1
|
Kretsch RC, Andersen ES, Bujnicki JM, Chiu W, Das R, Luo B, Masquida B, McRae EK, Schroeder GM, Su Z, Wedekind JE, Xu L, Zhang K, Zheludev IN, Moult J, Kryshtafovych A. RNA target highlights in CASP15: Evaluation of predicted models by structure providers. Proteins 2023; 91:1600-1615. [PMID: 37466021 PMCID: PMC10792523 DOI: 10.1002/prot.26550] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
The first RNA category of the Critical Assessment of Techniques for Structure Prediction competition was only made possible because of the scientists who provided experimental structures to challenge the predictors. In this article, these scientists offer a unique and valuable analysis of both the successes and areas for improvement in the predicted models. All 10 RNA-only targets yielded predictions topologically similar to experimentally determined structures. For one target, experimentalists were able to phase their x-ray diffraction data by molecular replacement, showing a potential application of structure predictions for RNA structural biologists. Recommended areas for improvement include: enhancing the accuracy in local interaction predictions and increased consideration of the experimental conditions such as multimerization, structure determination method, and time along folding pathways. The prediction of RNA-protein complexes remains the most significant challenge. Finally, given the intrinsic flexibility of many RNAs, we propose the consideration of ensemble models.
Collapse
Affiliation(s)
- Rachael C. Kretsch
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Ebbe S. Andersen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Janusz M. Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Wah Chiu
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Rhiju Das
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, Sichuan, China
| | - Benoît Masquida
- UMR 7156, CNRS – Universite de Strasbourg, Strasbourg, France
| | - Ewan K.S. McRae
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Griffin M. Schroeder
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, Sichuan, China
| | - Joseph E. Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Lily Xu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ivan N. Zheludev
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - John Moult
- Department of Cell Biology and Molecular Genetics, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | | |
Collapse
|
2
|
Jackson RW, Smathers CM, Robart AR. General Strategies for RNA X-ray Crystallography. Molecules 2023; 28:2111. [PMID: 36903357 PMCID: PMC10004510 DOI: 10.3390/molecules28052111] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
An extremely small proportion of the X-ray crystal structures deposited in the Protein Data Bank are of RNA or RNA-protein complexes. This is due to three main obstacles to the successful determination of RNA structure: (1) low yields of pure, properly folded RNA; (2) difficulty creating crystal contacts due to low sequence diversity; and (3) limited methods for phasing. Various approaches have been developed to address these obstacles, such as native RNA purification, engineered crystallization modules, and incorporation of proteins to assist in phasing. In this review, we will discuss these strategies and provide examples of how they are used in practice.
Collapse
Affiliation(s)
| | | | - Aaron R. Robart
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 20506, USA
| |
Collapse
|
3
|
Morishita EC. Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies. Expert Opin Drug Discov 2023; 18:207-226. [PMID: 36322542 DOI: 10.1080/17460441.2022.2134852] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The field of RNA-targeted small molecules is rapidly evolving, owing to the advances in experimental and computational technologies. With the identification of several bioactive small molecules that target RNA, including the FDA-approved risdiplam, the biopharmaceutical industry is gaining confidence in the field. This review, based on the literature obtained from PubMed, aims to disseminate information about the various technologies developed for targeting RNA with small molecules and propose areas for improvement to develop drugs more efficiently, particularly those linked to diseases with unmet medical needs. AREAS COVERED The technologies for the identification of RNA targets, screening of chemical libraries against RNA, assessing the bioactivity and target engagement of the hit compounds, structure determination, and hit-to-lead optimization are reviewed. Along with the description of the technologies, their strengths, limitations, and examples of how they can impact drug discovery are provided. EXPERT OPINION Many existing technologies employed for protein targets have been repurposed for use in the discovery of RNA-targeted small molecules. In addition, technologies tailored for RNA targets have been developed. Nevertheless, more improvements are necessary, such as artificial intelligence to dissect important RNA structures and RNA-small-molecule interactions and more powerful chemical probing and structure prediction techniques.
Collapse
|
4
|
Liu D, Thélot FA, Piccirilli JA, Liao M, Yin P. Sub-3-Å cryo-EM structure of RNA enabled by engineered homomeric self-assembly. Nat Methods 2022; 19:576-585. [PMID: 35501384 DOI: 10.1038/s41592-022-01455-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/09/2022] [Indexed: 12/29/2022]
Abstract
High-resolution structural studies are essential for understanding the folding and function of diverse RNAs. Herein, we present a nanoarchitectural engineering strategy for efficient structural determination of RNA-only structures using single-particle cryogenic electron microscopy (cryo-EM). This strategy-ROCK (RNA oligomerization-enabled cryo-EM via installing kissing loops)-involves installing kissing-loop sequences onto the functionally nonessential stems of RNAs for homomeric self-assembly into closed rings with multiplied molecular weights and mitigated structural flexibility. ROCK enables cryo-EM reconstruction of the Tetrahymena group I intron at 2.98-Å resolution overall (2.85 Å for the core), allowing de novo model building of the complete RNA, including the previously unknown peripheral domains. ROCK is further applied to two smaller RNAs-the Azoarcus group I intron and the FMN riboswitch, revealing the conformational change of the former and the bound ligand in the latter. ROCK holds promise to greatly facilitate the use of cryo-EM in RNA structural studies.
Collapse
Affiliation(s)
- Di Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - François A Thélot
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joseph A Piccirilli
- Department of Chemistry, the University of Chicago, Chicago, IL, USA.,Department of Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL, USA
| | - Maofu Liao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Rosenbach H, Span I. Obtaining Crystals of Nucleic Acids in Complex with the Protein U1A Using the Soaking Method. Methods Mol Biol 2022; 2439:105-115. [PMID: 35226318 DOI: 10.1007/978-1-0716-2047-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
X-ray crystallography is one of the most prominent techniques for determining high-resolution structures of nucleic acids. The major challenges are to obtain well-diffracting single crystals and to solve the phase problem. The absence of structural information impedes the elucidation of the molecular details of biological processes. A particularly intriguing example is the RNA-cleavage catalyzed by the 10-23 deoxyribozyme (DNAzyme). This DNAzyme consists of a catalytic core that is flanked by two substrate binding arms, which can be designed to bind any RNA of interest. Structure elucidation of the 10-23 DNAzyme in a biologically relevant conformation faces three major challenges: (1) stabilization of the RNA substrate to capture the DNA:RNA complex in the pre-catalytic conformation, (2) prevention of the formation of an artificial duplex conformation due to a self-complementary sequence in the catalytic core of the DNAzyme, and (3) the crystallization of nucleic acids with their uniform surfaces. Here, we provide a protocol for an innovative strategy facilitating the crystallization of protein:nucleic acid complexes using a soaking approach and discuss on how to apply this protocol for the structure elucidation of the 10-23 DNAzyme. For this purpose, we describe the purification procedure of an optimized variant of the RNA-binding protein U1A, the crystallization of this specific U1A variant, the soaking process with its specific RNA hairpin loop, and finally suggest a strategy for applying this procedure on the 10-23 DNAzyme in complex with its specific RNA target.
