1
|
Jackson RW, Smathers CM, Robart AR. General Strategies for RNA X-ray Crystallography. Molecules 2023; 28:2111. [PMID: 36903357 PMCID: PMC10004510 DOI: 10.3390/molecules28052111] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
An extremely small proportion of the X-ray crystal structures deposited in the Protein Data Bank are of RNA or RNA-protein complexes. This is due to three main obstacles to the successful determination of RNA structure: (1) low yields of pure, properly folded RNA; (2) difficulty creating crystal contacts due to low sequence diversity; and (3) limited methods for phasing. Various approaches have been developed to address these obstacles, such as native RNA purification, engineered crystallization modules, and incorporation of proteins to assist in phasing. In this review, we will discuss these strategies and provide examples of how they are used in practice.
Collapse
Affiliation(s)
| | | | - Aaron R. Robart
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 20506, USA
| |
Collapse
|
2
|
Genomics-based strategies toward the identification of a Z-ISO carotenoid biosynthetic enzyme suitable for structural studies. Methods Enzymol 2022; 671:171-205. [PMID: 35878977 DOI: 10.1016/bs.mie.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Over the past 20years, structural genomics efforts have proven enormously successful for the determination of integral membrane protein structures, particularly for those of prokaryotic origin. However, traditional genomic expansion screens have included up to hundreds of targets, necessitating the use of robotics and other automation not available to most laboratories. Moreover, such large-scale screens of eukaryotic targets are not easily performed at such a scale. To have broader appeal, traditional structural genomic approaches need to be modified and improved such that they are feasible for most laboratories and especially so for proteins from eukaryotic organisms. One such refinement, termed "microgenomic expansion," has been recently described. This approach improves the process of target selection by making target screening a two-step process, with a minimal number of targets tested at each step. Microgenomic expansion methods are applied here theoretically to a project that has the objective of acquiring a structure for the plant 15-cis-ζ-carotene isomerase, Z-ISO.
Collapse
|
3
|
Chesterman C, Arnold E. Co-crystallization with diabodies: A case study for the introduction of synthetic symmetry. Structure 2021; 29:598-605.e3. [PMID: 33636101 PMCID: PMC8178225 DOI: 10.1016/j.str.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/05/2020] [Accepted: 02/08/2021] [Indexed: 01/09/2023]
Abstract
This work presents a method for introducing synthetic symmetry into protein crystallization samples using an antibody fragment termed a diabody (Dab). These Dabs contain two target binding sites, and engineered disulfide bonds have been included to modulate Dab flexibility. The impacts of Dab engineering have been observed through assessment of thermal stability, small-angle X-ray scattering, and high-resolution crystal structures. Complexes between the engineered Dabs and HIV-1 reverse transcriptase (RT) bound to a high-affinity DNA aptamer were also generated to explore the capacity of engineered Dabs to enable the crystallization of bound target proteins. This strategy increased the crystallization hit frequency obtained for RT-aptamer, and the structure of a Dab-RT-aptamer complex was determined to 3.0-Å resolution. Introduction of synthetic symmetry using a Dab could be a broadly applicable strategy, especially when monoclonal antibodies for a target have previously been identified.
Collapse
Affiliation(s)
- Chelsy Chesterman
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA; GSK, Rockville, MD 20850, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
4
|
The Intervening Removable Affinity Tag (iRAT) System for the Production of Recombinant Antibody Fragments. Methods Mol Biol 2020. [PMID: 33301113 DOI: 10.1007/978-1-0716-1126-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Fv and Fab antibody fragments are versatile co-crystallization partners that aid in the structural determination of otherwise "uncrystallizable" proteins, including human/mammalian membrane proteins. Accessible methods for the rapid and reliable production of recombinant antibody fragments have been long sought. In this chapter, we describe the concept and protocols of the intervening removable affinity tag (iRAT) system for the efficient production of Fv and Fab fragments in milligram quantities, which are sufficient for structural studies. As an extension of the iRAT system, we also provide a new method for the creation of genetically encoded fluorescent Fab fragments, which are potentially useful as molecular devices in various basic biomedical and clinical procedures, such as immunofluorescence cytometry, bioimaging, and immunodiagnosis.
