1
|
Dutta D, Nguyen V, Campbell KS, Padrón R, Craig R. Cryo-EM structure of the human cardiac myosin filament. Nature 2023; 623:853-862. [PMID: 37914935 PMCID: PMC10846670 DOI: 10.1038/s41586-023-06691-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Pumping of the heart is powered by filaments of the motor protein myosin that pull on actin filaments to generate cardiac contraction. In addition to myosin, the filaments contain cardiac myosin-binding protein C (cMyBP-C), which modulates contractility in response to physiological stimuli, and titin, which functions as a scaffold for filament assembly1. Myosin, cMyBP-C and titin are all subject to mutation, which can lead to heart failure. Despite the central importance of cardiac myosin filaments to life, their molecular structure has remained a mystery for 60 years2. Here we solve the structure of the main (cMyBP-C-containing) region of the human cardiac filament using cryo-electron microscopy. The reconstruction reveals the architecture of titin and cMyBP-C and shows how myosin's motor domains (heads) form three different types of motif (providing functional flexibility), which interact with each other and with titin and cMyBP-C to dictate filament architecture and function. The packing of myosin tails in the filament backbone is also resolved. The structure suggests how cMyBP-C helps to generate the cardiac super-relaxed state3; how titin and cMyBP-C may contribute to length-dependent activation4; and how mutations in myosin and cMyBP-C might disturb interactions, causing disease5,6. The reconstruction resolves past uncertainties and integrates previous data on cardiac muscle structure and function. It provides a new paradigm for interpreting structural, physiological and clinical observations, and for the design of potential therapeutic drugs.
Collapse
Affiliation(s)
- Debabrata Dutta
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Vu Nguyen
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kenneth S Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | - Raúl Padrón
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Dutta D, Nguyen V, Campbell KS, Padrón R, Craig R. Cryo-EM structure of the human cardiac myosin filament. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536274. [PMID: 37090534 PMCID: PMC10120621 DOI: 10.1101/2023.04.11.536274] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Pumping of the heart is powered by filaments of the motor protein myosin, which pull on actin filaments to generate cardiac contraction. In addition to myosin, the filaments contain cardiac myosin-binding protein C (cMyBP-C), which modulates contractility in response to physiological stimuli, and titin, which functions as a scaffold for filament assembly 1 . Myosin, cMyBP-C and titin are all subject to mutation, which can lead to heart failure. Despite the central importance of cardiac myosin filaments to life, their molecular structure has remained a mystery for 60 years 2 . Here, we have solved the structure of the main (cMyBP-C-containing) region of the human cardiac filament to 6 Å resolution by cryo-EM. The reconstruction reveals the architecture of titin and cMyBP-C for the first time, and shows how myosin's motor domains (heads) form 3 different types of motif (providing functional flexibility), which interact with each other and with specific domains of titin and cMyBP-C to dictate filament architecture and regulate function. A novel packing of myosin tails in the filament backbone is also resolved. The structure suggests how cMyBP-C helps generate the cardiac super-relaxed state 3 , how titin and cMyBP-C may contribute to length-dependent activation 4 , and how mutations in myosin and cMyBP-C might disrupt interactions, causing disease 5, 6 . A similar structure is likely in vertebrate skeletal myosin filaments. The reconstruction resolves past uncertainties, and integrates previous data on cardiac muscle structure and function. It provides a new paradigm for interpreting structural, physiological and clinical observations, and for the design of potential therapeutic drugs.
Collapse
|
3
|
Javor J, Ewoldt JK, Cloonan PE, Chopra A, Luu RJ, Freychet G, Zhernenkov M, Ludwig K, Seidman JG, Seidman CE, Chen CS, Bishop DJ. Probing the subcellular nanostructure of engineered human cardiomyocytes in 3D tissue. MICROSYSTEMS & NANOENGINEERING 2021; 7:10. [PMID: 34567727 PMCID: PMC8433147 DOI: 10.1038/s41378-020-00234-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 05/15/2023]
Abstract
The structural and functional maturation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is essential for pharmaceutical testing, disease modeling, and ultimately therapeutic use. Multicellular 3D-tissue platforms have improved the functional maturation of hiPSC-CMs, but probing cardiac contractile properties in a 3D environment remains challenging, especially at depth and in live tissues. Using small-angle X-ray scattering (SAXS) imaging, we show that hiPSC-CMs matured and examined in a 3D environment exhibit a periodic spatial arrangement of the myofilament lattice, which has not been previously detected in hiPSC-CMs. The contractile force is found to correlate with both the scattering intensity (R 2 = 0.44) and lattice spacing (R 2 = 0.46). The scattering intensity also correlates with lattice spacing (R 2 = 0.81), suggestive of lower noise in our structural measurement than in the functional measurement. Notably, we observed decreased myofilament ordering in tissues with a myofilament mutation known to lead to hypertrophic cardiomyopathy (HCM). Our results highlight the progress of human cardiac tissue engineering and enable unprecedented study of structural maturation in hiPSC-CMs.
