the donor is a critical factor in repopulation efficiency.
Collapse
Affiliation(s)
- Karina H Nakayama
- Center of Excellence in Translational Human Stem Cell Research, California National Primate Research Center, University of California, Davis, California 95616-8542, USA
| | | | | | | |
Collapse
|
24
|
Buzhor E, Harari-Steinberg O, Omer D, Metsuyanim S, Jacob-Hirsch J, Noiman T, Dotan Z, Goldstein RS, Dekel B. Kidney spheroids recapitulate tubular organoids leading to enhanced tubulogenic potency of human kidney-derived cells. Tissue Eng Part A 2011; 17:2305-19. [PMID: 21542667 DOI: 10.1089/ten.tea.2010.0595] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell-based approaches utilizing autologous human renal cells require their isolation, expansion in vitro, and reintroduction back into the host for renal tissue regeneration. Nevertheless, human kidney epithelial cells (hKEpCs) lose their phenotype, dedifferentiate, and assume the appearance of fibroblasts after relatively few passages in culture. We hypothesized that growth conditions may influence hKEpC phenotype and function. hKEpCs retrieved from human nephrectomy tissue samples showed the ability to reproducibly form kidney spheres when grown in suspension culture developed in nonadherent conditions. Genetic labeling and time-lapse microscopy indicated, at least in part, the aggregation of hKEpCs into 3D spheroids rather than formation of pure clonally expanded spheres. Characterization of hKEpC spheroids by real-time polymerase chain reaction and FACS analysis showed upregulation of some renal developmental and "stemness" markers compared with monolayer and mostly an EpCAM(+)CD24(+)CD133(+)CD44(+) spheroid cell phenotype. Oligonucleotide microarrays, which were used to identify global transcriptional changes accompanying spheroid formation, showed predominantly upregulation of cell matrix/cell contact molecules and cellular biogenesis processes and downregulation of cell cycle, growth, and locomotion. Accordingly, hKEpC spheroids slowly proliferated as indicated by low Ki-67 staining, but when grafted in low cell numbers onto the chorioallantoic membrane (CAM) of the chick embryo, they exclusively reconstituted various renal tubular epithelia. Moreover, efficient generation of kidney spheroids was observed after long-term monolayer culture resulting in reestablishment of tubulogenic capacity upon CAM grafting. Thus, generation of a tubular organoid in hKEpC spheroids may provide a functional benefit for kidney-derived cells in vivo.
Collapse
Affiliation(s)
- Ella Buzhor
- Sheba Medical Center, Pediatric Stem Cell Research Institute, Edmond and Lili Safra Children's Hospital, Tel Hashomer, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
From kidney development to drug delivery and tissue engineering strategies in renal regenerative medicine. J Control Release 2011; 152:177-85. [DOI: 10.1016/j.jconrel.2011.01.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/28/2011] [Indexed: 01/05/2023]
|
26
|
Feil G, Daum L, Amend B, Maurer S, Renninger M, Vaegler M, Seibold J, Stenzl A, Sievert KD. From tissue engineering to regenerative medicine in urology--the potential and the pitfalls. Adv Drug Deliv Rev 2011; 63:375-8. [PMID: 21167237 DOI: 10.1016/j.addr.2010.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/01/2010] [Accepted: 12/07/2010] [Indexed: 01/18/2023]
Abstract
Tissue engineering is a promising technique for the development of biological substitutes that can restore, maintain, or improve tissue function. The creation of human tissue-engineered products, generated of autologous somatic cells or adult stem cells with or without seeding of biocompatible matrices is a vision to resolve the lack of tissues and organs for transplantation and to offer new options for reconstructive surgery. Tissue engineering in urology aims at the reconstruction of the urinary tract by creating anatomically and functionally equal tissue. It is a rapidly evolving field in basic research and the transfer into the clinic has yet to be realized. Necessary steps from bench to bed are the proof of principle in animal models and the proof of concept in clinical trials following good manufacturing practice and ethical and legal requirements for human tissue-engineered products. Up to now, obstacles still occur in the neovascularization of implants and ingrowth of nerves in vivo. Moreover the harvesting of mesenchymal stem cells out of bone marrow as well as the explant of urothelial cells yet demands rather invasive surgery to achieve a successful outcome. Thus, other cell sources and harvesting techniques like placenta and adipose tissue for mesenchymal stem cells and bladder irrigation for urothelial cells require closer investigation.
