1
|
Peng J, Zou WW, Wang XL, Zhang ZG, Huo R, Yang L. Viral-mediated gene therapy in pediatric neurological disorders. World J Pediatr 2024; 20:533-555. [PMID: 36607547 DOI: 10.1007/s12519-022-00669-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Due to the broad application of next-generation sequencing, the molecular diagnosis of genetic disorders in pediatric neurology is no longer an unachievable goal. However, treatments for neurological genetic disorders in children remain primarily symptomatic. On the other hand, with the continuous evolution of therapeutic viral vectors, gene therapy is becoming a clinical reality. From this perspective, we wrote this review to illustrate the current state regarding viral-mediated gene therapy in childhood neurological disorders. DATA SOURCES We searched databases, including PubMed and Google Scholar, using the keywords "adenovirus vector," "lentivirus vector," and "AAV" for gene therapy, and "immunoreaction induced by gene therapy vectors," "administration routes of gene therapy vectors," and "gene therapy" with "NCL," "SMA," "DMD," "congenital myopathy," "MPS" "leukodystrophy," or "pediatric metabolic disorders". We also screened the database of ClinicalTrials.gov using the keywords "gene therapy for children" and then filtered the results with the ones aimed at neurological disorders. The time range of the search procedure was from the inception of the databases to the present. RESULTS We presented the characteristics of commonly used viral vectors for gene therapy for pediatric neurological disorders and summarized their merits and drawbacks, the administration routes of each vector, the research progress, and the clinical application status of viral-mediated gene therapy on pediatric neurological disorders. CONCLUSIONS Viral-mediated gene therapy is on the brink of broad clinical application. Viral-mediated gene therapy will dramatically change the treatment pattern of childhood neurological disorders, and many children with incurable diseases will meet the dawn of a cure. Nevertheless, the vectors must be optimized for better safety and efficacy.
Collapse
Affiliation(s)
- Jing Peng
- Department of Pediatrics, Clinical Research Center for Chidren Neurodevelopmental disablities of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei-Wei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Lei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi-Guo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of Pediatrics, Clinical Research Center for Chidren Neurodevelopmental disablities of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
2
|
Posadino AM, Erre GL, Cossu A, Emanueli C, Eid AH, Zinellu A, Pintus G, Giordo R. NADPH-derived ROS generation drives fibrosis and endothelial-to-mesenchymal transition in systemic sclerosis: Potential cross talk with circulating miRNAs. Biomol Concepts 2022; 13:11-24. [PMID: 35189048 DOI: 10.1515/bmc-2021-0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc) is an immune disorder characterized by diffuse fibrosis and vascular abnormalities of the affected organs. Although the etiopathology of this disease is largely unknown, endothelial damage and oxidative stress appear implicated in its initiation and maintenance. Here, we show for the first time that circulating factors present in SSc sera increased reactive oxygen species (ROS) production, collagen synthesis, and proliferation of human pulmonary microvascular endothelial cells (HPMECs). The observed phenomena were also associated with endothelial to mesenchymal transition (EndMT) as indicated by decreased von Willebrand factor (vWF) expression and increased alpha-smooth muscle actin, respectively, an endothelial and mesenchymal marker. SSc-induced fibroproliferative effects were prevented by HPMECs exposition to the NADPH oxidase inhibitor diphenyleneiodonium, demonstrating ROS's causative role and suggesting their cellular origin. Sera from SSc patients showed significant changes in the expression of a set of fibrosis/EndMT-associated microRNAs (miRNA), including miR-21, miR-92a, miR-24, miR-27b, miR-125b, miR-29c, and miR-181b, which resulted significantly upregulated as compared to healthy donors sera. However, miR29b resulted downregulated in SSc sera, whereas no significant differences were found in the expression of miR-29a in the two experimental groups of samples. Taking together our data indicate NADPH oxidase-induced EndMT as a potential mechanism of SSc-associated fibrosis, suggesting fibrosis-associated miRNAs as potentially responsible for initiating and sustaining the vascular alterations observed in this pathological condition.
Collapse
Affiliation(s)
- Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, 07100 Sassari, Italy
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London, W12 0NN England, United Kingdom
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University Health, Qatar University, Doha, 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University Health, Qatar University, Doha, 2713, Qatar
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates
| | - Roberta Giordo
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| |
Collapse
|
3
|
Cantore A, Fraldi A, Meneghini V, Gritti A. In vivo Gene Therapy to the Liver and Nervous System: Promises and Challenges. Front Med (Lausanne) 2022; 8:774618. [PMID: 35118085 PMCID: PMC8803894 DOI: 10.3389/fmed.2021.774618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/16/2021] [Indexed: 12/02/2022] Open
Abstract
In vivo genetic engineering has recently shown remarkable potential as a novel effective treatment for an ever-growing number of diseases, as also witnessed by the recent marketing authorization of several in vivo gene therapy products. In vivo genetic engineering comprises both viral vector-mediated gene transfer and the more recently developed genome/epigenome editing strategies, as long as they are directly administered to patients. Here we first review the most advanced in vivo gene therapies that are commercially available or in clinical development. We then highlight the major challenges to be overcome to fully and broadly exploit in vivo gene therapies as novel medicines, discussing some of the approaches that are being taken to address them, with a focus on the nervous system and liver taken as paradigmatic examples.