Collapse
|
5
|
Ecsédi P, Gógl G, Hóf H, Kiss B, Harmat V, Nyitray L. Structure Determination of the Transactivation Domain of p53 in Complex with S100A4 Using Annexin A2 as a Crystallization Chaperone. Structure 2020; 28:943-953.e4. [PMID: 32442400 DOI: 10.1016/j.str.2020.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/05/2020] [Accepted: 05/01/2020] [Indexed: 11/29/2022]
Abstract
To fully understand the environmental factors that influence crystallization is an enormous task, therefore crystallographers are still forced to work "blindly" trying as many crystallizing conditions and mutations to improve crystal packing as possible. Numerous times these random attempts simply fail even when using state-of-the-art techniques. As an alternative, crystallization chaperones, having good crystal-forming properties, can be invoked. Today, the almost exclusively used such protein is the maltose-binding protein (MBP) and crystallographers need other widely applicable options. Here, we introduce annexin A2 (ANXA2), which has just as good, if not better, crystal-forming ability than the wild-type MBP. Using ANXA2 as heterologous fusion partner, we were able to solve the atomic resolution structure of a challenging crystallization target, the transactivation domain (TAD) of p53 in complex with the metastasis-associated protein S100A4. p53 TAD forms an asymmetric fuzzy complex with the symmetric S1004 and could interfere with its function.
Collapse
Affiliation(s)
- Péter Ecsédi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Gergő Gógl
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest 1117, Hungary; Institute of Genetics and of Molecular and Cellular Biology, IGBMC, Strasbourg 67400, France
| | - Henrietta Hóf
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Veronika Harmat
- ELTE Eötvös Loránd University, Institute of Chemistry, MTA-ELTE Protein Modeling Research Group, Budapest 1117, Hungary
| | - László Nyitray
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest 1117, Hungary.
| |
Collapse
|
6
|
Chen S, Zhang W, Min J, Liu K. Lesson from a Fab-enabled co-crystallization study of TDRD2 and PIWIL1. Methods 2020; 175:72-78. [PMID: 31288074 DOI: 10.1016/j.ymeth.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022] Open
Abstract
The interaction of Tudor domain-containing proteins (TDRDs) with P-element-induced wimpy testis (PIWI) proteins plays critical roles in transposon silencing and spermatogenesis. Most human TDRDs recognize PIWI proteins in a methylarginine-dependent manner via their extended Tudor (eTudor) domains, except TDRD2, which prefers an unmethylated PIWI protein. In order to illustrate the recognition of unmethylated PIWI proteins by TDRD2, we extensively tried co-crystallization of the TDRD2 eTudor with different PIWIL1 peptides, but to no avail. Recombinant antigen-binding fragments (Fabs) have been used to crystallize some difficult proteins in the past, so we generated Fab against the TDRD2 eTudor protein using a phage-display antibody library, and one of these Fab fragments indeed facilitated the co-crystallization of TDRD2 and PIWIL1. Structural analysis of Fab, the TDRD2 eTudor domain in complex with an unmethylated PIWIL1-derived peptide revealed that the PIWIL1 residues G3 through R8 bound between the Tudor core and SN domain of TDRD2. The C-terminal residues of the PIWIL1 peptide were not resolved, presumably due to steric competition with the heavy chain of the Fab. We propose Fab-assisted crystallization as a tool not only for structural studies of single proteins, but also for analysis of interactions between proteins and their ligands in cases where co-crystallization of native protein complexes fails.
Collapse
Affiliation(s)
- Sizhuo Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Weilian Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
7
|
Lattice engineering enables definition of molecular features allowing for potent small-molecule inhibition of HIV-1 entry. Nat Commun 2019; 10:47. [PMID: 30604750 PMCID: PMC6318274 DOI: 10.1038/s41467-018-07851-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Diverse entry inhibitors targeting the gp120 subunit of the HIV-1 envelope (Env) trimer have been developed including BMS-626529, also called temsavir, a prodrug version of which is currently in phase III clinical trials. Here we report the characterization of a panel of small-molecule inhibitors including BMS-818251, which we show to be >10-fold more potent than temsavir on a cross-clade panel of 208-HIV-1 strains, as well as the engineering of a crystal lattice to enable structure determination of the interaction between these inhibitors and the HIV-1 Env trimer at higher resolution. By altering crystallization lattice chaperones, we identify a lattice with both improved diffraction and robust co-crystallization of HIV-1 Env trimers from different clades complexed to entry inhibitors with a range of binding affinities. The improved diffraction reveals BMS-818251 to utilize functional groups that interact with gp120 residues from the conserved β20-β21 hairpin to improve potency. Temsavir, a compound that inhibits HIV entry by binding envelope (Env), is currently in clinical development. Here, Lai et al. identify a more than 10-fold improved compound and, using lattice engineering, obtain crystal structures that give insights into improved inhibition between small molecules and Env.