Collapse
Affiliation(s)
- Hannah Rosenbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
6
|
Liu D, Shao Y, Piccirilli JA, Weizmann Y. Structures of artificially designed discrete RNA nanoarchitectures at near-atomic resolution. SCIENCE ADVANCES 2021; 7:eabf4459. [PMID: 34550747 PMCID: PMC8457670 DOI: 10.1126/sciadv.abf4459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 08/02/2021] [Indexed: 05/11/2023]
Abstract
Although advances in nanotechnology have enabled the construction of complex and functional synthetic nucleic acid–based nanoarchitectures, high-resolution discrete structures are lacking because of the difficulty in obtaining good diffracting crystals. Here, we report the design and construction of RNA nanostructures based on homooligomerizable one-stranded tiles for x-ray crystallographic determination. We solved three structures to near-atomic resolution: a 2D parallelogram, a 3D nanobracelet unexpectedly formed from an RNA designed for a nanocage, and, eventually, a bona fide 3D nanocage designed with the guidance of the two previous structures. Structural details of their constituent motifs, such as kissing loops, branched kissing loops, and T-junctions, that resemble natural RNA motifs and resisted x-ray determination are revealed, providing insights into those natural motifs. This work unveils the largely unexplored potential of crystallography in gaining high-resolution feedback for nanoarchitectural design and suggests a route to investigate RNA motif structures by configuring them into nanoarchitectures.
Collapse
Affiliation(s)
- Di Liu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Yaming Shao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Joseph A. Piccirilli
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Yossi Weizmann
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
7
|
Pujari N, Saundh SL, Acquah FA, Mooers BHM, Ferré-D’Amaré AR, Leung AKW. Engineering Crystal Packing in RNA Structures I: Past and Future Strategies for Engineering RNA Packing in Crystals. CRYSTALS 2021; 11:952. [PMID: 34745656 PMCID: PMC8570644 DOI: 10.3390/cryst11080952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
X-ray crystallography remains a powerful method to gain atomistic insights into the catalytic and regulatory functions of RNA molecules. However, the technique requires the preparation of diffraction-quality crystals. This is often a resource- and time-consuming venture because RNA crystallization is hindered by the conformational heterogeneity of RNA, as well as the limited opportunities for stereospecific intermolecular interactions between RNA molecules. The limited success at crystallization explains in part the smaller number of RNA-only structures in the Protein Data Bank. Several approaches have been developed to aid the formation of well-ordered RNA crystals. The majority of these are construct-engineering techniques that aim to introduce crystal contacts to favor the formation of well-diffracting crystals. A typical example is the insertion of tetraloop-tetraloop receptor pairs into non-essential RNA segments to promote intermolecular association. Other methods of promoting crystallization involve chaperones and crystallization-friendly molecules that increase RNA stability and improve crystal packing. In this review, we discuss the various techniques that have been successfully used to facilitate crystal packing of RNA molecules, recent advances in construct engineering, and directions for future research in this vital aspect of RNA crystallography.
Collapse
Affiliation(s)
- Narsimha Pujari
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Stephanie L. Saundh
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Francis A. Acquah
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Blaine H. M. Mooers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adrian R. Ferré-D’Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Adelaine Kwun-Wai Leung
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
8
|
Affinity and Structural Analysis of the U1A RNA Recognition Motif with Engineered Methionines to Improve Experimental Phasing. CRYSTALS 2021; 11. [PMID: 33777416 PMCID: PMC7996396 DOI: 10.3390/cryst11030273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNA plays a central role in all organisms and can fold into complex structures to orchestrate function. Visualization of such structures often requires crystallization, which can be a bottleneck in the structure-determination process. To promote crystallization, an RNA-recognition motif (RRM) of the U1A spliceosomal protein has been co-opted as a crystallization module. Specifically, the U1-snRNA hairpin II (hpII) single-stranded loop recognized by U1A can be transplanted into an RNA target to promote crystal contacts and to attain phase information via molecular replacement or anomalous diffraction methods using selenomethionine. Herein, we produced the F37M/F77M mutant of U1A to augment the phasing capability of this powerful crystallization module. Selenomethionine-substituted U1A(F37M/F77M) retains high affinity for hpII (K D of 59.7 ± 11.4 nM). The 2.20 Å resolution crystal structure reveals that the mutated sidechains make new S-π interactions in the hydrophobic core and are useful for single-wavelength anomalous diffraction. Crystals were also attained of U1A(F37M/F77M) in complex with a bacterial preQ1-II riboswitch. The F34M/F37M/F77M mutant was introduced similarly into a lab-evolved U1A variant (TBP6.9) that recognizes the internal bulged loop of HIV-1 TAR RNA. We envision that this short RNA sequence can be placed into non-essential duplex regions to promote crystallization and phasing of target RNAs. We show that selenomethionine-substituted TBP6.9(F34M/F37M/F77M) binds a TAR variant wherein the apical loop was replaced with a GNRA tetraloop (K D of 69.8 ± 2.9 nM), laying the groundwork for use of TBP6.9(F34M/F37M/F77M) as a crystallization module. These new tools are available to the research community.
Collapse
|
9
|
An RNA-centric historical narrative around the Protein Data Bank. J Biol Chem 2021; 296:100555. [PMID: 33744291 PMCID: PMC8080527 DOI: 10.1016/j.jbc.2021.100555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 01/06/2023] Open
Abstract
Some of the amazing contributions brought to the scientific community by the Protein Data Bank (PDB) are described. The focus is on nucleic acid structures with a bias toward RNA. The evolution and key roles in science of the PDB and other structural databases for nucleic acids illustrate how small initial ideas can become huge and indispensable resources with the unflinching willingness of scientists to cooperate globally. The progress in the understanding of the molecular interactions driving RNA architectures followed the rapid increase in RNA structures in the PDB. That increase was consecutive to improvements in chemical synthesis and purification of RNA molecules, as well as in biophysical methods for structure determination and computer technology. The RNA modeling efforts from the early beginnings are also described together with their links to the state of structural knowledge and technological development. Structures of RNA and of its assemblies are physical objects, which, together with genomic data, allow us to integrate present-day biological functions and the historical evolution in all living species on earth.
