1
|
Pina JM, Hernandez LA, Keppetipola NM. Polypyrimidine tract binding proteins PTBP1 and PTBP2 interact with distinct proteins under splicing conditions. PLoS One 2022; 17:e0263287. [PMID: 35113929 PMCID: PMC8812845 DOI: 10.1371/journal.pone.0263287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
RNA binding proteins play an important role in regulating alternative pre-mRNA splicing and in turn cellular gene expression. Polypyrimidine tract binding proteins, PTBP1 and PTBP2, are paralogous RNA binding proteins that play a critical role in the process of neuronal differentiation and maturation; changes in the concentration of PTBP proteins during neuronal development direct splicing changes in many transcripts that code for proteins critical for neuronal differentiation. How the two related proteins regulate different sets of neuronal exons is unclear. The distinct splicing activities of PTBP1 and PTBP2 can be recapitulated in an in vitro splicing system with the differentially regulated N1 exon of the c-src pre-mRNA. Here, we conducted experiments under these in vitro splicing conditions to identify PTBP1 and PTBP2 interacting partner proteins. Our results highlight that both PTBPs interact with proteins that participate in chromatin remodeling and transcription regulation. Our data reveal that PTBP1 interacts with many proteins involved in mRNA processing including splicing regulation while PTBP2 does not. Our results also highlight enzymes that can serve as potential "writers" and "erasers" in adding chemical modifications to the PTB proteins. Overall, our study highlights important differences in protein-protein interactions between the PTBP proteins under splicing conditions and supports a role for post-translational modifications in dictating their distinct splicing activities.
Collapse
Affiliation(s)
- Jeffrey M. Pina
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA, United States of America
| | - Luis A. Hernandez
- Department of Biological Sciences, California State University Fullerton, Fullerton, CA, United States of America
| | - Niroshika M. Keppetipola
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA, United States of America
- * E-mail:
| |
Collapse
|
2
|
Feng S, Ma S, Li K, Gao S, Ning S, Shang J, Guo R, Chen Y, Blumenfeld B, Simon I, Li Q, Guo R, Xu D. RIF1-ASF1-mediated high-order chromatin structure safeguards genome integrity. Nat Commun 2022; 13:957. [PMID: 35177609 PMCID: PMC8854732 DOI: 10.1038/s41467-022-28588-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/01/2022] [Indexed: 11/12/2022] Open
Abstract
The 53BP1-RIF1 pathway antagonizes resection of DNA broken ends and confers PARP inhibitor sensitivity on BRCA1-mutated tumors. However, it is unclear how this pathway suppresses initiation of resection. Here, we identify ASF1 as a partner of RIF1 via an interacting manner similar to its interactions with histone chaperones CAF-1 and HIRA. ASF1 is recruited to distal chromatin flanking DNA breaks by 53BP1-RIF1 and promotes non-homologous end joining (NHEJ) using its histone chaperone activity. Epistasis analysis shows that ASF1 acts in the same NHEJ pathway as RIF1, but via a parallel pathway with the shieldin complex, which suppresses resection after initiation. Moreover, defects in end resection and homologous recombination (HR) in BRCA1-deficient cells are largely suppressed by ASF1 deficiency. Mechanistically, ASF1 compacts adjacent chromatin by heterochromatinization to protect broken DNA ends from BRCA1-mediated resection. Taken together, our findings identify a RIF1-ASF1 histone chaperone complex that promotes changes in high-order chromatin structure to stimulate the NHEJ pathway for DSB repair. The 53BP1-RIF1 pathway is important for DNA repair. Here, the authors identified the histone chaperone ASF1, which functions as a suppressor of DNA end resection through changing high-order chromatin structure, as a partner of RIF1. This finding links DNA repair and dynamic changes of high-order chromatin structure.