Collapse
|
8
|
Structural basis for activation of SAGA histone acetyltransferase Gcn5 by partner subunit Ada2. Proc Natl Acad Sci U S A 2018; 115:10010-10015. [PMID: 30224453 DOI: 10.1073/pnas.1805343115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Gcn5 histone acetyltransferase (HAT) subunit of the SAGA transcriptional coactivator complex catalyzes acetylation of histone H3 and H2B N-terminal tails, posttranslational modifications associated with gene activation. Binding of the SAGA subunit partner Ada2 to Gcn5 activates Gcn5's intrinsically weak HAT activity on histone proteins, but the mechanism for this activation by the Ada2 SANT domain has remained elusive. We have employed Fab antibody fragments as crystallization chaperones to determine crystal structures of a yeast Ada2/Gcn5 complex. Our structural and biochemical results indicate that the Ada2 SANT domain does not activate Gcn5's activity by directly affecting histone peptide binding as previously proposed. Instead, the Ada2 SANT domain enhances Gcn5 binding of the enzymatic cosubstrate acetyl-CoA. This finding suggests a mechanism for regulating chromatin modification enzyme activity: controlling binding of the modification cosubstrate instead of the histone substrate.
Collapse
|
9
|
Hansen DT, Craciunescu FM, Fromme P, Johnston SA, Sykes KF. Generation of High-Specificity Antibodies against Membrane Proteins Using DNA-Gold Micronanoplexes for Gene Gun Immunization. ACTA ACUST UNITED AC 2018. [PMID: 29516482 DOI: 10.1002/cpps.50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Membrane proteins are the molecular interface of the cell and its environs; however, studies of membrane proteins are highly technically challenging, mainly due to instability of the isolated protein. Towards the production of antibodies that recognize properly folded and stabilized forms of membrane protein antigen, we describe a DNA-based immunization method for mice that expresses the antigen in the membranes of dendritic cells, thus allowing direct presentation to the immune system. This genetic immunization approach employs a highly efficient method of biolistic delivery based on DNA-gold micronanoplexes, which are complexes of micron-sized gold particles that allow dermal penetration and nanometer-sized gold particles that provide a higher surface area for DNA binding than micron gold alone. In contrast to antibodies derived from immunizations with detergent-solubilized protein or with protein fragments, antibodies from genetic immunization are expected to have a high capacity for binding conformational epitopes and for modulating membrane protein activity. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Debra T Hansen
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona
| | - Felicia M Craciunescu
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona
| | - Stephen A Johnston
- Biodesign Center for Innovations in Medicine, Arizona State University, Tempe, Arizona
| | - Kathryn F Sykes
- Biodesign Center for Innovations in Medicine, Arizona State University, Tempe, Arizona.,Current address: HealthTell, Inc, Chandler, Arizona
| |
Collapse
|
10
|
Jaenecke F, Nakada-Nakura Y, Nagarathinam K, Ogasawara S, Liu K, Hotta Y, Iwata S, Nomura N, Tanabe M. Generation of Conformation-Specific Antibody Fragments for Crystallization of the Multidrug Resistance Transporter MdfA. Methods Mol Biol 2018; 1700:97-109. [PMID: 29177828 DOI: 10.1007/978-1-4939-7454-2_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
A major hurdle in membrane protein crystallography is generating crystals diffracting sufficiently for structure determination. This is often attributed not only to the difficulty of obtaining functionally active protein in mg amounts but also to the intrinsic flexibility of its multiple conformations. The cocrystallization of membrane proteins with antibody fragments has been reported as an effective approach to improve the diffraction quality of membrane protein crystals by limiting the intrinsic flexibility. Isolating suitable antibody fragments recognizing a single conformation of a native membrane protein is not a straightforward task. However, by a systematic screening approach, the time to obtain suitable antibody fragments and consequently the chance of obtaining diffracting crystals can be reduced. In this chapter, we describe a protocol for the generation of Fab fragments recognizing the native conformation of a major facilitator superfamily (MFS)-type MDR transporter MdfA from Escherichia coli. We confirmed that the use of Fab fragments was efficient for stabilization of MdfA and improvement of its crystallization properties.