Collapse
Affiliation(s)
- Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Alessio Cantore
| | - Alessandro Fraldi
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Department of Translational Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Giordo R, Thuan DTB, Posadino AM, Cossu A, Zinellu A, Erre GL, Pintus G. Iloprost Attenuates Oxidative Stress-Dependent Activation of Collagen Synthesis Induced by Sera from Scleroderma Patients in Human Pulmonary Microvascular Endothelial Cells. Molecules 2021; 26:4729. [PMID: 34443317 PMCID: PMC8399120 DOI: 10.3390/molecules26164729] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endothelial cell injury is an early event in systemic sclerosis (SSc) pathogenesis and several studies indicate oxidative stress as the trigger of SSc-associated vasculopathy. Here, we show that circulating factors present in sera of SSc patients increased reactive oxygen species (ROS) production and collagen synthesis in human pulmonary microvascular endothelial cells (HPMECs). In addition, the possibility that iloprost, a drug commonly used in SSc therapy, might modulate the above-mentioned biological phenomena has been also investigated. In this regard, as compared to sera of SSc patients, sera of iloprost-treated SSc patients failed to increased ROS levels and collagen synthesis in HPMEC, suggesting a potential antioxidant mechanism of this drug.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates;
| | - Duong Thi Bich Thuan
- Faculty of Biochemistry, College of Health Sciences, VinUniversity, Vinhomes Ocean Park, Gia Lam District, Hanoi 132002, Vietnam;
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates
| |
Collapse
|
5
|
Resveratrol-Elicited PKC Inhibition Counteracts NOX-Mediated Endothelial to Mesenchymal Transition in Human Retinal Endothelial Cells Exposed to High Glucose. Antioxidants (Basel) 2021; 10:antiox10020224. [PMID: 33540918 PMCID: PMC7913144 DOI: 10.3390/antiox10020224] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes-associated long-term hyperglycaemia leads to oxidative stress-mediated fibrosis in different tissues and organs. Endothelial-to-mesenchymal-transition (EndMT) appears to play a role in diabetes-associated fibrotic conditions. Here, we investigate whether EndMT is implicated in the diabetic retinopathy fibrotic process and evaluate the possibility that resveratrol could counteract EndMT by inhibiting high glucose (HG)-induced increases in ROS. Primary Human Retinal Endothelial Cells (HRECs) were either pre-treated for 24 h with 1 µM resveratrol or left untreated, then glucose (30 mM) was applied at 3-day intervals for 10 days. qRT-PCR and ELISA were used to detect mRNA or protein expression of endothelial markers (CD31, CDH5, vWF) or mesenchymal markers (VIM, αSMA and collagen I), respectively. Intracellular ROS levels were measured with carboxy-DCFDA, while NOX-associated ROS levels were evaluated using the NADPH-specific redox biosensor p47-roGFP. Treatment of HRECs with HG increased intracellular ROS levels and promoted phenotype shifting towards EndMT, evidenced by decreased expression of endothelial markers concomitant with increased expression of mesenchymal ones. HG-induced EndMT appears to be mediated by NADPH-associated ROS generation as pre-treatment of HRECs with resveratrol or the NADPH inhibitor, diphenyleneiodonium chloride (DPI), attenuated ROS production and EndMT transition, suggesting that the effect of resveratrol on HG-induced ROS occurs via down-regulation of NADPH oxidase. It is worth noting that resveratrol or Chelerythrine, a Protein kinase C (PKC) inhibitor, reduce ROS and EndMT in HG-exposed cells, suggesting that NADPH activation occurs via a PKC-dependent mechanism. Taken together, our results provide the basis for a resveratrol-based potential protective therapy to prevent diabetic-associated complications.
Collapse
|
6
|
Zabel MD, Mollnow L, Bender H. siRNA Therapeutics for Protein Misfolding Diseases of the Central Nervous System. Methods Mol Biol 2021; 2282:377-394. [PMID: 33928585 DOI: 10.1007/978-1-0716-1298-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanoparticles have been used to deliver siRNA to tissues and cells to silence specific genes in diverse organisms. Research and clinical application of nanoparticles like liposomes for drug delivery requires targeting them to specific anatomic regions or cell types, while avoiding off-target effects or clearance by the liver, kidney, or the immune system. Delivery to the central nervous system (CNS) presents additional challenges to cross the blood-brain barrier (BBB) to specific cell types like neurons, astrocytes, or glia. Here, we describe the generation of three different liposomal siRNA delivery vehicles to the CNS using the thin film hydration method. Utilizing cationic or anionic liposomes protects the siRNA from serum nucleases and proteases en route. To deliver the siRNA specifically to the CNS, the liposomes are complexed to a peptide that acts as a neuronal address by binding to nicotinic acetylcholine receptors (nAchRs). When injected intravenously or instilled intranasally, these liposome-siRNA-peptide complexes (LSPCs) or peptide addressed liposome-encapsulated therapeutic siRNA (PALETS) resist serum degradation, effectively cross the BBB, and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.
Collapse
Affiliation(s)
- Mark D Zabel
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Luke Mollnow
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Heather Bender
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Abstract
RNA interference is a relatively new tool used to silence specific genes in diverse biological systems. The development of this promising new technique for research and therapeutic use in studying and treating neurological diseases has been hampered by the lack of an efficient way to deliver siRNA transvascularly across the blood-brain barrier (BBB) to the central nervous system (CNS). Here we describe the generation of three different liposomal siRNA delivery vehicles to the CNS using the thin film hydration method. Utilizing cationic or anionic liposomes protects the siRNA from serum nucleases and proteases en route. To deliver the siRNA specifically to the CNS, the liposomes are complexed to a peptide that acts as a neuronal address by binding to nicotinic acetylcholine receptors (nAchRs). When injected intravenously, these liposome-siRNA-peptide complexes (LSPCs) or peptide addressed liposome encapsulated therapeutic siRNA (PALETS) resist serum degradation, effectively cross the BBB and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.
Collapse
|
8
|
Toro CA, Wright H, Aylwin CF, Ojeda SR, Lomniczi A. Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty. Nat Commun 2018; 9:57. [PMID: 29302059 PMCID: PMC5754362 DOI: 10.1038/s41467-017-02512-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/01/2017] [Indexed: 12/24/2022] Open
Abstract
Polycomb group (PcG) proteins control the timing of puberty by repressing the Kiss1 gene in hypothalamic arcuate nucleus (ARC) neurons. Here we identify two members of the Trithorax group (TrxG) of modifiers, mixed-lineage leukemia 1 (MLL1), and 3 (MLL3), as central components of an activating epigenetic machinery that dynamically counteracts PcG repression. Preceding puberty, MLL1 changes the chromatin configuration at the promoters of Kiss1 and Tac3, two genes required for puberty to occur, from repressive to permissive. Concomitantly, MLL3 institutes a chromatin structure that changes the functional status of a Kiss1 enhancer from poised to active. RNAi-mediated, ARC-specific Mll1 knockdown reduced Kiss1 and Tac3 expression, whereas CRISPR-Cas9-directed epigenome silencing of the Kiss1 enhancer selectively reduced Kiss1 activity. Both interventions delay puberty and disrupt reproductive cyclicity. Our results demonstrate that an epigenetic switch from transcriptional repression to activation is crucial to the regulatory mechanism controlling the timing of mammalian puberty.