Collapse
Affiliation(s)
- Josh Javor
- Department of Mechanical Engineering, Boston University, Boston, MA 02215 USA
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | - Paige E. Cloonan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | - Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | - Rebeccah J. Luu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | | | | | - Karl Ludwig
- Department of Physics, Boston University, Boston, MA 02215 USA
- Division of Materials Science, Boston University, Boston, Massachusetts 02215 USA
| | | | | | - Christopher S. Chen
- Department of Mechanical Engineering, Boston University, Boston, MA 02215 USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | - David J. Bishop
- Department of Mechanical Engineering, Boston University, Boston, MA 02215 USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
- Department of Physics, Boston University, Boston, MA 02215 USA
- Division of Materials Science, Boston University, Boston, Massachusetts 02215 USA
- Department of Electrical Engineering, Boston University, Boston, MA 02215 USA
| |
Collapse
|
4
|
Alamo L, Koubassova N, Pinto A, Gillilan R, Tsaturyan A, Padrón R. Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophys Rev 2017; 9:461-480. [PMID: 28871556 DOI: 10.1007/s12551-017-0295-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022] Open
Abstract
The tarantula skeletal muscle X-ray diffraction pattern suggested that the myosin heads were helically arranged on the thick filaments. Electron microscopy (EM) of negatively stained relaxed tarantula thick filaments revealed four helices of heads allowing a helical 3D reconstruction. Due to its low resolution (5.0 nm), the unambiguous interpretation of densities of both heads was not possible. A resolution increase up to 2.5 nm, achieved by cryo-EM of frozen-hydrated relaxed thick filaments and an iterative helical real space reconstruction, allowed the resolving of both heads. The two heads, "free" and "blocked", formed an asymmetric structure named the "interacting-heads motif" (IHM) which explained relaxation by self-inhibition of both heads ATPases. This finding made tarantula an exemplar system for thick filament structure and function studies. Heads were shown to be released and disordered by Ca2+-activation through myosin regulatory light chain phosphorylation, leading to EM, small angle X-ray diffraction and scattering, and spectroscopic and biochemical studies of the IHM structure and function. The results from these studies have consequent implications for understanding and explaining myosin super-relaxed state and thick filament activation and regulation. A cooperative phosphorylation mechanism for activation in tarantula skeletal muscle, involving swaying constitutively Ser35 mono-phosphorylated free heads, explains super-relaxation, force potentiation and post-tetanic potentiation through Ser45 mono-phosphorylated blocked heads. Based on this mechanism, we propose a swaying-swinging, tilting crossbridge-sliding filament for tarantula muscle contraction.
Collapse
Affiliation(s)
- Lorenzo Alamo
- Centro de Biología Estructural "Humberto Fernández-Morán", Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas, 1020A, Venezuela
| | - Natalia Koubassova
- Institute of Mechanics, Moscow State University, Mitchurinsky prosp. 1, Moscow, 119992, Russia
| | - Antonio Pinto
- Centro de Biología Estructural "Humberto Fernández-Morán", Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas, 1020A, Venezuela
| | - Richard Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source, Ithaca, NY, USA
| | - Andrey Tsaturyan
- Institute of Mechanics, Moscow State University, Mitchurinsky prosp. 1, Moscow, 119992, Russia
| | - Raúl Padrón
- Centro de Biología Estructural "Humberto Fernández-Morán", Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas, 1020A, Venezuela.
| |
Collapse
|
5
|
Abstract
Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components.