Collapse
|
10
|
Abstract
The crystallization and structural determination of large RNAs and their complexes remain major bottlenecks in the mechanistic analysis of cellular and viral RNAs. Here, we describe a protocol that combines postcrystallization dehydration and ion replacement that dramatically improved the diffraction quality of crystals of a large gene-regulatory tRNA-mRNA complex. Through this method, the resolution limit of X-ray data extended from 8.5 to 3.2 Å, enabling structure determination. Although this protocol was developed for a particular RNA complex, the general importance of solvent and counterions in nucleic acid structure may render it generally useful for crystallographic analysis of other RNAs.
Collapse
|
11
|
Rosenbach H, Victor J, Borggräfe J, Biehl R, Steger G, Etzkorn M, Span I. Expanding crystallization tools for nucleic acid complexes using U1A protein variants. J Struct Biol 2020; 210:107480. [PMID: 32070773 DOI: 10.1016/j.jsb.2020.107480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 11/24/2022]
Abstract
The major bottlenecks in structure elucidation of nucleic acids are crystallization and phasing. Co-crystallization with proteins is a straight forward approach to overcome these challenges. The human RNA-binding protein U1A has previously been established as crystallization module, however, the absence of UV-active residues and the predetermined architecture in the asymmetric unit constitute clear limitations of the U1A system. Here, we report three crystal structures of tryptophan-containing U1A variants, which expand the crystallization toolbox for nucleic acids. Analysis of the structures complemented by SAXS, NMR spectroscopy, and optical spectroscopy allow for insights into the potential of the U1A variants to serve as crystallization modules for nucleic acids. In addition, we report a fast and efficient protocol for crystallization of RNA by soaking and present a fluorescence-based approach for detecting RNA-binding in crystallo. Our results provide a new tool set for the crystallization of RNA and RNA:DNA complexes.
Collapse
Affiliation(s)
- Hannah Rosenbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany.
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany.
| | - Jan Borggräfe
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
| | - Ralf Biehl
- Jülich Centre for Neutron Science (JCNS-1/ICS-1), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany.
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
12
|
Yeates TO, Agdanowski MP, Liu Y. Development of imaging scaffolds for cryo-electron microscopy. Curr Opin Struct Biol 2020; 60:142-149. [PMID: 32066085 DOI: 10.1016/j.sbi.2020.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Following recent hardware and software developments, single particle cryo-electron microscopy (cryo-EM) has become one of the most popular structural biology tools. Many targets, such as viruses, large protein complexes and oligomeric membrane proteins, have been resolved to atomic resolution using single-particle cryo-EM, which relies on the accurate assignment of particle location and orientation from intrinsically noisy projection images. The same image processing procedures are more challenging for smaller proteins due to their lower signal-to-noise ratios. Consequently, though most cellular proteins are less than 50kDa, so far it has been possible to solve cryo-EM structures near that size range for only a few favorable cases. Here we highlight some of the challenges and recent efforts to break through this lower size limit by engineering large scaffolds to rigidly display multiple small proteins for imaging. Future design efforts are noted.
Collapse
Affiliation(s)
- Todd O Yeates
- UCLA Department of Chemistry and Biochemistry, United States; UCLA-DOE Institute for Genomics and Proteomics, United States; UCLA Molecular Biology Institute, United States.
| | | | - Yuxi Liu
- UCLA Department of Chemistry and Biochemistry, United States; UCLA Molecular Biology Institute, United States
| |
Collapse
|
13
|
Chang S, Zhang DW, Xu L, Wan H, Hou TJ, Kong R. Exploring the molecular basis of RNA recognition by the dimeric RNA-binding protein via molecular simulation methods. RNA Biol 2016; 13:1133-1143. [PMID: 27592836 DOI: 10.1080/15476286.2016.1223007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RNA-binding protein with multiple splicing (RBPMS) is critical for axon guidance, smooth muscle plasticity, and regulation of cancer cell proliferation and migration. Recently, different states of the RNA-recognition motif (RRM) of RBPMS, one in its free form and another in complex with CAC-containing RNA, were determined by X-ray crystallography. In this article, the free RRM domain, its wild type complex and 2 mutant complex systems are studied by molecular dynamics (MD) simulations. Through comparison of free RRM domain and complex systems, it's found that the RNA binding facilitates stabilizing the RNA-binding interface of RRM domain, especially the C-terminal loop. Although both R38Q and T103A/K104A mutations reduce the binding affinity of RRM domain and RNA, the underlining mechanisms are different. Principal component analysis (PCA) and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods were used to explore the dynamical and recognition mechanisms of RRM domain and RNA. R38Q mutation is positioned on the homodimerization interface and mainly induces the large fluctuations of RRM domains. This mutation does not directly act on the RNA-binding interface, but some interfacial hydrogen bonds are weakened. In contrast, T103A/K104A mutations are located on the RNA-binding interface of RRM domain. These mutations obviously break most of high occupancy hydrogen bonds in the RNA-binding interface. Meanwhile, the key interfacial residues lose their favorable energy contributions upon RNA binding. The ranking of calculated binding energies in 3 complex systems is well consistent with that of experimental binding affinities. These results will be helpful in understanding the RNA recognition mechanisms of RRM domain.
Collapse
Affiliation(s)
- Shan Chang
- a Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology , Changzhou , China
| | - Da-Wei Zhang
- a Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology , Changzhou , China
| | - Lei Xu
- a Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology , Changzhou , China
| | - Hua Wan
- b College of Mathematics and Informatics, South China Agricultural University , Guangzhou , China
| | - Ting-Jun Hou
- c College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , China
| | - Ren Kong
- a Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology , Changzhou , China
| |
Collapse
|
14
|
Disney MD, Winkelsas AM, Velagapudi SP, Southern M, Fallahi M, Childs-Disney JL. Inforna 2.0: A Platform for the Sequence-Based Design of Small Molecules Targeting Structured RNAs. ACS Chem Biol 2016; 11:1720-8. [PMID: 27097021 DOI: 10.1021/acschembio.6b00001] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif-small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data. Lead small molecules can then be tested for binding and affecting cellular (dys)function. Herein, we describe Inforna 2.0, which incorporates all known RNA motif-small molecule binding partners reported in the scientific literature, a chemical similarity searching feature, and an improved user interface and is freely available via an online web server. By incorporation of interactions identified by other laboratories, the database has been doubled, containing 1936 RNA motif-small molecule interactions, including 244 unique small molecules and 1331 motifs. Interestingly, chemotype analysis of the compounds that bind RNA in the database reveals features in small molecule chemotypes that are privileged for binding. Further, this updated database expanded the number of cellular RNAs to which lead compounds can be identified.