Collapse
Affiliation(s)
- Sumin Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Sai Ma
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Kejiao Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Shengxian Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Shaokai Ning
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Jinfeng Shang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Ruiyuan Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Yingying Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Britny Blumenfeld
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, 91120, Israel
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, 91120, Israel
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Rong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
3
|
The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling. Nat Commun 2021; 12:4308. [PMID: 34262028 PMCID: PMC8280233 DOI: 10.1038/s41467-021-24631-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/10/2021] [Indexed: 01/13/2023] Open
Abstract
Hypoxia plays a critical role in tumor progression including invasion and metastasis. To determine critical genes regulated by hypoxia that promote invasion and metastasis, we screen fifty hypoxia inducible genes for their effects on invasion. In this study, we identify v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (MAFF) as a potent regulator of tumor invasion without affecting cell viability. MAFF expression is elevated in metastatic breast cancer patients and is specifically correlated with hypoxic tumors. Combined ChIP- and RNA-sequencing identifies IL11 as a direct transcriptional target of the heterodimer between MAFF and BACH1, which leads to activation of STAT3 signaling. Inhibition of IL11 results in similar levels of metastatic suppression as inhibition of MAFF. This study demonstrates the oncogenic role of MAFF as an activator of the IL11/STAT3 pathways in breast cancer. Hypoxia plays a critical role in tumor progression including invasion and metastasis. Here, the authors screened several hypoxia inducible genes and identified the oncogenic role of MAFF in breast cancer metastasis and that it activates IL11/STAT3 pathway.
Collapse
|
4
|
Mehibel M, Xu Y, Li CG, Moon EJ, Thakkar KN, Diep AN, Kim RK, Bloomstein JD, Xiao Y, Bacal J, Saldivar JC, Le QT, Cimprich KA, Rankin EB, Giaccia AJ. Eliminating hypoxic tumor cells improves response to PARP inhibitors in homologous recombination-deficient cancer models. J Clin Invest 2021; 131:146256. [PMID: 34060485 PMCID: PMC8266208 DOI: 10.1172/jci146256] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
Hypoxia, a hallmark feature of the tumor microenvironment, causes resistance to conventional chemotherapy, but was recently reported to synergize with poly(ADP-ribose) polymerase inhibitors (PARPis) in homologous recombination-proficient (HR-proficient) cells through suppression of HR. While this synergistic killing occurs under severe hypoxia (<0.5% oxygen), our study shows that moderate hypoxia (2% oxygen) instead promotes PARPi resistance in both HR-proficient and -deficient cancer cells. Mechanistically, we identify reduced ROS-induced DNA damage as the cause for the observed resistance. To determine the contribution of hypoxia to PARPi resistance in tumors, we used the hypoxic cytotoxin tirapazamine to selectively kill hypoxic tumor cells. We found that the selective elimination of hypoxic tumor cells led to a substantial antitumor response when used with PARPi compared with that in tumors treated with PARPi alone, without enhancing normal tissue toxicity. Since human breast cancers with BRAC1/2 mutations have an increased hypoxia signature and hypoxia reduces the efficacy of PARPi, then eliminating hypoxic tumor cells should enhance the efficacy of PARPi therapy.