Collapse
|
27
|
Perin L, Da Sacco S, De Filippo RE. Regenerative medicine of the kidney. Adv Drug Deliv Rev 2011; 63:379-87. [PMID: 21145933 DOI: 10.1016/j.addr.2010.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/23/2010] [Accepted: 12/01/2010] [Indexed: 01/19/2023]
Abstract
End stage renal disease is a major health problem in this country and worldwide. Although dialysis and kidney transplantation are currently used to treat this condition, kidney regeneration resulting in complete healing would be a desirable alternative. In this review we focus our attention on current therapeutic approaches used clinically to delay the onset of kidney failure. In addition we describe novel approaches, like Tissue Engineering, Stem cell Applications, Gene Therapy, and Renal Replacement Therapy that may one day be possible alternative therapies for patients with the hope of delaying kidney failure or even stopping the progression of renal disease.
Collapse
|
28
|
Presnell SC, Bruce AT, Wallace SM, Choudhury S, Genheimer CW, Cox B, Guthrie K, Werdin ES, Tatsumi-Ficht P, Ilagan RM, Kelley RW, Rivera EA, Ludlow JW, Wagner BJ, Jayo MJ, Bertram TA. Isolation, Characterization, and Expansion Methods for Defined Primary Renal Cell Populations from Rodent, Canine, and Human Normal and Diseased Kidneys. Tissue Eng Part C Methods 2011; 17:261-73. [DOI: 10.1089/ten.tec.2010.0399] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sharon C. Presnell
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Andrew T. Bruce
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Shay M. Wallace
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Sumana Choudhury
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | | | - Bryan Cox
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Kelly Guthrie
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Eric S. Werdin
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Patricia Tatsumi-Ficht
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Roger M. Ilagan
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Russell W. Kelley
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Elias A. Rivera
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - John W. Ludlow
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Belinda J. Wagner
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Manuel J. Jayo
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Timothy A. Bertram
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| |
Collapse
|
29
|
Saxena AK. Congenital Anomalies of Soft Tissues: Birth Defects Depending on Tissue Engineering Solutions and Present Advances in Regenerative Medicine. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:455-66. [DOI: 10.1089/ten.teb.2009.0700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Amulya K. Saxena
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
30
|
Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 2010; 16:2207-16. [PMID: 20156112 DOI: 10.1089/ten.tea.2009.0602] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The goal of this study was the production of a decellularized kidney scaffold with structural, mechanical, and physiological properties necessary for engineering basic renal structures in vitro. Fetal, infant, juvenile, and adult rhesus monkey kidney sections were treated with either 1% (v/v) sodium dodecyl sulfate or Triton X-100 followed by quantitative and qualitative analysis. Comparison of decellularization agents and incubation temperatures demonstrated sodium dodecyl sulfate at 4 degrees C to be most effective in preserving the native architecture. Hematoxylin and eosin staining confirmed the removal of cellular material, and immunohistochemistry demonstrated preservation of native expression patterns of extracellular matrix proteins, including heparan sulfate proteoglycan, fibronectin, collagen types I and IV, and laminin. Biomechanical testing revealed a decrease in the compressive modulus of decellularized compared to fresh kidneys. Layering of fetal kidney explants on age-matched decellularized kidney scaffolds demonstrated the capacity of the scaffold to support Pax2+/vimentin+ cell attachment and migration to recellularize the scaffold. These findings demonstrate that decellularized kidney sections retain critical structural and functional properties necessary for use as a three-dimensional scaffold and promote cellular repopulation. Further, this study provides the initial steps in developing new regenerative medicine strategies for renal tissue engineering and repair.