Collapse
Affiliation(s)
- Carlos A Toro
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| | - Hollis Wright
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| | - Carlos F Aylwin
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA.
| | - Alejandro Lomniczi
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA.
| |
Collapse
|
9
|
Leka-Emiri S, Chrousos GP, Kanaka-Gantenbein C. The mystery of puberty initiation: genetics and epigenetics of idiopathic central precocious puberty (ICPP). J Endocrinol Invest 2017; 40:789-802. [PMID: 28251550 DOI: 10.1007/s40618-017-0627-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/04/2023]
Abstract
Puberty is a major developmental stage. Damaging mutations, considered as "mistakes of nature", have contributed to the unraveling of the networks implicated in the normal initiation of puberty. Genes involved in the abnormal hypothalamic-pituitary-gonadal (HPG) axis development, in the normosmic idiopathic hypogonadotropic hypogonadism (nIHH), in the X-linked or autosomal forms of Kallmann syndrome and in precocious puberty have been identified (GNRH1, GNRHR, KISS1, GPR54, FGFR1, FGF8, PROK2, PROKR2, TAC3, TACR3, KAL1, PROK2, PROKR2, CHD7, LEP, LEPR, PC1, DAX1, SF-1, HESX-1, LHX3, PROP-1). Most of them were found to play critical roles in HPG axis development and regulation, the embryonic GnRH neuronal migration and secretion, the regulation and action of the hypothalamic GnRH. However, the specific neural and molecular mechanisms triggering GnRH secretion remain one of the scientific enigmas. Although GnRH neurons are probably capable of autonomously generating oscillations, many gonadal steroid-dependent and -independent mechanisms have also been proposed. It is now well proven that the secretion of GnRH is regulated by kisspeptin as well as by permissive or opposing signals mediated by neurokinin B and dynorphin. These three supra-GnRH regulators compose the kisspeptin-neurokinin B-dynorphin neuronal (KNDy) system, a key player in pubertal onset and progression. Moreover, an ongoing increasing number of inhibitory, stimulatory and permissive networks acting upstream on GnRH neurons, such as GABA, NPY, LIN28B, MKRN3 and others integrate diverse hormonal and peripheral signals and have been proposed as the "gate-keepers" of puberty, while epigenetic modifications play also an important role in puberty initiation.
Collapse
Affiliation(s)
- Sofia Leka-Emiri
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Faculty of Medicine, National and Kapodistrian University of Athens, Medical School, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Faculty of Medicine, National and Kapodistrian University of Athens, Medical School, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Faculty of Medicine, National and Kapodistrian University of Athens, Medical School, "Aghia Sofia" Children's Hospital, Athens, Greece.
| |
Collapse
|
10
|
Zhang C, Chang C, Zhao W, Gao H, Wang Q, Li D, Zhang F, Zhang S, Xu C. The novel protein C9orf116 promotes rat liver cell line BRL-3A proliferation. PLoS One 2017; 12:e0180607. [PMID: 28749992 PMCID: PMC5531498 DOI: 10.1371/journal.pone.0180607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 06/19/2017] [Indexed: 01/03/2023] Open
Abstract
Our previous study has proved that the chromosome 9 open reading frame 116 (C9orf116) (NM_001106564.1) was significantly up-regulated in the proliferation phase of liver regeneration. To study its possible physiological function, we analyzed the effect of C9orf116 on BRL-3A cells via over-expression and interference technique. MTT results showed that the cell viability of the interference group was significantly lower than the control group at 48h after transfection (P<0.05), whereas it was significantly higher in the over-expression group (P<0.05). The flow cytometry results showed that C9orf116 knockdown or over-expression had little effect on BRL-3A cell apoptosis. However, the number of cells in division phase (G2/M) was significantly reduced in the interference group (P<0.05), but significantly increased in the over-expression group (P<0.01). Furthermore, the expressions of cell proliferation-related genes CCNA2, CCND1 and MYC both at mRNA and protein levels were down-regulated in the interference group and up-regulated in the over-expression group. Therefore, we concluded that C9orf116 may promote cell proliferation by modulating cell cycle transition and the expression of key genes CCNA2, CCND1 and MYC in BRL-3A cells.
Collapse
Affiliation(s)
- Chunyan Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Cuifang Chang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Weiming Zhao
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Hang Gao
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Qiwen Wang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Deming Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Shifu Zhang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- * E-mail:
| |
Collapse
|
11
|
Cai WX, Zheng LW, Huang HZ, Zwahlen RA. Evidence of phenotypic stability after transduction of fluorescent proteins in two human tongue cancer cell lines. Arch Oral Biol 2017; 79:48-54. [PMID: 28288391 DOI: 10.1016/j.archoralbio.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVES This study investigated the phenotypic stability and biological properties of two human tongue cancer cell lines after transduction of fluorescent proteins. DESIGN The human tongue cancer cell lines UM1 and UM2 were cultured with GFP and RFP lentiviral particles stock for 72h. Cells with successful transduction of fluorescent proteins were selected in a medium containing G418 antibiotics for two weeks. The proliferation rates of parental and transduced cell lines were evaluated by their population doubling time (PDT). Transduction efficiency was assessed by fluorescence microscope and flow cytometry. The transduced cells in passage 1, 2, 10, 20 and 30 were collected to check the stability of fluorescent protein expression. Phenotypic stability of the transduced cells was detected by means of cell morphology, cell surface markers and cell function evaluating essay. RESULTS The proliferation rates of the transduced cell lines showed no significant difference compared to their parental cells. Successful transduction with high efficiency (99% up) was demonstrated. High fluorescence expression on both transduced cells was detected until the thirtieth generation. UM1 and UM1-GFP displayed mesenchymal cell characteristics, while UM2 and UM2-RFP cell lines showed properties characteristic of epithelial. CONCLUSIONS Two human tongue cancer cell lines of epithelial and mesenchymal phenotype respectively, have been successfully labelled with green and red fluorescent proteins. The fluorescence maintained a high expression rate over thirty generations without influencing the original morphological phenotype and cadherin expression.
Collapse
Affiliation(s)
- Wei-Xin Cai
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Li-Wu Zheng
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, PR China
| | - Hong-Zhang Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Roger A Zwahlen
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, PR China.
| |
Collapse
|
12
|
Huang L, Merson TD, Bourne JA. In vivo whole brain, cellular and molecular imaging in nonhuman primate models of neuropathology. Neurosci Biobehav Rev 2016; 66:104-18. [PMID: 27151822 DOI: 10.1016/j.neubiorev.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
Rodents have been the principal model to study brain anatomy and function due to their well-mapped brain architecture, rapid reproduction and amenability to genetic modification. However, there are clear limitations, for example their simpler neocortex, necessitating the need to adopt a model that is closer to humans in order to understand human cognition and brain conditions. Nonhuman primates (NHPs) are ideally suited as they are our closest relatives in the animal kingdom but in vivo imaging technologies to study brain structure and function in these species can be challenging. With the surge in NHP research in recent years, scientists have begun adapting imaging technologies, such as two-photon microscopy, for these species. Here we review the various NHP models that exist as well as their use in advanced microscopic and mesoscopic studies. We discuss the challenges in the field and investigate the opportunities that lie ahead.