Collapse
Affiliation(s)
- Manal Mehibel
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Yu Xu
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Caiyun G. Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Eui Jung Moon
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Kaushik N. Thakkar
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Anh N. Diep
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Ryan K. Kim
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Joshua D. Bloomstein
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Yiren Xiao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Julien Bacal
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Joshua C. Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Quynh-Thu Le
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Karlene A. Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Erinn B. Rankin
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
- Department of Obstetrics and Gynecology, Stanford University Medical Center, Stanford, California, USA
| | - Amato J. Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Suart CE, Perez AM, Al-Ramahi I, Maiuri T, Botas J, Truant R. Spinocerebellar Ataxia Type 1 protein Ataxin-1 is signaled to DNA damage by ataxia-telangiectasia mutated kinase. Hum Mol Genet 2021; 30:706-715. [PMID: 33772540 DOI: 10.1093/hmg/ddab074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 01/16/2023] Open
Abstract
Spinocerebellar Ataxia Type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the ataxin-1 protein. Recent genetic correlational studies have implicated DNA damage repair pathways in modifying the age at onset of disease symptoms in SCA1 and Huntington's Disease, another polyglutamine expansion disease. We demonstrate that both endogenous and transfected ataxin-1 localizes to sites of DNA damage, which is impaired by polyglutamine expansion. This response is dependent on ataxia-telangiectasia mutated (ATM) kinase activity. Further, we characterize an ATM phosphorylation motif within ataxin-1 at serine 188. We show reduction of the Drosophila ATM homolog levels in a ATXN1[82Q] Drosophila model through shRNA or genetic cross ameliorates motor symptoms. These findings offer a possible explanation as to why DNA repair was implicated in SCA1 pathogenesis by past studies. The similarities between the ataxin-1 and the huntingtin responses to DNA damage provide further support for a shared pathogenic mechanism for polyglutamine expansion diseases.
Collapse
Affiliation(s)
- Celeste E Suart
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Alma M Perez
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Tamara Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Juan Botas
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
The oncogenicity of tumor-derived mutant p53 is enhanced by the recruitment of PLK3. Nat Commun 2021; 12:704. [PMID: 33514736 PMCID: PMC7846773 DOI: 10.1038/s41467-021-20928-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
p53 mutations with single amino acid changes in cancer often lead to dominant oncogenic changes. Here, we have developed a mouse model of gain-of-function (GOF) p53-driven lung cancer utilizing conditionally active LSL p53-R172H and LSL K-Ras-G12D knock-in alleles that can be activated by Cre in lung club cells. Mutation of the p53 transactivation domain (TAD) (p53-L25Q/W26S/R172H) eliminating significant transactivation activity resulted in loss of tumorigenicity, demonstrating that transactivation mediated by or dependent on TAD is required for oncogenicity by GOF p53. GOF p53 TAD mutations significantly reduce phosphorylation of nearby p53 serine 20 (S20), which is a target for PLK3 phosphorylation. Knocking out PLK3 attenuated S20 phosphorylation along with transactivation and oncogenicity by GOF p53, indicating that GOF p53 exploits PLK3 to trigger its transactivation capability and exert oncogenic functions. Our data show a mechanistic involvement of PLK3 in mutant p53 pathway of oncogenesis. The mechanisms of how gain-of-function (GOF) mutant p53 drives carcinogenesis are unclear. Here, the authors show that a GOF mutant p53 requires its transactivation capability to induce mouse lung tumors and this is dependent on PLK3 phosphorylation of GOF mutant p53.
Collapse
|
7
|
Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers (Basel) 2020; 12:cancers12082051. [PMID: 32722390 PMCID: PMC7463900 DOI: 10.3390/cancers12082051] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.
Collapse
|
8
|
Li W, Bai X, Li J, Zhao Y, Liu J, Zhao H, Liu L, Ding M, Wang Q, Shi FY, Hou M, Ji J, Gao G, Guo R, Sun Y, Liu Y, Xu D. The nucleoskeleton protein IFFO1 immobilizes broken DNA and suppresses chromosome translocation during tumorigenesis. Nat Cell Biol 2019; 21:1273-1285. [DOI: 10.1038/s41556-019-0388-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/09/2019] [Indexed: 01/19/2023]
|
9
|
Abstract
Fanconi anemia (FA) is a disease of DNA repair characterized by bone marrow failure and a reduced ability to remove DNA interstrand cross-links. Here, we provide evidence that the FA protein FANCI also functions in ribosome biogenesis, the process of making ribosomes that initiates in the nucleolus. We show that FANCI localizes to the nucleolus and is functionally and physically tied to the transcription of pre-ribosomal RNA (pre-rRNA) and to large ribosomal subunit (LSU) pre-rRNA processing independent of FANCD2. While FANCI is known to be monoubiquitinated when activated for DNA repair, we find that it is predominantly in the deubiquitinated state in the nucleolus, requiring the nucleoplasmic deubiquitinase (DUB) USP1 and the nucleolar DUB USP36. Our model suggests a possible dual pathophysiology for FA that includes defects in DNA repair and in ribosome biogenesis.