Collapse
Affiliation(s)
- Frank Jaenecke
- HALOmem, Membrane Protein Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Yoshiko Nakada-Nakura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.,Research Acceleration Program, Membrane Protein Crystallography Project, Japan Science and Technology Agency, Sakyo-ku, Kyoto, Japan
| | - Kumar Nagarathinam
- HALOmem, Membrane Protein Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Satoshi Ogasawara
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.,Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| | - Kehong Liu
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Yunhon Hotta
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.,Research Acceleration Program, Membrane Protein Crystallography Project, Japan Science and Technology Agency, Sakyo-ku, Kyoto, Japan.,ERATO, Iwata Human Receptor Crystallography Project, Japan Science and Technology Agency, Sakyo-ku, Kyoto, Japan.,RIKEN, SPring-8 Center, Sayo, Hyogo, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.,Research Acceleration Program, Membrane Protein Crystallography Project, Japan Science and Technology Agency, Sakyo-ku, Kyoto, Japan.,ERATO, Iwata Human Receptor Crystallography Project, Japan Science and Technology Agency, Sakyo-ku, Kyoto, Japan
| | - Mikio Tanabe
- HALOmem, Membrane Protein Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany. .,Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
11
|
Advances in the Application of Designed Ankyrin Repeat Proteins (DARPins) as Research Tools and Protein Therapeutics. Methods Mol Biol 2018; 1798:307-327. [PMID: 29868969 DOI: 10.1007/978-1-4939-7893-9_23] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonimmunoglobulin scaffolds have been developed to overcome the limitations of monoclonal antibodies with regard to stability and size. Of these scaffolds, the class of designed ankyrin repeat proteins (DARPins) has advanced the most in biochemical and biomedical applications. This review focuses on the recent progress in DARPin technology, highlighting the scaffold's potential and possibilities.
Collapse
|
12
|
Entzminger KC, Hyun JM, Pantazes RJ, Patterson-Orazem AC, Qerqez AN, Frye ZP, Hughes RA, Ellington AD, Lieberman RL, Maranas CD, Maynard JA. De novo design of antibody complementarity determining regions binding a FLAG tetra-peptide. Sci Rep 2017; 7:10295. [PMID: 28860479 PMCID: PMC5579192 DOI: 10.1038/s41598-017-10737-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022] Open
Abstract
Computational antibody engineering efforts to date have focused on improving binding affinities or biophysical characteristics. De novo design of antibodies binding specific epitopes could greatly accelerate discovery of therapeutics as compared to conventional immunization or synthetic library selection strategies. Here, we employed de novo complementarity determining region (CDR) design to engineer targeted antibody-antigen interactions using previously described in silico methods. CDRs predicted to bind the minimal FLAG peptide (Asp-Tyr-Lys-Asp) were grafted onto a single-chain variable fragment (scFv) acceptor framework. Fifty scFvs comprised of designed heavy and light or just heavy chain CDRs were synthesized and screened for peptide binding by phage ELISA. Roughly half of the designs resulted in detectable scFv expression. Four antibodies, designed entirely in silico, bound the minimal FLAG sequence with high specificity and sensitivity. When reformatted as soluble antigen-binding fragments (Fab), these clones expressed well, were predominantly monomeric and retained peptide specificity. In both formats, the antibodies bind the peptide only when present at the amino-terminus of a carrier protein and even conservative peptide amino acid substitutions resulted in a complete loss of binding. These results support in silico CDR design of antibody specificity as an emerging antibody engineering strategy.
Collapse
Affiliation(s)
- Kevin C Entzminger
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeong-Min Hyun
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert J Pantazes
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | | | - Ahlam N Qerqez
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Zach P Frye
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Randall A Hughes
- Applied Research Laboratories, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Costas D Maranas
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Jennifer A Maynard
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA. .,Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
13
|
Conroy PJ, Law RH, Caradoc-Davies TT, Whisstock JC. Antibodies: From novel repertoires to defining and refining the structure of biologically important targets. Methods 2017; 116:12-22. [DOI: 10.1016/j.ymeth.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/02/2023] Open
|
14
|
Veugelen S, Dewilde M, De Strooper B, Chávez-Gutiérrez L. Screening and Characterization Strategies for Nanobodies Targeting Membrane Proteins. Methods Enzymol 2016; 584:59-97. [PMID: 28065273 DOI: 10.1016/bs.mie.2016.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The study of membrane protein function and structure requires their successful detection, expression, solubilization, and/or reconstitution, which poses a challenging task and relies on the availability of suitable tools. Several research groups have successfully applied Nanobodies in the purification, as well as the functional and structural characterization of membrane proteins. Nanobodies are small, single-chain antibody fragments originating from camelids presenting on average a longer CDR3 which enables them to bind in cavities and clefts (such as active and allosteric sites). Notably, Nanobodies generally bind conformational epitopes making them very interesting tools to stabilize, dissect, and characterize specific protein conformations. In the clinic, several Nanobodies are under evaluation either as potential drug candidates or as diagnostic tools. In recent years, we have successfully generated high-affinity, conformation-sensitive anti-γ-secretase Nanobodies. γ-Secretase is a multimeric membrane protease involved in processing of the amyloid precursor protein with high clinical relevance as mutations in its catalytic subunit (Presenilin) cause early-onset Alzheimer's disease. Advancing our knowledge on the mechanisms governing γ-secretase intramembrane proteolysis through various strategies may lead to novel therapeutic avenues for Alzheimer's disease. In this chapter, we present the strategies we have developed and applied for the screening and characterization of anti-γ-secretase Nanobodies. These protocols could be of help in the generation of Nanobodies targeting other membrane proteins.