Collapse
|
6
|
Al-Khayat HA. Three-dimensional structure of the human myosin thick filament: clinical implications. Glob Cardiol Sci Pract 2013; 2013:280-302. [PMID: 24689030 PMCID: PMC3963759 DOI: 10.5339/gcsp.2013.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/11/2013] [Indexed: 11/27/2022] Open
Abstract
High resolution information about the three-dimensional (3D) structure of myosin filaments has always been hard to obtain. Solving the 3D structure of myosin filaments is very important because mutations in human cardiac muscle myosin and its associated proteins (e.g. titin and myosin binding protein C) are known to be associated with a number of familial human cardiomyopathies (e.g. hypertrophic cardiomyopathy and dilated cardiomyopathy). In order to understand how normal heart muscle works and how it fails, as well as the effects of the known mutations on muscle contractility, it is essential to properly understand myosin filament 3D structure and properties in both healthy and diseased hearts. The aim of this review is firstly to provide a general overview of the 3D structure of myosin thick filaments, as studied so far in both vertebrates and invertebrate striated muscles. Knowledge of this 3D structure is the starting point from which myosin filaments isolated from human cardiomyopathic samples, with known mutations in either myosin or its associated proteins (titin or C-protein), can be studied in detail. This should, in turn, enable us to relate the structure of myosin thick filament to its function and to understanding the disease process. A long term objective of this research would be to assist the design of possible therapeutic solutions to genetic myosin-related human cardiomyopathies.
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Qatar Cardiovascular Research Centre, Qatar Foundation, PO Box 5825, Doha, Qatar
| |
Collapse
|
7
|
Abstract
Of all the myosin filaments in muscle, the most important in terms of human health, and so far the least studied, are those in the human heart. Here we report a 3D single-particle analysis of electron micrograph images of negatively stained myosin filaments isolated from human cardiac muscle in the normal (undiseased) relaxed state. The resulting 28-Å resolution 3D reconstruction shows axial and azimuthal (no radial) myosin head perturbations within the 429-Å axial repeat, with rotations between successive 132 Å-, 148 Å-, and 149 Å-spaced crowns of heads close to 60°, 35°, and 25° (all would be 40° in an unperturbed three-stranded helix). We have defined the myosin head atomic arrangements within the three crown levels and have modeled the organization of myosin subfragment 2 and the possible locations of the 39 Å-spaced domains of titin and the cardiac isoform of myosin-binding protein-C on the surface of the myosin filament backbone. Best fits were obtained with head conformations on all crowns close to the structure of the two-headed myosin molecule of vertebrate chicken smooth muscle in the dephosphorylated relaxed state. Individual crowns show differences in head-pair tilts and subfragment 2 orientations, which, together with the observed perturbations, result in different intercrown head interactions, including one not reported before. Analysis of the interactions between the myosin heads, the cardiac isoform of myosin-binding protein-C, and titin will aid in understanding of the structural effects of mutations in these proteins known to be associated with human cardiomyopathies.
Collapse
|
8
|
Pinto A, Sánchez F, Alamo L, Padrón R. The myosin interacting-heads motif is present in the relaxed thick filament of the striated muscle of scorpion. J Struct Biol 2012; 180:469-78. [PMID: 22982253 DOI: 10.1016/j.jsb.2012.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 11/26/2022]
Abstract
Electron microscopy (EM) studies of 2D crystals of smooth muscle myosin molecules have shown that in the inactive state the two heads of a myosin molecule interact asymmetrically forming a myosin interacting-heads motif. This suggested that inactivation of the two heads occurs by blocking of the actin-binding site of one (free head) and the ATP hydrolysis site of the other (blocked head). This motif has been found by EM of isolated negatively stained myosin molecules of unregulated (vertebrate skeletal and cardiac muscle) and regulated (invertebrate striated and vertebrate smooth muscle) myosins, and nonmuscle myosin. The same motif has also been found in 3D-reconstructions of frozen-hydrated (tarantula, Limulus, scallop) and negatively stained (scallop, vertebrate cardiac) isolated thick filaments. We are carrying out studies of isolated thick filaments from other species to assess how general this myosin interacting-heads motif is. Here, using EM, we have visualized isolated, negatively stained thick filaments from scorpion striated muscle. We modified the iterative helical real space reconstruction (IHRSR) method to include filament tilt, and band-pass filtered the aligned segments before averaging, achieving a 3.3 nm resolution 3D-reconstruction. This reconstruction revealed the presence of the myosin interacting-heads motif (adding to evidence that is widely spread), together with 12 subfilaments in the filament backbone. This demonstrates that conventional negative staining and imaging can be used to detect the presence of the myosin interacting-heads motif in helically ordered thick filaments from different species and muscle types, thus avoiding the use of less accessible cryo-EM and low electron-dose procedures.
Collapse
Affiliation(s)
- Antonio Pinto
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas-IVIC, Apdo. 20632, Caracas 1020A, Venezuela.
| | | | | | | |
Collapse
|
9
|
Bernstein SI, Benian GM. Introduction to methods in invertebrate muscle biology. Methods 2012; 56:1-2. [DOI: 10.1016/j.ymeth.2012.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2012] [Indexed: 11/30/2022] Open
|