Collapse
|
10
|
An OB-fold complex controls the repair pathways for DNA double-strand breaks. Nat Commun 2018; 9:3925. [PMID: 30254264 PMCID: PMC6156606 DOI: 10.1038/s41467-018-06407-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/03/2018] [Indexed: 12/29/2022] Open
Abstract
53BP1 with its downstream proteins, RIF1, PTIP and REV7, antagonizes BRCA1-dependent homologous recombination (HR) and promotes non-homologous end joining (NHEJ) in an unclear manner. Here we show that REV7 forms a complex with two proteins, FAM35A and C20ORF196. We demonstrate that FAM35A preferentially binds single-strand DNA (ssDNA) in vitro, and is recruited to DSBs as a complex with C20ORF196 and REV7 downstream of RIF1 in vivo. Epistasis analysis shows that both proteins act in the same pathway as RIF1 in NHEJ. The defects in HR pathway to repair DSBs and the reduction in resection of broken DNA ends in BRCA1-mutant cells can be largely suppressed by inactivating FAM35A or C20ORF196, indicating that FAM35A and C20ORF196 prevent end resection in these cells. Together, our data identified a REV7-FAM35A-C20ORF196 complex that binds and protects broken DNA ends to promote the NHEJ pathway for DSB repair.
Collapse
|
11
|
Gueiderikh A, Rosselli F, Neto JBC. A never-ending story: the steadily growing family of the FA and FA-like genes. Genet Mol Biol 2017; 40:398-407. [PMID: 28558075 PMCID: PMC5488462 DOI: 10.1590/1678-4685-gmb-2016-0213] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
Among the chromosome fragility-associated human syndromes that present cancer predisposition, Fanconi anemia (FA) is unique due to its large genetic heterogeneity. To date, mutations in 21 genes have been associated with an FA or an FA-like clinical and cellular phenotype, whose hallmarks are bone marrow failure, predisposition to acute myeloid leukemia and a cellular and chromosomal hypersensitivity to DNA crosslinking agents exposure. The goal of this review is to trace the history of the identification of FA genes, a history that started in the eighties and is not yet over, as indicated by the cloning of a twenty-first FA gene in 2016.
Collapse
Affiliation(s)
- Anna Gueiderikh
- UMR8200 - CNRS, Équipe labellisée La Ligue contre le Cancer, Villejuif, France.,Gustave Roussy Cancer Center, Villejuif, France.,Université Paris Saclay, Paris Sud - Orsay, France
| | - Filippo Rosselli
- UMR8200 - CNRS, Équipe labellisée La Ligue contre le Cancer, Villejuif, France.,Gustave Roussy Cancer Center, Villejuif, France.,Université Paris Saclay, Paris Sud - Orsay, France
| | - Januario B C Neto
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Takata KI, Tomida J, Reh S, Swanhart LM, Takata M, Hukriede NA, Wood RD. Conserved overlapping gene arrangement, restricted expression, and biochemical activities of DNA polymerase ν (POLN). J Biol Chem 2015; 290:24278-93. [PMID: 26269593 PMCID: PMC4591814 DOI: 10.1074/jbc.m115.677419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 12/12/2022] Open
Abstract
DNA polymerase ν (POLN) is one of 16 DNA polymerases encoded in vertebrate genomes. It is important to determine its gene expression patterns, biological roles, and biochemical activities. By quantitative analysis of mRNA expression, we found that POLN from the zebrafish Danio rerio is expressed predominantly in testis. POLN is not detectably expressed in zebrafish embryos or in mouse embryonic stem cells. Consistent with this, injection of POLN-specific morpholino antisense oligonucleotides did not interfere with zebrafish embryonic development. Analysis of transcripts revealed that vertebrate POLN has an unusual gene expression arrangement, sharing a first exon with HAUS3, the gene encoding augmin-like complex subunit 3. HAUS3 is broadly expressed in embryonic and adult tissues, in contrast to POLN. Differential expression of POLN and HAUS3 appears to arise by alternate splicing of transcripts in mammalian cells and zebrafish. When POLN was ectopically overexpressed in human cells, it specifically coimmunoprecipitated with the homologous recombination factors BRCA1 and FANCJ, but not with previously suggested interaction partners (HELQ and members of the Fanconi anemia core complex). Purified zebrafish POLN protein is capable of thymine glycol bypass and strand displacement, with activity dependent on a basic amino acid residue known to stabilize the primer-template. These properties are conserved with the human enzyme. Although the physiological function of pol ν remains to be clarified, this study uncovers distinctive aspects of its expression control and evolutionarily conserved properties of this DNA polymerase.