Collapse
Affiliation(s)
- S Veugelen
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - M Dewilde
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - B De Strooper
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium; UCL Institute of Neurology, London, United Kingdom
| | - L Chávez-Gutiérrez
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium.
| |
Collapse
|
15
|
Nomura Y, Sato Y, Suno R, Horita S, Iwata S, Nomura N. The intervening removable affinity tag (iRAT) production system facilitates Fv antibody fragment-mediated crystallography. Protein Sci 2016; 25:2268-2276. [PMID: 27595817 DOI: 10.1002/pro.3035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 01/20/2023]
Abstract
Fv antibody fragments have been used as co-crystallization partners in structural biology, particularly in membrane protein crystallography. However, there are inherent technical issues associated with the large-scale production of soluble, functional Fv fragments through conventional methods in various expression systems. To circumvent these problems, we developed a new method, in which a single synthetic polyprotein consisting of a variable light (VL ) domain, an intervening removable affinity tag (iRAT), and a variable heavy (VH ) domain is expressed by a Gram-positive bacterial secretion system. This method ensures stoichiometric expression of VL and VH from the monocistronic construct followed by proper folding and assembly of the two variable domains. The iRAT segment can be removed by a site-specific protease during the purification process to yield tag-free Fv fragments suitable for crystallization trials. In vitro refolding step is not required to obtain correctly folded Fv fragments. As a proof of concept, we tested the iRAT-based production of multiple Fv fragments, including a crystallization chaperone for a mammalian membrane protein as well as FDA-approved therapeutic antibodies. The resulting Fv fragments were functionally active and crystallized in complex with the target proteins. The iRAT system is a reliable, rapid and broadly applicable means of producing milligram quantities of Fv fragments for structural and biochemical studies.
Collapse
Affiliation(s)
- Yayoi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Japan Science and Technology Agency, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yumi Sato
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Japan Science and Technology Agency, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ryoji Suno
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shoichiro Horita
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Japan Science and Technology Agency, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,RIKEN SPring-8 Center, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Japan Science and Technology Agency, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
16
|
Jeong WH, Lee H, Song DH, Eom JH, Kim SC, Lee HS, Lee H, Lee JO. Connecting two proteins using a fusion alpha helix stabilized by a chemical cross linker. Nat Commun 2016; 7:11031. [PMID: 26980593 PMCID: PMC4799363 DOI: 10.1038/ncomms11031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 02/15/2016] [Indexed: 11/23/2022] Open
Abstract
Building a sophisticated protein nano-assembly requires a method for linking protein components in a predictable and stable structure. Most of the cross linkers available have flexible spacers. Because of this, the linked hybrids have significant structural flexibility and the relative structure between their two components is largely unpredictable. Here we describe a method of connecting two proteins via a ‘fusion α helix' formed by joining two pre-existing helices into a single extended helix. Because simple ligation of two helices does not guarantee the formation of a continuous helix, we used EY-CBS, a synthetic cross linker that has been shown to react selectively with cysteines in α-helices, to stabilize the connecting helix. Formation and stabilization of the fusion helix was confirmed by determining the crystal structures of the fusion proteins with and without bound EY-CBS. Our method should be widely applicable for linking protein building blocks to generate predictable structures. Linking protein components in a controlled manner is crucial for assembling protein nanostructures with pre-determined architecture. Here, the authors use a chemical cross-linker to fuse the terminal helices of two proteins into a single one, forcing the protein domains in a specific orientation.