Collapse
Affiliation(s)
- Lieven Huang
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, Victoria 3800, Australia
| | - Tobias D Merson
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, Victoria 3800, Australia.
| |
Collapse
|
13
|
Lomniczi A, Wright H, Castellano JM, Matagne V, Toro CA, Ramaswamy S, Plant TM, Ojeda SR. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression. Nat Commun 2015; 6:10195. [PMID: 26671628 PMCID: PMC4703871 DOI: 10.1038/ncomms10195] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/16/2015] [Indexed: 11/09/2022] Open
Abstract
In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty.
Collapse
Affiliation(s)
- Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Hollis Wright
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Juan Manuel Castellano
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA.,Department of Cell Biology, Physiology and Immunology, University of Cordoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofia (HURS), Cordoba 14004, Spain
| | - Valerie Matagne
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Carlos A Toro
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Suresh Ramaswamy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| |
Collapse
|
14
|
Zhao M, Alleva R, Ma H, Daniel AGS, Schwartz TH. Optogenetic tools for modulating and probing the epileptic network. Epilepsy Res 2015; 116:15-26. [PMID: 26354163 PMCID: PMC4567692 DOI: 10.1016/j.eplepsyres.2015.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/29/2015] [Accepted: 06/14/2015] [Indexed: 12/01/2022]
Abstract
Epilepsy affects roughly 1% of the population worldwide. Although effective treatments with antiepileptic drugs are available, more than 20% of patients have seizures that are refractory to medical therapy and many patients experience adverse effects. Hence, there is a continued need for novel therapies for those patients. A new technique called "optogenetics" may offer a new hope for these refractory patients. Optogenetics is a technology based on the combination of optics and genetics, which can control or record neural activity with light. Following delivery of light-sensitive opsin genes such as channelrhodopsin-2 (ChR2), halorhodopsin (NpHR), and others into brain, excitation or inhibition of specific neurons in precise brain areas can be controlled by illumination at different wavelengths with very high temporal and spatial resolution. Neuromodulation with the optogenetics toolbox have already been shown to be effective at treating seizures in animal models of epilepsy. This review will outline the most recent advances in epilepsy research with optogenetic techniques and discuss how this technology can contribute to our understanding and treatment of epilepsy in the future.
Collapse
Affiliation(s)
- Mingrui Zhao
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Rose Alleva
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Andy G S Daniel
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA; Department of Otolaryngology, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA; Department of Neuroscience, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| |
Collapse
|
15
|
Role of Lynx1 and related Ly6 proteins as modulators of cholinergic signaling in normal and neoplastic bronchial epithelium. Int Immunopharmacol 2015; 29:93-8. [PMID: 26025503 DOI: 10.1016/j.intimp.2015.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 01/05/2023]
Abstract
The ly-6 proteins are a large family of proteins that resemble the snake three finger alpha toxins such as α-bungarotoxin and are defined by their multiple cysteine residues. Multiple members of the ly-6 protein family can modulate nicotinic signaling including lynx1, lynx2, slurp-1, slurp-2 and prostate stem cell antigen (PSCA). Consistent with the expression of multiple nicotinic receptors in bronchial epithelium, multiple members of the nicotinic-modulatory ly-6 proteins are expressed in lung including lynx1 and lynx2. We studied the role of lynx1 as an exemplar of the role of ly-6 proteins in lung. Our data demonstrates that lynx1 acts as a negative modulator of nicotinic signaling in normal and neoplastic lung. In normal lung lynx1 serves to limit the ability of chronic nicotine exposure to increase levels of nicotinic receptors and also serves to limit the ability of nicotine to upregulate levels of GABAA receptors in lung. In turn this allows lynx1 to limit the ability of nicotine to upregulate levels of mucin which is mediated by GABAergic signaling. This suggests that lynx1-mimetics may have potential for treatment of asthma and COPD. In that most lung cancer cells also express nicotinic receptor and lynx1 we examined the role of lynx-1 in lung cancer. Lynx1 levels are decreased in lung cancers compared to adjacent normal lung. Knockdown of lynx1 by siRNAs increased growth of lung cancer cells while expression of lynx1 in lung cancer cell decreased cell proliferation. This suggests that lynx1 is an endogenous regulator of lung cancer growth. Given that multiple small molecule negative and positive allosteric modulators of nicotinic receptors have already been developed, this suggests that lynx1 is a highly druggable target both for development of drugs that may limit lung cancer growth as well as for drugs that may be effective for asthma or COPD treatment.