Collapse
Affiliation(s)
- Kei-Ichi Takata
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, the University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030,
| | - Junya Tomida
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, the University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Shelley Reh
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, the University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Lisa M Swanhart
- the Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Minoru Takata
- the Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Neil A Hukriede
- the Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Richard D Wood
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, the University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| |
Collapse
|
13
|
Arensman MD, Telesca D, Lay AR, Kershaw KM, Wu N, Donahue TR, Dawson DW. The CREB-binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. Mol Cancer Ther 2014; 13:2303-14. [PMID: 25082960 PMCID: PMC4188417 DOI: 10.1158/1535-7163.mct-13-1005] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer due in part to a lack of highly robust cytotoxic or molecular-based therapies. Recent studies investigating ligand-mediated Wnt/β-catenin signaling have highlighted its importance in pancreatic cancer initiation and progression, as well as its potential as a therapeutic target in PDAC. The small-molecule ICG-001 binds cAMP-responsive element binding (CREB)-binding protein (CBP) to disrupt its interaction with β-catenin and inhibit CBP function as a coactivator of Wnt/β-catenin-mediated transcription. Given its ability to inhibit Wnt/β-catenin-mediated transcription in vitro and in vivo, as well as its efficacy in preclinical models of colorectal cancer and other Wnt-driven diseases, we examined ICG-001 and its potential role as a therapeutic in PDAC. ICG-001 alone significantly inhibited anchorage-dependent and -independent growth of multiple PDAC lines, and augmented in vitro growth inhibition when used in combination with gemcitabine. ICG-001 had only variable modest effects on PDAC apoptosis and instead mediated PDAC growth inhibition primarily through robust induction of G₁ cell-cycle arrest. These effects, however, seemed decoupled from its inhibition of Wnt/β-catenin-mediated transcription. DNA microarrays performed on PDAC cells in the context of ICG-001 treatment revealed ICG-001 altered the expression of several genes with well-established roles in DNA replication and cell-cycle progression, including direct actions on SKP2 and CDKN1A. ICG-001 also significantly prolonged survival in an in vivo orthotopic xenograft model of PDAC, indicating ICG-001 or derived compounds that disrupt CBP activity are potentially useful small-molecule therapeutics for pancreatic cancer.