Collapse
Affiliation(s)
| | - Haerim Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | | | - Jae-Hoon Eom
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Sun Chang Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Hee-Seung Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jie-Oh Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
17
|
Polyclonal Antibody Production for Membrane Proteins via Genetic Immunization. Sci Rep 2016; 6:21925. [PMID: 26908053 PMCID: PMC4764931 DOI: 10.1038/srep21925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/02/2016] [Indexed: 01/08/2023] Open
Abstract
Antibodies are essential for structural determinations and functional studies of membrane proteins, but antibody generation is limited by the availability of properly-folded and purified antigen. We describe the first application of genetic immunization to a structurally diverse set of membrane proteins to show that immunization of mice with DNA alone produced antibodies against 71% (n = 17) of the bacterial and viral targets. Antibody production correlated with prior reports of target immunogenicity in host organisms, underscoring the efficiency of this DNA-gold micronanoplex approach. To generate each antigen for antibody characterization, we also developed a simple in vitro membrane protein expression and capture method. Antibody specificity was demonstrated upon identifying, for the first time, membrane-directed heterologous expression of the native sequences of the FopA and FTT1525 virulence determinants from the select agent Francisella tularensis SCHU S4. These approaches will accelerate future structural and functional investigations of therapeutically-relevant membrane proteins.
Collapse
|
18
|
Suharni, Nomura Y, Arakawa T, Hino T, Abe H, Nakada-Nakura Y, Sato Y, Iwanari H, Shiroishi M, Asada H, Shimamura T, Murata T, Kobayashi T, Hamakubo T, Iwata S, Nomura N. Proteoliposome-based selection of a recombinant antibody fragment against the human M2 muscarinic acetylcholine receptor. Monoclon Antib Immunodiagn Immunother 2016; 33:378-85. [PMID: 25545206 DOI: 10.1089/mab.2014.0041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of antibodies against human G-protein-coupled receptors (GPCRs) has achieved limited success, which has mainly been attributed to their low stability in a detergent-solubilized state. We herein describe a method that can generally be applied to the selection of phage display libraries with human GPCRs reconstituted in liposomes. A key feature of this approach is the production of biotinylated proteoliposomes that can be immobilized on the surface of streptavidin-coupled microplates or paramagnetic beads and used as a binding target for antibodies. As an example, we isolated a single chain Fv fragment from an immune phage library that specifically binds to the human M2 muscarinic acetylcholine receptor with nanomolar affinity. The selected antibody fragment recognized the GPCR in both detergent-solubilized and membrane-embedded forms, which suggests that it may be a potentially valuable tool for structural and functional studies of the GPCR. The use of proteoliposomes as immunogens and screening bait will facilitate the application of phage display to this difficult class of membrane proteins.
Collapse
Affiliation(s)
- Suharni
- 1 Department of Cell Biology, Graduate School of Medicine, Kyoto University , Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Deller MC, Kong L, Rupp B. Protein stability: a crystallographer's perspective. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:72-95. [PMID: 26841758 PMCID: PMC4741188 DOI: 10.1107/s2053230x15024619] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022]
Abstract
Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.
Collapse
Affiliation(s)
- Marc C Deller
- Stanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125, USA
| | - Leopold Kong
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814, USA
| | - Bernhard Rupp
- Department of Forensic Crystallography, k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084, USA
| |
Collapse
|
20
|
Entzminger KC, Johnson JL, Hyun J, Lieberman RL, Maynard JA. Increased Fab thermoresistance via VH-targeted directed evolution. Protein Eng Des Sel 2015; 28:365-77. [PMID: 26283664 DOI: 10.1093/protein/gzv037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/15/2015] [Indexed: 01/17/2023] Open
Abstract
Antibody aggregation is frequently mediated by the complementarity determining regions within the variable domains and can significantly decrease purification yields, shorten shelf-life and increase the risk of anti-drug immune responses. Aggregation-resistant antibodies could offset these risks; accordingly, we have developed a directed evolution strategy to improve Fab stability. A Fab-phage display vector was constructed and the VH domain targeted for mutagenesis by error-prone PCR. To enrich for thermoresistant clones, the resulting phage library was transiently heated, followed by selection for binding to an anti-light chain constant domain antibody. Five unique variants were identified, each possessing one to three amino acid substitutions. Each engineered Fab possessed higher, Escherichia coli expression yield, a 2-3°C increase in apparent melting temperature and improved aggregation resistance upon heating at high concentration. Select mutations were combined and shown to confer additive improvements to these biophysical characteristics. Finally, the wild-type and most stable triple variant Fab variant were converted into a human IgG1 and expressed in mammalian cells. Both expression level and aggregation resistance were similarly improved in the engineered IgG1. Analysis of the wild-type Fab crystal structure provided a structural rationale for the selected residues changes. This approach can help guide future Fab stabilization efforts.