Collapse
Affiliation(s)
- Matthew D. Disney
- Department of Chemistry and ‡Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Audrey M. Winkelsas
- Department of Chemistry and ‡Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Sai Pradeep Velagapudi
- Department of Chemistry and ‡Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Mark Southern
- Department of Chemistry and ‡Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Mohammad Fallahi
- Department of Chemistry and ‡Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L. Childs-Disney
- Department of Chemistry and ‡Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
15
|
Zhang J, Ferré-D'Amaré AR. Post-crystallization Improvement of RNA Crystal Diffraction Quality. Methods Mol Biol 2016; 1316:13-24. [PMID: 25967049 DOI: 10.1007/978-1-4939-2730-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The crystallization and structural determination of large RNAs and their complexes remain major bottlenecks in the mechanistic analysis of cellular and viral RNAs. Here, we describe a protocol that combines post-crystallization dehydration and ion replacement that dramatically improved the diffraction quality of crystals of a large gene-regulatory tRNA-mRNA complex. Through this method, the resolution limit of X-ray data extended from 8.5 to 3.2 Å, enabling structure determination. Although this protocol was developed for a particular RNA complex, the general importance of solvent and counterions in nucleic acid structure may render it generally useful for crystallographic analysis of other RNAs.
Collapse
Affiliation(s)
- Jinwei Zhang
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD, 20892-8012, USA
| | | |
Collapse
|
16
|
Abstract
Nucleic acid crystallization buffers contain a large variety of chemicals fitting specific needs. Among them, anions are often solely considered for pH-regulating purposes and as cationic co-salts while their ability to directly bind to nucleic acid structures is rarely taken into account. Here we review current knowledge related to the use of anions in crystallization buffers along with data on their biological prevalence. Chloride ions are frequently identified in crystal structures but display low cytosolic concentrations. Hence, they are thought to be distant from nucleic acid structures in the cell. Sulfate ions are also frequently identified in crystal structures but their localization in the cell remains elusive. Nevertheless, the characterization of the binding properties of these ions is essential for better interpreting the solvent structure in crystals and consequently, avoiding mislabeling of electron densities. Furthermore, understanding the binding properties of these anions should help to get clues related to their potential effects in crowded cellular environments.
Collapse
Affiliation(s)
- Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, UPR 9002 CNRS/Université de Strasbourg, 15, rue René Descartes, Strasbourg Cedex, 67084, France
| | | |
Collapse
|
17
|
Abstract
Recent discovery of structured RNAs such as ribozymes and riboswitches shows that there is still much to learn about the structure and function of RNAs. Knowledge learned can be employed in both biochemical research and clinical applications. X-ray crystallography gives unparalleled atomic-level structural detail from which functional inferences can be deduced. However, the difficulty in obtaining high-quality crystals and their phasing information make it a very challenging task. RNA crystallography is particularly arduous due to several factors such as RNA's paucity of surface chemical diversity, lability, repetitive anionic backbone, and flexibility, all of which are counterproductive to crystal packing. Here we describe Fab chaperone assisted RNA crystallography (CARC), a systematic technique to increase RNA crystallography success by facilitating crystal packing as well as expediting phase determination through molecular replacement of conserved Fab domains. Major steps described in this chapter include selection of a synthetic Fab library displayed on M13 phage against a structured RNA crystallization target, ELISA for initial choice of binding Fabs, Fab expression followed by protein A affinity then cation exchange chromatography purification, final choice of Fab by binding specificity and affinity as determined by a dot blot assay, and lastly gel filtration purification of a large quantity of chosen Fabs for crystallization.
Collapse
|
18
|
Ferré-D'Amaré AR. Use of the U1A Protein to Facilitate Crystallization and Structure Determination of Large RNAs. Methods Mol Biol 2016; 1320:67-76. [PMID: 26227038 PMCID: PMC5178131 DOI: 10.1007/978-1-4939-2763-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The preparation of well-ordered crystals of RNAs with complex three-dimensional architecture can be facilitated by engineering a binding site for the spliceosomal protein U1A into a functionally and structurally dispensable stem-loop of the RNA of interest. Once suitable crystals are obtained, the U1A protein, of known structure, can be employed to facilitate preparation of heavy atom or anomalously scattering atom derivatives, or as a source of partial model phases for the molecular replacement method. Here, we describe the methods for making U1A preparations suitable for cocrystallization with RNA. As an example, the cocrystallization of the tetracycline aptamer with U1A is also described.
Collapse
Affiliation(s)
- Adrian R Ferré-D'Amaré
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, 50 South Drive, MSC8012, Bethesda, MD, 20892-8012, USA,
| |
Collapse
|
19
|
Zhang J, Ferré-D'Amaré AR. Dramatic improvement of crystals of large RNAs by cation replacement and dehydration. Structure 2015; 22:1363-1371. [PMID: 25185828 DOI: 10.1016/j.str.2014.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/11/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022]
Abstract
Compared to globular proteins, RNAs with complex 3D folds are characterized by poorly differentiated molecular surfaces dominated by backbone phosphates, sparse tertiary contacts stabilizing global architecture, and conformational flexibility. The resulting generally poor order of crystals of large RNAs and their complexes frequently hampers crystallographic structure determination. We describe and rationalize a postcrystallization treatment strategy that exploits the importance of solvation and counterions for RNA folding. Replacement of Li(+) and Mg(2+) needed for growth of crystals of a tRNA-riboswitch-protein complex with Sr(2+), coupled with dehydration, dramatically improved the resolution limit (8.5-3.2 Å) and data quality, enabling structure determination. The soft Sr(2+) ion forms numerous stabilizing intermolecular contacts. Comparison of pre- and posttreatment structures reveals how RNA assemblies redistribute as quasi-rigid bodies to yield improved crystal packing. Cation exchange complements previously reported postcrystallization dehydration of protein crystals and represents a potentially general strategy for improving crystals of large RNAs.