Collapse
Affiliation(s)
- Michael D Arensman
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Donatello Telesca
- Department of Biostatistics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Anna R Lay
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kathleen M Kershaw
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nanping Wu
- Deparment of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Timothy R Donahue
- Deparment of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California. Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
| |
Collapse
|
14
|
Sugahara R, Mon H, Lee JM, Kusakabe T. Middle region of FancM interacts with Mhf and Rmi1 in silkworms, a species lacking the Fanconi anaemia (FA) core complex. INSECT MOLECULAR BIOLOGY 2014; 23:185-198. [PMID: 24286570 DOI: 10.1111/imb.12072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Fanconi anaemia (FA) pathway is responsible for interstrand crosslink (ICL) repair. Among the FA core complex components, FANCM is believed to act as a damage sensor for the ICL-blocked replication fork and also as a molecular platform for FA core complex assembly and interaction with Bloom's syndrome (BS) complex that is thought to play an important role in the processing of DNA structures such as stalled replication forks. In the present study, we found that in silkworms, Bombyx mori, a species lacking the major FA core complex components (FANCA, B, C, E, F, and G), FancM is required for FancD2 monoubiquitination and cell proliferation in the presence of mitomycin C (MMC). Silkworm FancM (BmFancM) was phosphorylated in the middle regions, and the modification was associated with its subcellular localization. In addition, BmFancM interacted with Mhf1, a histone-fold protein, and Rmi1, a subunit of the BS complex, in the different regions. The interaction region containing at least these two protein-binding domains played an essential role in FancM-dependent resistance to MMC. Our results suggest that BmFancM also acts as a platform for recruitment of both the FA protein and the BS protein, although the silkworm genome seems to lose FAAP24, a FancM-binding partner protein in mammals.
Collapse
Affiliation(s)
- R Sugahara
- Laboratory of Silkworm Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
15
|
Abstract
Bloom Syndrome (BS, MIM #210900) is an autosomal recessive genetic disorder caused by a mutation in the BLM gene, which codes for the DNA repair enzyme RecQL3 helicase. Without proper DNA repair mechanisms, abnormal DNA exchange takes place between sister chromatids and results in genetic instability that may lead to cancer, especially lymphoma and acute myelogenous leukemia, lower and upper gastrointestinal tract neoplasias, cutaneous tumors, and neoplasias in the genitalia and urinary tract. BS patients are usually of Ashkenazi Jewish descent and exhibit narrow facial features, elongated limbs, and several dermatologic complications including photosensitivity, poikiloderma, and telangiectatic erythema. The most concerning manifestation of BS is multiple malignancies, which require frequent screenings and strict vigilance by the physician. Therefore, distinguishing between BS and other dermatologic syndromes of similar presentation such as Rothmund-Thomson Syndrome, Erythropoietic Protoporphyria, and Cockayne Syndrome is paramount to disease management and to prolonging life. BS can be diagnosed through a variety of DNA sequencing methods, and genetic testing is available for high-risk populations. This review consolidates several sources on BS sequelae and aims to suggest the importance of differentiating BS from other dermatologic conditions. This paper also elucidates the recently discovered BRAFT and FANCM protein complexes that link BS and Fanconi anemia.
Collapse
Affiliation(s)
- Harleen Arora
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Guiraldelli MF, Eyster C, Pezza RJ. Genome instability and embryonic developmental defects in RMI1 deficient mice. DNA Repair (Amst) 2013; 12:835-43. [PMID: 23900276 DOI: 10.1016/j.dnarep.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/04/2013] [Accepted: 07/08/2013] [Indexed: 12/19/2022]
Abstract
RMI1 forms an evolutionarily conserved complex with BLM/TOP3α/RMI2 (BTR complex) to prevent and resolve aberrant recombination products, thereby promoting genome stability. Most of our knowledge about RMI1 function has been obtained from biochemical studies in vitro. In contrast, the role of RMI1 in vivo remains unclear. Previous attempts to generate an Rmi1 knockout mouse line resulted in pre-implantation embryonic lethality, precluding the use of mouse embryonic fibroblasts (MEFs) and embryonic morphology to assess the role of RMI1 in vivo. Here, we report the generation of an Rmi1 deficient mouse line (hy/hy) that develops until 9.5 days post coitum (dpc) with marked defects in development. MEFs derived from Rmi1(hy/hy) are characterized by severely impaired cell proliferation, frequently having elevated DNA content, high numbers of micronuclei and an elevated percentage of partial condensed chromosomes. Our results demonstrate the importance of RMI1 in maintaining genome integrity and normal embryonic development.