Collapse
Affiliation(s)
- Karina H Nakayama
- Center of Excellence in Translational Human Stem Cell Research, California National Primate Research Center, Davis, California 95616-8542, USA
| | | | | | | |
Collapse
|
31
|
Kelley R, Werdin ES, Bruce AT, Choudhury S, Wallace SM, Ilagan RM, Cox BR, Tatsumi-Ficht P, Rivera EA, Spencer T, Rapoport HS, Wagner BJ, Guthrie K, Jayo MJ, Bertram TA, Presnell SC. Tubular cell-enriched subpopulation of primary renal cells improves survival and augments kidney function in rodent model of chronic kidney disease. Am J Physiol Renal Physiol 2010; 299:F1026-39. [PMID: 20826573 DOI: 10.1152/ajprenal.00221.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Established chronic kidney disease (CKD) may be identified by severely impaired renal filtration that ultimately leads to the need for dialysis or kidney transplant. Dialysis addresses only some of the sequelae of CKD, and a significant gap persists between patients needing transplant and available organs, providing impetus for development of new CKD treatment modalities. Some postulate that CKD develops from a progressive imbalance between tissue damage and the kidney's intrinsic repair and regeneration processes. In this study we evaluated the effect of kidney cells, delivered orthotopically by intraparenchymal injection to rodents 4-7 wk after CKD was established by two-step 5/6 renal mass reduction (NX), on the regeneration of kidney function and architecture as assessed by physiological, tissue, and molecular markers. A proof of concept for the model, cell delivery, and systemic effect was demonstrated with a heterogeneous population of renal cells (UNFX) that contained cells from all major compartments of the kidney. Tubular cells are known contributors to kidney regeneration in situ following acute injury. Initially tested as a control, a tubular cell-enriched subpopulation of UNFX (B2) surprisingly outperformed UNFX. Two independent studies (3 and 6 mo in duration) with B2 confirmed that B2 significantly extended survival and improved renal filtration (serum creatinine and blood urea nitrogen). The specificity of B2 effects was verified by direct comparison to cell-free vehicle controls and an equivalent dose of non-B2 cells. Quantitative histological evaluation of kidneys at 6 mo after treatment confirmed that B2 treatment reduced severity of kidney tissue pathology. Treatment-associated reduction of transforming growth factor (TGF)-β1, plasminogen activator inhibitor (PAI)-1, and fibronectin (FN) provided evidence that B2 cells attenuated canonical pathways of profibrotic extracellular matrix production.
Collapse
Affiliation(s)
- Rusty Kelley
- Tengion, Inc., 3929 Westpoint Blvd., Suite G, Winston-Salem, NC 27103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Saxena AK. Tissue engineering and regenerative medicine research perspectives for pediatric surgery. Pediatr Surg Int 2010; 26:557-73. [PMID: 20333389 DOI: 10.1007/s00383-010-2591-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2010] [Indexed: 01/28/2023]
Abstract
Tissue engineering and regenerative medicine research is being aggressively pursued in attempts to develop biological substitutes to replace lost tissue or organs. Remarkable degrees of success have been achieved in the generation of a variety of tissues and organs as a result of concerted contributions by multidisciplinary groups in the field of biotechnology. Engineering of an organ is a complex process which is initiated by appropriate sourcing of cells and their controlled proliferation to achieve critical numbers for seeding on biodegradable scaffolds in order to create cell-scaffold constructs, which are thereafter maintained in bioreactors to generate tissues identical to those required for replacement. Extensive efforts in understanding the characteristics of cells and their interaction with specifically tailored scaffolds holds the key to their attachment, controlled proliferation and differentiation, intercommunication, and organization to form tissues. The demand for tissue-engineered organs is enormous and this technology holds the promise to supply customized organs to overcome the severe shortages that are currently faced by the pediatric patient, especially due to organ-size mismatch. The contemporary state of tissue-engineering technology presented in this review summarizes the advances in the various areas of regenerative medicine and addresses issues that are associated with its future implementation in the pediatric surgical patient.
Collapse
Affiliation(s)
- Amulya K Saxena
- Experimental Fetal Surgery and Tissue Engineering Unit, Department of Pediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz-34, 8036, Graz, Austria.
| |
Collapse
|