Collapse
|
16
|
Zheng L, Feng Y, Shi Y, Zhang J, Mu Q, Qin L, Berggren-Söderlund M, Nilsson-Ehle P, Zhang X, Luo G, Xu N. Intralipid decreases apolipoprotein M levels and insulin sensitivity in rats. PLoS One 2014; 9:e105681. [PMID: 25144649 PMCID: PMC4140822 DOI: 10.1371/journal.pone.0105681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022] Open
Abstract
Background Apolipoprotein M (ApoM) is a constituent of high-density lipoproteins (HDL). It plays a crucial role in HDL-mediated reverse cholesterol transport. Insulin resistance is associated with decreased ApoM levels. Aims To assess the effects of increased free fatty acids (FFAs) levels after short-term Intralipid infusion on insulin sensitivity and hepatic ApoM gene expression. Methods Adult male Sprague-Dawley (SD) rats infused with 20% Intralipid solution for 6 h. Glucose infusion rates (GIR) were determined by hyperinsulinemic-euglycemic clamp during Intralipid infusion and plasma FFA levels were measured by colorimetry. Rats were sacrificed after Intralipid treatment and livers were sampled. Human embryonic kidney 293T cells were transfected with a lentivirus mediated human apoM overexpression system. Goto-Kakizaki (GK) rats were injected with the lentiviral vector and insulin tolerance was assessed. Gene expression was assessed by real-time RT-PCR and PCR array. Results Intralipid increased FFAs by 17.6 folds and GIR was decreased by 27.1% compared to the control group. ApoM gene expression was decreased by 40.4% after Intralipid infusion. PPARβ/δ expression was not changed by Intralipid. Whereas the mRNA levels of Acaca, Acox1, Akt1, V-raf murine sarcoma 3611 viral oncogene homolog, G6pc, Irs2, Ldlr, Map2k1, pyruvate kinase and RBC were significantly increased in rat liver after Intralipid infusion. The Mitogen-activated protein kinase 8 (MAPK8) was significantly down-regulated in 293T cells overexpressing ApoM. Overexpression of human ApoM in GK rats could enhance the glucose-lowering effect of exogenous insulin. Conclusion These results suggest that Intralipid could decrease hepatic ApoM levels. ApoM overexpression may have a potential role in improving insulin resistance in vivo and modulating apoM expression might be a future therapeutic strategy against insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Lu Zheng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Yuehua Feng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Yuanping Shi
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Jun Zhang
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Qinfeng Mu
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Li Qin
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Maria Berggren-Söderlund
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, Lund, Sweden
| | - Peter Nilsson-Ehle
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, Lund, Sweden
| | - Xiaoying Zhang
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Guanghua Luo
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Ning Xu
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, Lund, Sweden
| |
Collapse
|
17
|
Lerchner W, Corgiat B, Der Minassian V, Saunders RC, Richmond BJ. Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain. Gene Ther 2014; 21:233-41. [PMID: 24401836 DOI: 10.1038/gt.2013.75] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/01/2013] [Accepted: 11/04/2013] [Indexed: 01/06/2023]
Abstract
We, like many others, wish to use modern molecular methods to alter neuronal functionality in primates. For us, this requires expression in a large proportion of the targeted cell population. Long generation times make germline modification of limited use. The size and intricate primate brain anatomy poses additional challenges. We surved methods using lentiviruses and serotypes of adeno-associated viruses (AAVs) to introduce active molecular material into cortical and subcortical regions of old-world monkey brains. Slow injections of AAV2 give well-defined expression of neurons in the cortex surrounding the injection site. Somewhat surprisingly we find that in the monkey the use of cytomegalovirus promoter in lentivirus primarily targets glial cells but few neurons. In contrast, with a synapsin promoter fragment the lentivirus expression is neuron specific at high transduction levels in all cortical layers. We also achieve specific targeting of tyrosine hydroxlase (TH)- rich neurons in the locus coeruleus and substantia nigra with a lentvirus carrying a fragment of the TH promoter. Lentiviruses carrying neuron specific promoters are suitable for both cortical and subcortical injections even when injected quickly.
Collapse
Affiliation(s)
- W Lerchner
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - B Corgiat
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - V Der Minassian
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - R C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - B J Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| |
Collapse
|
18
|
Song P, Rekow SS, Singleton CA, Sekhon HS, Dissen GA, Zhou M, Campling B, Lindstrom J, Spindel ER. Choline transporter-like protein 4 (CTL4) links to non-neuronal acetylcholine synthesis. J Neurochem 2013; 126:451-61. [PMID: 23651124 DOI: 10.1111/jnc.12298] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/26/2023]
Abstract
Synthesis of acetylcholine (ACh) by non-neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na(+) -dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. In contrast, some non-neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non-neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter-like proteins, a five gene family choline-transporter like protein (CTL)1-5. Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na(+) -independent and CTL1-5 were expressed in all cells examined. CTL1, 2, and 5 were expressed at highest levels and knockdown of CTL1, 2, and 5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1, 2, 3, and 5 had no effect on ACh synthesis in H82 cells. In contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non-neuronal cell lines and presents a mechanism to target non-neuronal ACh synthesis without affecting neuronal ACh synthesis.
Collapse
Affiliation(s)
- Pingfang Song
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Olesen MTJ, Ballarín-González B, Howard KA. The application of RNAi-based treatments for inflammatory bowel disease. Drug Deliv Transl Res 2013; 4:4-18. [DOI: 10.1007/s13346-013-0156-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Preston M, Gong X, Su W, Matsumoto SG, Banine F, Winkler C, Foster S, Xing R, Struve J, Dean J, Baggenstoss B, Weigel PH, Montine TJ, Back SA, Sherman LS. Digestion products of the PH20 hyaluronidase inhibit remyelination. Ann Neurol 2013; 73:266-80. [PMID: 23463525 DOI: 10.1002/ana.23788] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 09/25/2012] [Accepted: 10/08/2012] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Oligodendrocyte progenitor cells (OPCs) recruited to demyelinating lesions often fail to mature into oligodendrocytes (OLs) that remyelinate spared axons. The glycosaminoglycan hyaluronan (HA) accumulates in demyelinating lesions and has been implicated in the failure of OPC maturation and remyelination. We tested the hypothesis that OPCs in demyelinating lesions express a specific hyaluronidase, and that digestion products of this enzyme inhibit OPC maturation. METHODS Mouse OPCs grown in vitro were analyzed for hyaluronidase expression and activity. Gain of function studies were used to define the hyaluronidases that blocked OPC maturation. Mouse and human demyelinating lesions were assessed for hyaluronidase expression. Digestion products from different hyaluronidases and a hyaluronidase inhibitor were tested for their effects on OPC maturation and functional remyelination in vivo. RESULTS OPCs demonstrated hyaluronidase activity in vitro and expressed multiple hyaluronidases, including HYAL1, HYAL2, and PH20. HA digestion by PH20 but not other hyaluronidases inhibited OPC maturation into OLs. In contrast, inhibiting HA synthesis did not influence OPC maturation. PH20 expression was elevated in OPCs and reactive astrocytes in both rodent and human demyelinating lesions. HA digestion products generated by the PH20 hyaluronidase but not another hyaluronidase inhibited remyelination following lysolecithin-induced demyelination. Inhibition of hyaluronidase activity lead to increased OPC maturation and promoted increased conduction velocities through lesions. INTERPRETATION We determined that PH20 is elevated in demyelinating lesions and that increased PH20 expression is sufficient to inhibit OPC maturation and remyelination. Pharmacological inhibition of PH20 may therefore be an effective way to promote remyelination in multiple sclerosis and related conditions.