Collapse
Affiliation(s)
- Jinwei Zhang
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
20
|
Jones CP, Ferré-D'Amaré AR. Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. EMBO J 2014; 33:2692-703. [PMID: 25271255 PMCID: PMC4282576 DOI: 10.15252/embj.201489209] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/13/2023] Open
Abstract
Cyclic diadenosine monophosphate (c-di-AMP) is a second messenger that is essential for growth and homeostasis in bacteria. A recently discovered c-di-AMP-responsive riboswitch controls the expression of genes in a variety of bacteria, including important pathogens. To elucidate the molecular basis for specific binding of c-di-AMP by a gene-regulatory mRNA domain, we have determined the co-crystal structure of this riboswitch. Unexpectedly, the structure reveals an internally pseudo-symmetric RNA in which two similar three-helix-junction elements associate head-to-tail, creating a trough that cradles two c-di-AMP molecules making quasi-equivalent contacts with the riboswitch. The riboswitch selectively binds c-di-AMP and discriminates exquisitely against other cyclic dinucleotides, such as c-di-GMP and cyclic-AMP-GMP, via interactions with both the backbone and bases of its cognate second messenger. Small-angle X-ray scattering experiments indicate that global folding of the riboswitch is induced by the two bound cyclic dinucleotides, which bridge the two symmetric three-helix domains. This structural reorganization likely couples c-di-AMP binding to gene expression.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
21
|
Zhang J, Ferré-D'Amaré AR. New molecular engineering approaches for crystallographic studies of large RNAs. Curr Opin Struct Biol 2014; 26:9-15. [PMID: 24607443 DOI: 10.1016/j.sbi.2014.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 01/01/2023]
Abstract
Crystallization of RNAs with complex three-dimensional architectures remains a formidable experimental challenge. We review a number of successful heuristics involving engineering of the target RNAs to facilitate crystal contact formation, such as those that enabled the crystallization and structure determination of the cognate tRNA complexes of RNase P holoenzyme and the Stem I domain of the T-box riboswitch. Recently, RNA-targeted antibody Fab fragments and Kink-turn binding proteins have joined the ranks of successful chaperones for RNA crystallization. Lastly, we review the use of structured RNAs to facilitate crystallization of RNA-binding proteins and other RNAs.
Collapse
Affiliation(s)
- Jinwei Zhang
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
22
|
Warner KD, Ferré-D'Amaré AR. Crystallographic analysis of TPP riboswitch binding by small-molecule ligands discovered through fragment-based drug discovery approaches. Methods Enzymol 2014; 549:221-33. [PMID: 25432751 PMCID: PMC4274939 DOI: 10.1016/b978-0-12-801122-5.00010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Riboswitches are structured mRNA elements that regulate gene expression in response to metabolite or second-messenger binding and are promising targets for drug discovery. Fragment-based drug discovery methods have identified weakly binding small molecule "fragments" that bind a thiamine pyrophosphate (TPP) riboswitch. However, these fragments require substantial chemical elaboration into more potent, drug-like molecules. Structure determination of the fragments bound to the riboswitch is the necessary next step. In this chapter, we describe the methods for co-crystallization and structure determination of fragment-bound TPP riboswitch structures. We focus on considerations for screening crystallization conditions across multiple crystal forms and provide guidance for building the fragment into the refined crystallographic model. These methods are broadly applicable for crystallographic analyses of any small molecules that bind structured RNAs.
Collapse
Affiliation(s)
- Katherine Deigan Warner
- National Heart, Lung and Blood Institute, Bethesda, Maryland, USA; Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
23
|
Flores JK, Walshe JL, Ataide SF. RNA and RNA–Protein Complex Crystallography and its Challenges. Aust J Chem 2014. [DOI: 10.1071/ch14319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RNA biology has changed completely in the past decade with the discovery of non-coding RNAs. Unfortunately, obtaining mechanistic information about these RNAs alone or in cellular complexes with proteins has been a major problem. X-ray crystallography of RNA and RNA–protein complexes has suffered from the major problems encountered in preparing and purifying them in large quantity. Here, we review the available techniques and methods in vitro and in vivo used to prepare and purify RNA and RNA–protein complex for crystallographic studies. We also discuss the future directions necessary to explore the vast number of RNA species waiting for their atomic-resolution structure to be determined.
Collapse
|
24
|
Giegé R. A historical perspective on protein crystallization from 1840 to the present day. FEBS J 2013; 280:6456-97. [DOI: 10.1111/febs.12580] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/27/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire; Université de Strasourg et CNRS; France
| |
Collapse
|
25
|
Chen Y, Varani G. Engineering RNA-binding proteins for biology. FEBS J 2013; 280:3734-54. [PMID: 23742071 DOI: 10.1111/febs.12375] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/20/2022]
Abstract
RNA-binding proteins play essential roles in the regulation of gene expression. Many have modular structures and combine relatively few common domains in various arrangements to recognize RNA sequences and/or structures. Recent progress in engineering the specificity of the PUF class RNA-binding proteins has shown that RNA-binding domains may be combined with various effector or functional domains to regulate the metabolism of targeted RNAs. Designer RNA-binding proteins with tailored sequence specificity will provide valuable tools for biochemical research as well as potential therapeutic applications. In this review, we discuss the suitability of various RNA-binding domains for engineering RNA-binding specificity, based on the structural basis for their recognition. We also compare various protein engineering and design methods applied to RNA-binding proteins, and discuss future applications of these proteins.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195-1700, USA.
| | | |
Collapse
|
26
|
Krauss IR, Merlino A, Vergara A, Sica F. An overview of biological macromolecule crystallization. Int J Mol Sci 2013; 14:11643-91. [PMID: 23727935 PMCID: PMC3709751 DOI: 10.3390/ijms140611643] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 12/11/2022] Open
Abstract
The elucidation of the three dimensional structure of biological macromolecules has provided an important contribution to our current understanding of many basic mechanisms involved in life processes. This enormous impact largely results from the ability of X-ray crystallography to provide accurate structural details at atomic resolution that are a prerequisite for a deeper insight on the way in which bio-macromolecules interact with each other to build up supramolecular nano-machines capable of performing specialized biological functions. With the advent of high-energy synchrotron sources and the development of sophisticated software to solve X-ray and neutron crystal structures of large molecules, the crystallization step has become even more the bottleneck of a successful structure determination. This review introduces the general aspects of protein crystallization, summarizes conventional and innovative crystallization methods and focuses on the new strategies utilized to improve the success rate of experiments and increase crystal diffraction quality.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-81-674-479; Fax: +39-81-674-090
| |
Collapse
|
27
|
Caton-Williams J, Hoxhaj R, Fiaz B, Huang Z. Use of a novel 5'-regioselective phosphitylating reagent for one-pot synthesis of nucleoside 5'-triphosphates from unprotected nucleosides. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2013; Chapter 1:1.30.1-1.30.21. [PMID: 23512692 PMCID: PMC3655200 DOI: 10.1002/0471142700.nc0130s52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
5'-Triphosphates are building blocks for enzymatic synthesis of DNA and RNA. This unit presents a protocol for convenient synthesis of 2'-deoxyribo- and ribonucleoside 5'-triphosphates (dNTPs and NTPs) from any natural or modified base. This one-pot synthesis can also be employed to prepare triphosphate analogs with a sulfur or selenium atom in place of a non-bridging oxygen atom of the α-phosphate. These S- or Se-modified dNTPs and NTPs can be used to prepare diastereomerically pure phosphorothioate or phosphoroselenoate nucleic acids. Even without extensive purification, the dNTPs or NTPs synthesized by this method are of high quality and can be used directly in DNA polymerization or RNA transcription. Synthesis and purification of the 5'-triphosphates, as well as analysis and confirmation of natural and sulfur- or selenium-modified nucleic acids, are described in this protocol unit.