Collapse
Affiliation(s)
- Michel F Guiraldelli
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | |
Collapse
|
17
|
Defining the molecular interface that connects the Fanconi anemia protein FANCM to the Bloom syndrome dissolvasome. Proc Natl Acad Sci U S A 2012; 109:4437-42. [PMID: 22392978 PMCID: PMC3311393 DOI: 10.1073/pnas.1117279109] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The RMI subcomplex (RMI1/RMI2) functions with the BLM helicase and topoisomerase IIIα in a complex called the "dissolvasome," which separates double-Holliday junction DNA structures that can arise during DNA repair. This activity suppresses potentially harmful sister chromatid exchange (SCE) events in wild-type cells but not in cells derived from Bloom syndrome patients with inactivating BLM mutations. The RMI subcomplex also associates with FANCM, a component of the Fanconi anemia (FA) core complex that is important for repair of stalled DNA replication forks. The RMI/FANCM interface appears to help coordinate dissolvasome and FA core complex activities, but its precise role remains poorly understood. Here, we define the structure of the RMI/FANCM interface and investigate its roles in coordinating cellular DNA-repair activities. The X-ray crystal structure of the RMI core complex bound to a well-conserved peptide from FANCM shows that FANCM binds to both RMI proteins through a hydrophobic "knobs-into-holes" packing arrangement. The RMI/FANCM interface is shown to be critical for interaction between the components of the dissolvasome and the FA core complex. FANCM variants that substitute alanine for key interface residues strongly destabilize the complex in solution and lead to increased SCE levels in cells that are similar to those observed in blm- or fancm-deficient cells. This study provides a molecular view of the RMI/FANCM complex and highlights a key interface utilized in coordinating the activities of two critical eukaryotic DNA-damage repair machines.
Collapse
|
18
|
Hoadley KA, Xu D, Xue Y, Satyshur KA, Wang W, Keck JL. Structure and cellular roles of the RMI core complex from the bloom syndrome dissolvasome. Structure 2010; 18:1149-58. [PMID: 20826341 PMCID: PMC2937010 DOI: 10.1016/j.str.2010.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 06/07/2010] [Accepted: 06/07/2010] [Indexed: 01/07/2023]
Abstract
BLM, the protein product of the gene mutated in Bloom syndrome, is one of five human RecQ helicases. It functions to separate double Holliday junction DNA without genetic exchange as a component of the "dissolvasome," which also includes topoisomerase IIIα and the RMI (RecQ-mediated genome instability) subcomplex (RMI1 and RMI2). We describe the crystal structure of the RMI core complex, comprising RMI2 and the C-terminal OB domain of RMI1. The overall RMI core structure strongly resembles two-thirds of the trimerization core of the eukaryotic single-stranded DNA-binding protein, Replication Protein A. Immunoprecipitation experiments with RMI2 variants confirm key interactions that stabilize the RMI core interface. Disruption of this interface leads to a dramatic increase in cellular sister chromatid exchange events similar to that seen in BLM-deficient cells. The RMI core interface is therefore crucial for BLM dissolvasome assembly and may have additional cellular roles as a docking hub for other proteins.