Collapse
Affiliation(s)
- Marnie Preston
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
RNA interference is a relatively new tool used to silence specific genes in diverse biological systems. The development of this promising new technique for research and therapeutic use in studying and treating neurological diseases has been hampered by the lack of an efficient way to deliver siRNA transvascularly across the blood-brain barrier (BBB) to the central nervous system (CNS). Here we describe a method for delivering siRNA to the CNS by complexing it to a peptide that acts as a neuronal address by binding to acetylcholine receptors (AchRs). Adding cationic liposomes to the complex protects it from serum nucleases and proteases en route. When injected intravenously, these liposome-siRNA-peptide complexes resist serum degradation, effectively cross the BBB, and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.
Collapse
Affiliation(s)
- Mark D Zabel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
22
|
Wen Y, Lan J, Huang H, Yu M, Cui J, Liang J, Jiang B, Xu X. Application of eGFP to label human periodontal ligament stem cells in periodontal tissue engineering. Arch Oral Biol 2012; 57:1241-50. [DOI: 10.1016/j.archoralbio.2012.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/07/2012] [Accepted: 02/13/2012] [Indexed: 12/28/2022]
|
23
|
Abstract
This review aims to provide a broad overview of the targets, challenges and potential for gene therapy in the CNS, citing specific examples. There are a broad range of therapeutic targets, with very different requirements for a suitable viral vector. By utilizing different vector tropisms, novel routes of administration and engineered promoter control, transgenes can be targeted to specific therapeutic applications. Viral vectors have proven efficacious in preclinical models for several disease applications, spurring several clinical trials. While the field has pushed the limits of existing adeno-associated virus-based vectors, a next generation of vectors based on rational engineering of viral capsids should expand the application of gene therapy to be more effective in specific therapeutic applications.
Collapse
|
24
|
An optogenetic approach in epilepsy. Neuropharmacology 2012; 69:89-95. [PMID: 22698957 DOI: 10.1016/j.neuropharm.2012.05.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 12/14/2022]
Abstract
Optogenetic tools comprise a variety of different light-sensitive proteins from single-cell organisms that can be expressed in mammalian neurons and effectively control their excitability. Two main classes of optogenetic tools allow to either depolarize or hyperpolarize, and respectively generate or inhibit action potentials in selective populations of neurons. This opens unprecedented possibilities for delineating the role of certain neuronal populations in brain processing and diseases. Moreover, optogenetics may be considered for developing potential treatment strategies for brain diseases, particularly for excitability disorders such as epilepsy. Expression of the inhibitory halorhodopsin NpHR in hippocampal principal cells has been recently used as a tool to effectively control chemically and electrically induced epileptiform activity in slice preparations, and to reduce in vivo spiking induced by tetanus toxin injection in the motor cortex. In this review we give a comprehensive summary of what has been achieved so far in the field of epilepsy using optogenetics, and discuss some of the possible strategies that could be envisaged in the future. We also point out some of the challenges and pitfalls in relation to possible outcomes of using optogenetics for controlling network excitability, and associated brain diseases. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
|
25
|
Dissen GA, Lomniczi A, Heger S, Neff TL, Ojeda SR. Hypothalamic EAP1 (enhanced at puberty 1) is required for menstrual cyclicity in nonhuman primates. Endocrinology 2012; 153:350-61. [PMID: 22128022 PMCID: PMC3249687 DOI: 10.1210/en.2011-1541] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammalian reproductive cyclicity requires the periodic discharge of GnRH from hypothalamic neurons into the portal vessels connecting the neuroendocrine brain to the pituitary gland. GnRH secretion is, in turn, controlled by changes in neuronal and glial inputs to GnRH-producing neurons. The transcriptional control of this process is not well understood, but it appears to involve several genes. One of them, termed enhanced at puberty 1 (EAP1), has been postulated to function in the female hypothalamus as an upstream regulator of neuroendocrine reproductive function. RNA interference-mediated inhibition of EAP1 expression, targeted to the preoptic region, delays puberty and disrupts estrous cyclicity in rodents, suggesting that EAP1 is required for the normalcy of these events. Here, we show that knocking down EAP1 expression in a region of the medial basal hypothalamus that includes the arcuate nucleus, via lentiviral-mediated delivery of RNA interference, results in cessation of menstrual cyclicity in female rhesus monkeys undergoing regular menstrual cycles. Neither lentiviruses encoding an unrelated small interfering RNA nor the placement of viral particles carrying EAP1 small interfering RNA outside the medial basal hypothalamus-arcuate nucleus region affected menstrual cycles, indicating that region-specific expression of EAP1 in the hypothalamus is required for menstrual cyclicity in higher primates. The cellular mechanism by which EAP1 exerts this function is unknown, but the recent finding that EAP1 is an integral component of a powerful transcriptional-repressive complex suggests that EAP1 may control reproductive cyclicity by inhibiting downstream repressor genes involved in the neuroendocrine control of reproductive function.
Collapse
Affiliation(s)
- Gregory A Dissen
- Division of Neuroscience, Oregon National Primate Research Center, 505 North West 185th Avenue, Beaverton, Oregon 97006-3448, USA.
| | | | | | | | | |
Collapse
|
26
|
Using Lentiviral Vectors as Delivery Vehicles for Gene Therapy. CONTROLLED GENETIC MANIPULATIONS 2012. [DOI: 10.1007/978-1-61779-533-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Dorfman MD, Kerr B, Garcia-Rudaz C, Paredes AH, Dissen GA, Ojeda SR. Neurotrophins acting via TRKB receptors activate the JAGGED1-NOTCH2 cell-cell communication pathway to facilitate early ovarian development. Endocrinology 2011; 152:5005-16. [PMID: 22028443 PMCID: PMC3230062 DOI: 10.1210/en.2011-1465] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tropomyosin-related kinase (TRK) receptor B (TRKB) mediates the supportive actions of neurotrophin 4/5 and brain-derived neurotrophic factor on early ovarian follicle development. Absence of TRKB receptors reduces granulosa cell (GC) proliferation and delays follicle growth. In the present study, we offer mechanistic insights into this phenomenon. DNA array and quantitative PCR analysis of ovaries from TrkB-null mice revealed that by the end of the first week of postnatal life, Jagged1, Hes1, and Hey2 mRNA abundance is reduced in the absence of TRKB receptors. Although Jagged1 encodes a NOTCH receptor ligand, Hes1 and Hey2 are downstream targets of the JAGGED1-NOTCH2 signaling system. Jagged1 is predominantly expressed in oocytes, and the abundance of JAGGED1 is decreased in TrkB(-/-) oocytes. Lack of TRKB receptors also resulted in reduced expression of c-Myc, a NOTCH target gene that promotes entry into the cell cycle, but did not alter the expression of genes encoding core regulators of cell-cycle progression. Selective restoration of JAGGED1 synthesis in oocytes of TrkB(-/-) ovaries via lentiviral-mediated transfer of the Jagged1 gene under the control of the growth differentiation factor 9 (Gdf9) promoter rescued c-Myc expression, GC proliferation, and follicle growth. These results suggest that neurotrophins acting via TRKB receptors facilitate early follicle growth by supporting a JAGGED1-NOTCH2 oocyte-to-GC communication pathway, which promotes GC proliferation via a c-MYC-dependent mechanism.