Collapse
|
28
|
Baird NJ, Ferré-D’Amaré AR. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches. RNA (NEW YORK, N.Y.) 2013; 19:167-76. [PMID: 23249744 PMCID: PMC3543082 DOI: 10.1261/rna.036269.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/03/2012] [Indexed: 05/21/2023]
Abstract
Most known glycine riboswitches have two homologous aptamer domains arranged in tandem and separated by a short linker. The two aptamers associate through reciprocal "quaternary" interactions that have been proposed to result in cooperative glycine binding. Recently, the interaptamer linker was found to form helix P0 with a previously unrecognized segment 5' to the first aptamer domain. P0 was shown to increase glycine affinity, abolish cooperativity, and conform to the K-turn motif consensus. We examine the global thermodynamic and structural role of P0 using isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS), respectively. To evaluate the generality of P0 function, we prepared glycine riboswitch constructs lacking and including P0 from Bacillus subtilis, Fusobacterium nucleatum, and Vibrio cholerae. We find that P0 indeed folds into a K-turn, supports partial pre-folding of all three glycine-free RNAs, and is required for ITC observation of glycine binding under physiologic Mg(2+) concentrations. Except for the unusually small riboswitch from F. nucleatum, the K-turn is needed for maximally compacting the glycine-bound states of the RNAs. Formation of a ribonucleoprotein complex between the B. subtilis or the F. nucleatum RNA constructs and the bacterial K-turn binding protein YbxF promotes additional folding of the free riboswitch, and enhances glycine binding. Consistent with the previously reported loss of cooperativity, P0-containing B. subtilis and V. cholerae tandem aptamers bound no more than one glycine molecule per riboswitch. Our results indicate that the P0 K-turn helps organize the quaternary structure of tandem glycine riboswitches, thereby facilitating ligand binding under physiologic conditions.
Collapse
|
29
|
Abstract
Selenium derivatization of RNA is an important strategy for crystal structure determination and functional studies of noncoding RNAs and protein-RNA interactions. We describe here the synthesis of nucleoside 5'-(α-P-seleno)-triphosphate analogs (Se-NTPs) and their use in vitro transcription and purification of Se-derivatized RNA samples (phosphoroselenoate RNA, PSe-RNA).
Collapse
Affiliation(s)
- Lina Lin
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
30
|
Fauster K, Kreutz C, Micura R. 2'-SCF3 uridine-a powerful label for probing structure and function of RNA by 19F NMR spectroscopy. Angew Chem Int Ed Engl 2012; 51:13080-4. [PMID: 23161779 PMCID: PMC3555429 DOI: 10.1002/anie.201207128] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Indexed: 12/20/2022]
Abstract
Fluorishing: the Togni reagent allows efficient synthetic access to fluorine-labeled RNA molecules. These are in turn highly useful for NMR spectroscopic analyses of secondary and tertiary structures, RNA-protein interactions, and functionality of riboswitch modules.
Collapse
Affiliation(s)
- Katja Fauster
- Institute of Organic Chemistry (IOC) and Center for Molecular Biosciences (CMBI), University of Innsbruck, Center for Chemistry and Biomedicine (CCB)020 Innsbruck (Austria)
| | - Christoph Kreutz
- Institute of Organic Chemistry (IOC) and Center for Molecular Biosciences (CMBI), University of Innsbruck, Center for Chemistry and Biomedicine (CCB)020 Innsbruck (Austria)
| | - Ronald Micura
- Institute of Organic Chemistry (IOC) and Center for Molecular Biosciences (CMBI), University of Innsbruck, Center for Chemistry and Biomedicine (CCB)020 Innsbruck (Austria)
| |
Collapse
|
31
|
Fauster K, Kreutz C, Micura R. 2′-SCF3Uridine-A Powerful Label for Probing Structure and Function of RNA by19F NMR Spectroscopy. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Johnson JE, Reyes FE, Polaski JT, Batey RT. B12 cofactors directly stabilize an mRNA regulatory switch. Nature 2012; 492:133-7. [PMID: 23064232 PMCID: PMC3518761 DOI: 10.1038/nature11607] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/25/2012] [Indexed: 12/22/2022]
Abstract
Structures of riboswitch receptor domains bound to their effector have revealed how mRNAs recognize diverse small molecules, but mechanistic details into its linkage with regulation of gene expression remain elusive1,2. To address this, we solved crystal structures of two different classes of cobalamin (vitamin B12) binding riboswitches that include the structural switch of the downstream regulatory domain. These classes share a common cobalamin-binding core, but use distinct peripheral extensions to recognize different B12 derivatives. In each case, recognition is accomplished through shape complementarity between the RNA and cobalamin with relatively few hydrogen bonding interactions that typically govern RNA-small molecule recognition. We show that a composite cobalamin/RNA scaffold stabilizes an unusual long-range intramolecular kissing-loop interaction that controls mRNA expression. This is the first riboswitch crystal structure detailing how the receptor and regulatory domains communicate in a ligand-dependent fashion to regulate mRNA expression.
Collapse
Affiliation(s)
- James E Johnson
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0596, USA
| | | | | | | |
Collapse
|
33
|
Fourmy D, Yoshizawa S. Protein-RNA footprinting: an evolving tool. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:557-66. [PMID: 22566372 DOI: 10.1002/wrna.1119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As more RNA molecules with important cellular functions are discovered, there is a strong need to characterize their structures, functions, and interactions. Chemical and enzymatic footprinting methods are used to map RNA secondary and tertiary structure, to monitor ligand interactions and conformational changes, and in the study of protein-RNA interactions. These methods provide data at single-nucleotide resolution that nicely complements the structural information available from X-ray diffraction, nuclear magnetic resonance spectroscopy (NMR), or cryo-electron microscopy. Footprinting methods also complement the dynamic information derived from single-molecule Förster resonance energy transfer. RNA footprinting tools have been used for decades, but we have recently seen spectacular advances, for instance, the use in combination with massive parallel sequencing techniques. Large libraries of RNA molecules (small or large in size) can now be probed in high-throughput manner when RNA footprinting methods are combined with fluorescent probe technologies and automation. In this article, after a brief historical overview, we summarize recent advances in RNA-protein footprinting methodologies that now integrate tools for massive parallel analysis.