Collapse
Affiliation(s)
| | - Jennifer L Johnson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | | | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Jennifer A Maynard
- Chemical Engineering, University of Texas at Austin, 1 University Station, Austin, TX 78712, USA
| |
Collapse
|
21
|
Johnson JL, Entzminger KC, Hyun J, Kalyoncu S, Heaner DP, Morales IA, Sheppard A, Gumbart JC, Maynard JA, Lieberman RL. Structural and biophysical characterization of an epitope-specific engineered Fab fragment and complexation with membrane proteins: implications for co-crystallization. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:896-906. [PMID: 25849400 PMCID: PMC4388267 DOI: 10.1107/s1399004715001856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/28/2015] [Indexed: 12/22/2022]
Abstract
Crystallization chaperones are attracting increasing interest as a route to crystal growth and structure elucidation of difficult targets such as membrane proteins. While strategies to date have typically employed protein-specific chaperones, a peptide-specific chaperone to crystallize multiple cognate peptide epitope-containing client proteins is envisioned. This would eliminate the target-specific chaperone-production step and streamline the co-crystallization process. Previously, protein engineering and directed evolution were used to generate a single-chain variable (scFv) antibody fragment with affinity for the peptide sequence EYMPME (scFv/EE). This report details the conversion of scFv/EE to an anti-EE Fab format (Fab/EE) followed by its biophysical characterization. The addition of constant chains increased the overall stability and had a negligible impact on the antigen affinity. The 2.0 Å resolution crystal structure of Fab/EE reveals contacts with larger surface areas than those of scFv/EE. Surface plasmon resonance, an enzyme-linked immunosorbent assay, and size-exclusion chromatography were used to assess Fab/EE binding to EE-tagged soluble and membrane test proteins: namely, the β-barrel outer membrane protein intimin and α-helical A2a G protein-coupled receptor (A2aR). Molecular-dynamics simulation of the intimin constructs with and without Fab/EE provides insight into the energetic complexities of the co-crystallization approach.
Collapse
Affiliation(s)
- Jennifer L. Johnson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Kevin C. Entzminger
- McKetta Department of Chemical Engineering, University of Texas at Austin, MC0400, 1 University Station, Austin, TX 78712, USA
| | - Jeongmin Hyun
- McKetta Department of Chemical Engineering, University of Texas at Austin, MC0400, 1 University Station, Austin, TX 78712, USA
| | - Sibel Kalyoncu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - David P. Heaner
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Ivan A. Morales
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Aly Sheppard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - James C. Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
- School of Physics, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Jennifer A. Maynard
- McKetta Department of Chemical Engineering, University of Texas at Austin, MC0400, 1 University Station, Austin, TX 78712, USA
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| |
Collapse
|
22
|
Kalyoncu S, Hyun J, Pai JC, Johnson JL, Entzminger K, Jain A, Heaner DP, Morales IA, Truskett TM, Maynard JA, Lieberman RL. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments. Proteins 2014; 82:1884-95. [PMID: 24615866 PMCID: PMC4142072 DOI: 10.1002/prot.24542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 11/06/2022]
Abstract
Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three-dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although noncomplementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts.