Collapse
Affiliation(s)
- Mauricio D Dorfman
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | | | |
Collapse
|
28
|
Zhou C, Shan Y, Zhao H, He P. Biological effects of lentivirus-mediated shRNA targeting collagen type I on the mesangial cells of rats. Ren Fail 2011; 33:334-40. [PMID: 21401360 DOI: 10.3109/0886022x.2011.559679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM To investigate the effects of lentivirus-mediated shRNA targeting collagen type I on the mesangial cells of rats and the feasibility of lentivirus-mediated shRNA delivery through renal parenchyma injection. METHODS Anti-collagen type I shRNA lentiviral vector was constructed, and rat mesangial cells were transfected with transfection enhancer (control group), blank lentiviral vectors (pSC-GFP group), and pSC-GFP/Col I lentiviral vectors (pSC-GFP/Col I group). Transfection efficiency and cell cycle were determined by flow cytometry. RT-PCR and Western blot were performed to detect the mRNA and protein expressions of Col I. Cell proliferation was evaluated by 3-(4,5)-dimethylthiahiazo-3, 5-di-phenytetrazolium-romide (MTT) assay and direct counting, and apoptosis was detected using AnnexinV/PE staining. The feasibility of renal parenchyma injection of lentiviral vectors was assessed. RESULTS The transfection efficiency was 75.42%. The expressions of collagen type I in pSC-GFP/Col I group was markedly decreased when compared with the other two groups. PSC-GFP/Col I group was higher than pSC-GFP group in the inhibition efficiency of mesangial cell after transfection. Results revealed that pSC-GFP/Col I transfection induced apoptosis to a certain extent. The proportion of cells in G2/M phase in pSC-GFP/Col I group and pSC-GFP group was higher than that in control group after of transfection. Moreover, cells arrested in S phase were markedly increased. Our results also revealed renal injection of lentivirus-mediated shRNA was feasible. CONCLUSION Lentivirus-mediated shRNA targeting collagen type I could stably and efficiently transfect rat mesangial cells and significantly suppressed collagen type I expressions with acceptable safety. Renal injection of Col I lentivirus-mediated shRNA was also feasible.
Collapse
Affiliation(s)
- Chunhua Zhou
- Department of Nephrology, Navy General Hospital, Haidian, Beijing, PR China.
| | | | | | | |
Collapse
|
29
|
Szebényi K, Erdei Z, Péntek A, Sebe A, Orbán TI, Sarkadi B, Apáti Á. Human pluripotent stem cells in pharmacological and toxicological screening: new perspectives for personalized medicine. Per Med 2011; 8:347-364. [DOI: 10.2217/pme.11.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human stem cells provide an important novel tool for generating in vitro pharmacological and toxicological test systems. In the development of new targeted therapies, as well as in critical safety issues, including hepato-, neuro- and cardio-toxicity, animal-based tests are mostly unsatisfactory, whereas the use of in vitro model systems is limited by the unavailability of relevant human tissues. Human embryonic stem cell lines may fill this gap and offer an advantage over primary cultures as well as tissue-derived (adult) stem cells. Human embryonic stem cells represent an unlimited source for the production of differentiated somatic progenies and allow various stable genetic manipulations. As a new opening in personalized medicine test systems, the generation of induced pluripotent stem cell lines and their derivatives can provide patient- and disease-specific cellular assays for drug development and safety assessments. This article reviews promising human stem cell applications in pharmacological and toxicological screenings, focusing on the implications for personalized medicine.
Collapse
Affiliation(s)
- Kornélia Szebényi
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | - Zsuzsa Erdei
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | - Adrienn Péntek
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | - Attila Sebe
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
- Department of Biochemistry & Molecular Biology, Medical & Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Tamás I Orbán
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | - Balázs Sarkadi
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | | |
Collapse
|
30
|
Meng J, Muntoni F, Morgan JE. Stem cells to treat muscular dystrophies – Where are we? Neuromuscul Disord 2011; 21:4-12. [DOI: 10.1016/j.nmd.2010.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/13/2010] [Accepted: 10/08/2010] [Indexed: 12/18/2022]
|
31
|
Ojeda SR, Lomniczi A, Loche A, Matagne V, Kaidar G, Sandau US, Dissen GA. The transcriptional control of female puberty. Brain Res 2010; 1364:164-74. [PMID: 20851111 PMCID: PMC2992593 DOI: 10.1016/j.brainres.2010.09.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 12/18/2022]
Abstract
The initiation of mammalian puberty requires a sustained increase in pulsatile release of gonadotrophin releasing hormone (GnRH) from the hypothalamus. This increase is brought about by coordinated changes in transsynaptic and glial-neuronal communication, consisting of an increase in neuronal and glial stimulatory inputs to the GnRH neuronal network and the loss of transsynaptic inhibitory influences. GnRH secretion is stimulated by transsynaptic inputs provided by excitatory amino acids (glutamate) and at least one peptide (kisspeptin), and by glial inputs provided by growth factors and small bioactive molecules. The inhibitory input to GnRH neurons is mostly transsynaptic and provided by GABAergic and opiatergic neurons; however, GABA has also been shown to directly excite GnRH neurons. There are many genes involved in the control of these cellular networks, and hence in the control of the pubertal process as a whole. Our laboratory has proposed the concept that these genes are arranged in overlapping networks internally organized in a hierarchical fashion. According to this concept, the highest level of intra-network control is provided by transcriptional regulators that, by directing expression of key subordinate genes, impose genetic coordination to the neuronal and glial subsets involved in initiating the pubertal process. More recently, we have begun to explore the concept that a more dynamic and encompassing level of integrative coordination is provided by epigenetic mechanisms.