Collapse
Affiliation(s)
- Dominique Fourmy
- Centre de Génétique Moléculaire UPR 3404, CNRS, Université Paris-Sud, Gif-sur-Yvette, France.
| | | |
Collapse
|
34
|
Baird NJ, Zhang J, Hamma T, Ferré-D'Amaré AR. YbxF and YlxQ are bacterial homologs of L7Ae and bind K-turns but not K-loops. RNA (NEW YORK, N.Y.) 2012; 18:759-70. [PMID: 22355167 PMCID: PMC3312563 DOI: 10.1261/rna.031518.111] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 12/24/2011] [Indexed: 05/20/2023]
Abstract
The archaeal protein L7Ae and eukaryotic homologs such as L30e and 15.5kD comprise the best characterized family of K-turn-binding proteins. K-turns are an RNA motif comprised of a bulge flanked by canonical and noncanonical helices. They are widespread in cellular RNAs, including bacterial gene-regulatory RNAs such as the c-di-GMP-II, lysine, and SAM-I riboswitches, and the T-box. The existence in bacteria of K-turn-binding proteins of the L7Ae family has not been proven, although two hypothetical proteins, YbxF and YlxQ, have been proposed to be L7Ae homologs based on sequence conservation. Using purified, recombinant proteins, we show that Bacillus subtilis YbxF and YlxQ bind K-turns (K(d) ~270 nM and ~2300 nM, respectively). Crystallographic structure determination demonstrates that both YbxF and YlxQ adopt the same overall fold as L7Ae. Unlike the latter, neither bacterial protein recognizes K-loops, a structural motif that lacks the canonical helix of the K-turn. This property is shared between the bacterial and eukaryal family members. Comparison of our structure of YbxF in complex with the K-turn of the SAM-I riboswitch and previously determined structures of archaeal and eukaryal homologs bound to RNA indicates that L7Ae approaches the K-turn at a unique angle, which results in a considerably larger RNA-protein interface dominated by interactions with the noncanonical helix of the K-turn. Thus, the inability of the bacterial and eukaryal L7Ae homologs to bind K-loops probably results from their reliance on interactions with the canonical helix. The biological functions of YbxF and YlxQ remain to be determined.
Collapse
Affiliation(s)
- Nathan J. Baird
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Jinwei Zhang
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Tomoko Hamma
- Pacific Northwest University of Health Sciences, Yakima, Washington 98901, USA
| | - Adrian R. Ferré-D'Amaré
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892-8012, USA
- Corresponding author.E-mail .
| |
Collapse
|
35
|
Lippa GM, Liberman JA, Jenkins JL, Krucinska J, Salim M, Wedekind JE. Crystallographic analysis of small ribozymes and riboswitches. Methods Mol Biol 2012; 848:159-84. [PMID: 22315069 PMCID: PMC5008910 DOI: 10.1007/978-1-61779-545-9_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribozymes and riboswitches are RNA motifs that accelerate biological reactions and regulate gene expression in response to metabolite recognition, respectively. These RNA molecules gain functionality via complex folding that cannot be predicted a priori, and thus requires high-resolution three-dimensional structure determination to locate key functional attributes. Herein, we present an overview of the methods used to determine small RNA structures with an emphasis on RNA preparation, crystallization, and structure refinement. We draw upon examples from our own research in the analysis of the leadzyme ribozyme, the hairpin ribozyme, a class I preQ(1) riboswitch, and variants of a larger class II preQ(1) riboswitch. The methods presented provide a guide for comparable investigations of noncoding RNA molecules including a 48-solution, "first choice" RNA crystal screen compiled from our prior successes with commercially available screens.
Collapse
Affiliation(s)
- Geoffrey M Lippa
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | |
Collapse
|
36
|
Morimoto J, Hayashi Y, Iwasaki K, Suga H. Flexizymes: their evolutionary history and the origin of catalytic function. Acc Chem Res 2011; 44:1359-68. [PMID: 21711008 DOI: 10.1021/ar2000953] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transfer RNA (tRNA) is an essential component of the cell's translation apparatus. These RNA strands contain the anticodon for a given amino acid, and when "charged" with that amino acid are termed aminoacyl-tRNA. Aminoacylation, which occurs exclusively at one of the 3'-terminal hydroxyl groups of tRNA, is catalyzed by a family of enzymes called aminoacyl-tRNA synthetases (ARSs). In a primitive translation system, before the advent of sophisticated protein-based enzymes, this chemical event could conceivably have been catalyzed solely by RNA enzymes. Given the evolutionary implications, our group attempted in vitro selection of artificial ARS-like ribozymes, successfully uncovering a functional ribozyme (r24) from an RNA pool of random sequences attached to the 5'-leader region of tRNA. This ribozyme preferentially charges aromatic amino acids (such as phenylalanine) activated with cyanomethyl ester (CME) onto specific kinds of tRNA. During the course of our studies, we became interested in developing a versatile, rather than a specific, aminoacylation catalyst. Such a ribozyme could facilitate the preparation of intentionally misacylated tRNAs and thus serve a convenient tool for manipulating the genetic code. On the basis of biochemical studies of r24, we constructed a truncated version of r24 (r24mini) that was 57 nucleotides long. This r24mini was then further shortened to 45 nucleotides. This ribozyme could charge various tRNAs through very simple three-base-pair interactions between the ribozyme's 3'-end and the tRNA's 3'-end. We termed this ribozyme a "flexizyme" (Fx3 for this particular construct) owing to its flexibility in addressing tRNAs. To devise an even more flexible tool for tRNA acylation, we attempted to eliminate the amino acid specificity from Fx3. This attempt yielded an Fx3 variant, termed dFx, which accepts amino acid substrates having 3,5-dinitrobenzyl ester instead of CME as a leaving group. Similar selection attempts with the original phenylalanine-CME and a substrate activated by (2-aminoethyl)amidocarboxybenzyl thioester yielded the variants eFx and aFx (e and a denote enhanced and amino, respectively). In this Account, we describe the history and development of these flexizymes and their appropriate substrates, which provide a versatile and easy-to-use tRNA acylation system. Their use permits the synthesis of a wide array of acyl-tRNAs charged with artificial amino and hydroxy acids. In parallel to these efforts, we initiated a crystallization study of Fx3 covalently conjugated to a microhelix RNA, which is an analogue of tRNA. The X-ray crystal structure, solved as a co-complex with phenylalanine ethyl ester and U1A-binding protein, revealed the structural basis of this enzyme. Most importantly, many biochemical observations were consistent with the crystal structure. Along with the predicted three regular-helix regions, however, the flexizyme has a unique irregular helix that was unexpected. This irregular helix constitutes a recognition pocket for the aromatic ring of the amino acid side chain and precisely brings the carbonyl group to the 3'-hydroxyl group of the tRNA 3'-end. This study has clearly defined the molecular interactions between Fx3, tRNA, and the amino acid substrate, revealing the fundamental basis of this unique catalytic system.