Collapse
Affiliation(s)
- Kelly A. Hoadley
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532
| | - Dongyi Xu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard 10B113, Baltimore, MD 21224-6825
| | - Yutong Xue
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard 10B113, Baltimore, MD 21224-6825
| | - Kenneth A. Satyshur
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532
| | - Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard 10B113, Baltimore, MD 21224-6825
- To whom correspondence should be addressed. WW: Telephone (410) 558-8334, FAX (410) 558-8331, JLK: Telephone (608) 263-1815, FAX (608) 262-5253,
| | - James L. Keck
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532
- To whom correspondence should be addressed. WW: Telephone (410) 558-8334, FAX (410) 558-8331, JLK: Telephone (608) 263-1815, FAX (608) 262-5253,
| |
Collapse
|
19
|
Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO J 2010; 29:3140-55. [PMID: 20711169 DOI: 10.1038/emboj.2010.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/13/2010] [Indexed: 11/08/2022] Open
Abstract
BLM, the helicase defective in Bloom syndrome, is part of a multiprotein complex that protects genome stability. Here, we show that Rif1 is a novel component of the BLM complex and works with BLM to promote recovery of stalled replication forks. First, Rif1 physically interacts with the BLM complex through a conserved C-terminal domain, and the stability of Rif1 depends on the presence of the BLM complex. Second, Rif1 and BLM are recruited with similar kinetics to stalled replication forks, and the Rif1 recruitment is delayed in BLM-deficient cells. Third, genetic analyses in vertebrate DT40 cells suggest that BLM and Rif1 work in a common pathway to resist replication stress and promote recovery of stalled forks. Importantly, vertebrate Rif1 contains a DNA-binding domain that resembles the αCTD domain of bacterial RNA polymerase α; and this domain preferentially binds fork and Holliday junction (HJ) DNA in vitro and is required for Rif1 to resist replication stress in vivo. Our data suggest that Rif1 provides a new DNA-binding interface for the BLM complex to restart stalled replication forks.
Collapse
|
20
|
Schwab RA, Blackford AN, Niedzwiedz W. ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J 2010; 29:806-18. [PMID: 20057355 PMCID: PMC2829160 DOI: 10.1038/emboj.2009.385] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 11/24/2009] [Indexed: 01/20/2023] Open
Abstract
Fanconi anaemia is a chromosomal instability disorder associated with cancer predisposition and bone marrow failure. Among the 13 identified FA gene products only one, the DNA translocase FANCM, has homologues in lower organisms, suggesting a conserved function in DNA metabolism. However, a precise role for FANCM in DNA repair remains elusive. Here, we show a novel function for FANCM that is distinct from its role in the FA pathway: promoting replication fork restart and simultaneously limiting the accumulation of RPA-ssDNA. We show that in DT40 cells this process is controlled by ATR and PLK1, and that in the absence of FANCM, stalled replication forks are unable to resume DNA synthesis and genome duplication is ensured by excess origin firing. Unexpectedly, we also uncover an early role for FANCM in ATR-mediated checkpoint signalling by promoting chromatin retention of TopBP1. Failure to retain TopBP1 on chromatin impacts on the ability of ATR to phosphorylate downstream molecular targets, including Chk1 and SMC1. Our data therefore indicate a fundamental role for FANCM in the maintenance of genome integrity during S phase.
Collapse
Affiliation(s)
- Rebekka A Schwab
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Andrew N Blackford
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Wojciech Niedzwiedz
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, Warsaw, Poland
| |
Collapse
|
21
|
MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication. EMBO J 2009; 28:3005-14. [PMID: 19696745 DOI: 10.1038/emboj.2009.235] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 07/20/2009] [Indexed: 11/09/2022] Open
Abstract
Mutations in RECQ4, a member of the RecQ family of DNA helicases, have been linked to the progeroid disease Rothmund-Thomson Syndrome. Attempts to understand the complex phenotypes observed in recq4-deficient cells suggest a potential involvement in DNA repair and replication, yet the molecular basis of the function of RECQ4 in these processes remains unknown. Here, we report the identification of a highly purified chromatin-bound RECQ4 complex from human cell extracts. We found that essential replisome factors MCM10, MCM2-7 helicase, CDC45 and GINS are the primary interaction partner proteins of human RECQ4. Importantly, complex formation and the association of RECQ4 with the replication origin are cell-cycle regulated. Furthermore, we show that MCM10 is essential for the integrity of the RECQ4-MCM replicative helicase complex. MCM10 interacts directly with RECQ4 and regulates its DNA unwinding activity, and that this interaction may be modulated by cyclin-dependent kinase phosphorylation. Thus, these studies show that RECQ4 is an integral component of the MCM replicative helicase complex participating in DNA replication in human cells.
Collapse
|
22
|
|