Collapse
Affiliation(s)
- Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 N.W. 185th Avenue, Beaverton, OR 97006, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Ojeda SR, Dubay C, Lomniczi A, Kaidar G, Matagne V, Sandau US, Dissen GA. Gene networks and the neuroendocrine regulation of puberty. Mol Cell Endocrinol 2010; 324:3-11. [PMID: 20005919 PMCID: PMC2888991 DOI: 10.1016/j.mce.2009.12.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 01/06/2023]
Abstract
A sustained increase in pulsatile release of gonadotrophin releasing hormone (GnRH) from the hypothalamus is an essential, final event that defines the initiation of mammalian puberty. This increase depends on coordinated changes in transsynaptic and glial-neuronal communication, consisting of activating neuronal and glial excitatory inputs to the GnRH neuronal network and the loss of transsynaptic inhibitory tone. It is now clear that the prevalent excitatory systems stimulating GnRH secretion involve a neuronal component consisting of excitatory amino acids (glutamate) and at least one peptide (kisspeptin), and a glial component that uses growth factors and small molecules for cell-cell signaling. GABAergic and opiatergic neurons provide transsynaptic inhibitory control to the system, but GABA neurons also exert direct excitatory effects on GnRH neurons. The molecular mechanisms that provide encompassing coordination to this cellular network are not known, but they appear to involve a host of functionally related genes hierarchically arranged. We envision that, as observed in other gene networks, the highest level of control in this network is provided by transcriptional regulators that, by directing expression of key subordinate genes, impose an integrative level of coordination to the neuronal and glial subsets involved in initiating the pubertal process. The use of high-throughput and gene manipulation approaches coupled to systems biology strategies should provide not only the experimental bases supporting this concept, but also unveil the existence of crucial components of network control not yet identified.
Collapse
Affiliation(s)
- Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon, Health & Science University, 505 N.W. 185th Avenue, Beaverton, OR, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Development of a lentiviral vector system to study the role of the Andes virus glycoproteins. Virus Res 2010; 153:29-35. [PMID: 20619306 DOI: 10.1016/j.virusres.2010.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/24/2010] [Accepted: 07/01/2010] [Indexed: 01/29/2023]
Abstract
To infect target cells, enveloped viruses use their virion surface proteins to direct cell attachment and subsequent entry via virus-cell membrane fusion. How hantaviruses enter cells has been largely unexplored. To study early steps of Andes virus (ANDV) cell infection, a lentiviral vector system was developed based on a Simian immunodeficiency virus (SIV) vector pseudotyped with the ANDV-Gn/Gc envelope glycoproteins. The incorporation of Gn and Gc onto SIV-derived vector particles was assessed using newly generated monoclonal antibodies against ANDV glycoproteins. In addition, sera of ANDV infected humans were able to block cell entry of the SIV vector pseudotyped with ANDV glycoproteins, suggesting that their antigenic conformation is similar to that in the native virus. The use of such SIV vector pseudotyped with ANDV-Gn/Gc glycoproteins should facilitate studies on ANDV cell entry. Along this line, it was found that depletion of cholesterol from target cells strongly diminished cell infection, indicating a possible role of lipid rafts in ANDV cell entry. The Gn/Gc pseudotyped SIV vector has several advantages, notably high titer vector production and easy quantification of cell infection by monitoring GFP reporter gene expression by flow cytometry. Such pseudotyped SIV vectors can be used to identify functional domains in the Gn/Gc glycoproteins and to screen for potential hantavirus cell entry inhibitors.
Collapse
|
34
|
Pulford B, Reim N, Bell A, Veatch J, Forster G, Bender H, Meyerett C, Hafeman S, Michel B, Johnson T, Wyckoff AC, Miele G, Julius C, Kranich J, Schenkel A, Dow S, Zabel MD. Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrP on neuronal cells and PrP in infected cell cultures. PLoS One 2010; 5:e11085. [PMID: 20559428 PMCID: PMC2885418 DOI: 10.1371/journal.pone.0011085] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/20/2010] [Indexed: 01/23/2023] Open
Abstract
Background Recent advances toward an effective therapy for prion diseases employ RNA interference to suppress PrPC expression and subsequent prion neuropathology, exploiting the phenomenon that disease severity and progression correlate with host PrPC expression levels. However, delivery of lentivirus encoding PrP shRNA has demonstrated only modest efficacy in vivo. Methodology/Principal Findings Here we describe a new siRNA delivery system incorporating a small peptide that binds siRNA and acetylcholine receptors (AchRs), acting as a molecular messenger for delivery to neurons, and cationic liposomes that protect siRNA-peptide complexes from serum degradation. Conclusions/Significance Liposome-siRNA-peptide complexes (LSPCs) delivered PrP siRNA specifically to AchR-expressing cells, suppressed PrPC expression and eliminated PrPRES formation in vitro. LSPCs injected intravenously into mice resisted serum degradation and delivered PrP siRNA throughout the brain to AchR and PrPC-expressing neurons. These data promote LSPCs as effective vehicles for delivery of PrP and other siRNAs specifically to neurons to treat prion and other neuropathological diseases.
Collapse
Affiliation(s)
- Bruce Pulford
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Natalia Reim
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Aimee Bell
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jessica Veatch
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Genevieve Forster
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Heather Bender
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Crystal Meyerett
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Scott Hafeman
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brady Michel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Theodore Johnson
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - A. Christy Wyckoff
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gino Miele
- Pfizer Global Research & Development, Translational Medicine Research Collaboration, Dundee, Scotland
| | - Christian Julius
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jan Kranich
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alan Schenkel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Steven Dow
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mark D. Zabel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
35
|
Progress and prospects: Immunobiology of gene therapy for neurodegenerative disease: prospects and risks. Gene Ther 2010; 17:448-58. [PMID: 20147982 DOI: 10.1038/gt.2010.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene therapy for neurological, and in particular neurodegenerative, disease is now a reality. A number of early phase clinical trials have been completed and several are currently in progress. In view of this, it is critically important to evaluate the immunological risk associated with neurological gene therapy, which has clear implications for trial safety and efficacy. Moreover, it is imperative in particular to identify factors indicating potential high risk. In the light of recent advances in understanding immune regulation in the central nervous system (CNS) and with the continued development of new gene delivery vectors, this review critically assesses the current knowledge of immunobiology within the CNS in terms of likely immunological risk pertaining to viral vectors and gene therapy applications for neurodegenerative disease.
Collapse
|