Collapse
Affiliation(s)
- Jumpei Morimoto
- Department of Chemistry, School of Science, ‡Department of Chemistry and Biotechnology, School of Engineering, and §Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuuki Hayashi
- Department of Chemistry, School of Science, ‡Department of Chemistry and Biotechnology, School of Engineering, and §Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Iwasaki
- Department of Chemistry, School of Science, ‡Department of Chemistry and Biotechnology, School of Engineering, and §Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Suga
- Department of Chemistry, School of Science, ‡Department of Chemistry and Biotechnology, School of Engineering, and §Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Lin L, Caton-Williams J, Kaur M, Patino AM, Sheng J, Punetha J, Huang Z. Facile synthesis of nucleoside 5'-(α-P-seleno)-triphosphates and phosphoroselenoate RNA transcription. RNA (NEW YORK, N.Y.) 2011; 17:1932-1938. [PMID: 21873462 PMCID: PMC3185924 DOI: 10.1261/rna.2719311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 07/07/2011] [Indexed: 05/31/2023]
Abstract
Phosphoroselenoate RNA (PSe-RNA) is nuclease resistant and has great potentials in X-ray crystal structure and function studies of noncoding RNAs and protein-RNA interactions. In order to conveniently synthesize PSe-RNA via transcription, we have developed a one-pot synthetic method for the nucleoside 5'-(α-P-seleno)-triphosphates (NTPαSe) analogs without protecting any functionality of the ribonucleosides. The NTPαSe diastereomers have been purified, fully characterized, and incorporated into RNAs by T7 RNA polymerase. The transcribed RNAs are diastereomerically pure, and the Se-derivatized ribozymes are generally active. Furthermore, we have established an affinity purification strategy by using immobilized boronate to conveniently purify NTPαSe analogs. Though the affinity-purified NTPαSe analogs are diastereomeric mixtures, they can be directly used in transcription without a significant impact on the transcription efficiency. Moreover, we found that the PSe-nucleotide is stable during polyacrylamide gel purification, indicating that the PSe-RNAs can be purified straightforwardly for crystal structural and functional studies.
Collapse
Affiliation(s)
- Lina Lin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | - Manindar Kaur
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | - Andres M. Patino
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Jia Sheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | - Jaya Punetha
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
38
|
Abstract
Apart from the ribosome, the crystal structure of the bacterial RNase P in complex with a tRNA, reported by Reiter and colleagues recently, constitutes the first example of a multiple turnover RNA enzyme. Except in rare exceptions, RNase P is ubiquitous and, like the ribosome, is older than the initial branch point of the phylogenetic tree. Importantly, the structure shows how the RNA and the protein moieties cooperate to process the pre-tRNA substrates. The catalytic site comprises some critical RNA residues spread over the secondary structure but gathered in a compact volume next to the protein, which helps recognize and orient the substrate. The discussion here outlines some important aspects of that crystal structure, some of which could apply to RNA molecules in general.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacillus subtilis/enzymology
- Bacillus subtilis/genetics
- Base Pairing
- Catalytic Domain
- Crystallography
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Evolution, Molecular
- Holoenzymes
- Molecular Sequence Data
- Phylogeny
- Protein Structure, Quaternary
- RNA Precursors/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribonuclease P/chemistry
- Ribonuclease P/genetics
- Ribonuclease P/metabolism
- Substrate Specificity
- Thermotoga maritima/enzymology
- Thermotoga maritima/genetics
Collapse
Affiliation(s)
- Benoît Masquida
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire du CNRS, Université de Strasbourg, 67084 Strasbourg Cedex, France.
| | | |
Collapse
|
39
|
Ravindran PP, Héroux A, Ye JD. Improvement of the crystallizability and expression of an RNA crystallization chaperone. J Biochem 2011; 150:535-43. [PMID: 21785128 DOI: 10.1093/jb/mvr093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Crystallizing RNA has been an imperative and challenging task in the world of RNA research. Assistive methods such as chaperone-assisted RNA crystallography (CARC), employing monoclonal antibody fragments (Fabs) as crystallization chaperones have enabled us to obtain RNA crystal structures by forming crystal contacts and providing initial phasing information. Despite the early successes, the crystallization of large RNA-Fab complex remains a challenge in practice. The possible reason for this difficulty is that the Fab scaffold has not been optimized for crystallization in complex with RNA. Here, we have used the surface entropy reduction (SER) technique for the optimization of ΔC209 P4-P6/Fab2 model system. Protruding lysine and glutamate residues were mutated to a set of alanines or serines to construct Fab2SMA or Fab2SMS. Expression with the shake flask approach was optimized to allow large scale production for crystallization. Crystal screening shows that significantly higher crystal-forming ratio was observed for the mutant complexes. As the chosen SER residues are far away from the CDR regions of the Fab, the same set of mutations can now be directly applied to other Fabs binding to a variety of ribozymes and riboswitches to improve the crystallizability of Fab-RNA complex.
Collapse
|
40
|
Dibrov S, McLean J, Hermann T. Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:97-104. [PMID: 21245530 PMCID: PMC3045271 DOI: 10.1107/s0907444910050900] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 12/04/2010] [Indexed: 11/10/2022]
Abstract
A sequence around the start codon of the mRNA of human thymidylate synthase (TS) folds into a secondary-structure motif in which the initiation site is sequestered in a metastable hairpin. Binding of the protein to its own mRNA at the hairpin prevents the production of TS through a translation-repression feedback mechanism. Stabilization of the mRNA hairpin by other ligands has been proposed as a strategy to reduce TS levels in anticancer therapy. Rapidly proliferating cells require high TS activity to maintain the production of thymidine as a building block for DNA synthesis. The crystal structure of a model oligonucleotide (TS1) that represents the TS-binding site of the mRNA has been determined. While fluorescence studies showed that the TS1 RNA preferentially adopts a hairpin structure in solution, even at high RNA concentrations, an asymmetric dimer of two hybridized TS1 strands was obtained in the crystal. The TS1 dimer contains an unusual S-turn motif that also occurs in the `off' state of the human ribosomal decoding site RNA.
Collapse
Affiliation(s)
- Sergey Dibrov
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jaime McLean
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|