Collapse
Affiliation(s)
- Sibel Kalyoncu
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400
| | - Jeongmin Hyun
- McKetta Department of Chemical Engineering, University of Texas at Austin, MC0400, 1 University Station, Austin, TX 78712
| | - Jennifer C. Pai
- McKetta Department of Chemical Engineering, University of Texas at Austin, MC0400, 1 University Station, Austin, TX 78712
| | - Jennifer L. Johnson
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400
| | - Kevin Entzminger
- McKetta Department of Chemical Engineering, University of Texas at Austin, MC0400, 1 University Station, Austin, TX 78712
| | - Avni Jain
- McKetta Department of Chemical Engineering, University of Texas at Austin, MC0400, 1 University Station, Austin, TX 78712
| | - David P. Heaner
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400
| | - Ivan A. Morales
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, MC0400, 1 University Station, Austin, TX 78712
| | - Jennifer A. Maynard
- McKetta Department of Chemical Engineering, University of Texas at Austin, MC0400, 1 University Station, Austin, TX 78712
| | - Raquel L. Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400
| |
Collapse
|
23
|
Ferrandez Y, Dezi M, Bosco M, Urvoas A, Valerio-Lepiniec M, Le Bon C, Giusti F, Broutin I, Durand G, Polidori A, Popot JL, Picard M, Minard P. Amphipol-mediated screening of molecular orthoses specific for membrane protein targets. J Membr Biol 2014; 247:925-40. [PMID: 25086771 DOI: 10.1007/s00232-014-9707-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
Abstract
Specific, tight-binding protein partners are valuable helpers to facilitate membrane protein (MP) crystallization, because they can i) stabilize the protein, ii) reduce its conformational heterogeneity, and iii) increase the polar surface from which well-ordered crystals can grow. The design and production of a new family of synthetic scaffolds (dubbed αReps, for "artificial alpha repeat protein") have been recently described. The stabilization and immobilization of MPs in a functional state are an absolute prerequisite for the screening of binders that recognize specifically their native conformation. We present here a general procedure for the selection of αReps specific of any MP. It relies on the use of biotinylated amphipols, which act as a universal "Velcro" to stabilize, and immobilize MP targets onto streptavidin-coated solid supports, thus doing away with the need to tag the protein itself.
Collapse
Affiliation(s)
- Yann Ferrandez
- Laboratoire de Modélisation et Ingénierie des Protéines, IBBMC UMR 8619, CNRS/Université Paris Sud, 91405, Orsay, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 2014; 98:7671-98. [PMID: 25070595 DOI: 10.1007/s00253-014-5948-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 02/08/2023]
Abstract
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug-target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.
Collapse
Affiliation(s)
- Anita Emmerstorfer
- ACIB-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | | | | | | |
Collapse
|
25
|
Generation and use of antibody fragments for structural studies of proteins refractory to crystallization. Methods Mol Biol 2014; 1131:549-61. [PMID: 24515490 DOI: 10.1007/978-1-62703-992-5_35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With the rapid technological advances in all aspects of macromolecular X-ray crystallography the preparation of diffraction quality crystals has become the rate-limiting step. Crystallization chaperones have proven effective for overcoming this barrier. Here we describe the usage of a Fab chaperone for the crystallization of HIV-1 Rev, a protein that has long resisted all attempts at elucidating its complete atomic structure.
Collapse
|
26
|
Nanobody mediated crystallization of an archeal mechanosensitive channel. PLoS One 2013; 8:e77984. [PMID: 24205053 PMCID: PMC3804602 DOI: 10.1371/journal.pone.0077984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Mechanosensitive channels (MS) are integral membrane proteins and allow bacteria to survive sudden changes in external osmolarity due to transient opening of their pores. The efflux of cytoplasmic osmolytes reduces the membrane tension and prevents membrane rupture. Therefore these channels serve as emergency valves when experiencing significant environmental stress. The preparation of high quality crystals of integral membrane proteins is a major bottleneck for structure determination by X-ray crystallography. Crystallization chaperones based on various protein scaffolds have emerged as promising tool to increase the crystallization probability of a selected target protein. So far archeal mechanosensitive channels of small conductance have resisted crystallization in our hands. To structurally analyse these channels, we selected nanobodies against an archeal MS channel after immunization of a llama with recombinant expressed, detergent solubilized and purified protein. Here we present the characterization of 23 different binders regarding their interaction with the channel protein using analytical gel filtration, western blotting and surface plasmon resonance. Selected nanobodies bound the target with affinities in the pico- to nanomolar range and some binders had a profound effect on the crystallization of the MS channel. Together with previous data we show that nanobodies are a versatile and valuable tool in structural biology by widening the crystallization space for highly challenging proteins, protein complexes and integral membrane proteins.
Collapse
|
27
|
Abstract
The crystallization of membrane proteins is an essential technique for the determination of atomic models of three-dimensional structures by X-ray crystallography. The compositions of solutions of purified membrane proteins are altered, so as to transiently induce supersaturation, a requirement for crystal nucleation and growth. The establishment of the precise optimal crystallization conditions has to be performed individually by a combination of systematic approaches and trial-and-error. These procedures have become more efficient due to the introduction of laboratory automation. Here we describe the crystallization of the dihaem-containing quinol:fumarate reductase (QFR) membrane protein complex and illustrate key factors important in the screening process.
Collapse
Affiliation(s)
- Florian G Müller
- Department of Structural Biology, Saarland University, Homburg, Germany
| | | |
Collapse
|
28
|
|