1
|
Combined whole-organ imaging at single-cell resolution and immunohistochemical analysis of prostate cancer and its liver and brain metastases. Cell Rep 2021; 37:110027. [PMID: 34788609 PMCID: PMC9159673 DOI: 10.1016/j.celrep.2021.110027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/30/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
Early steps of cancer initiation and metastasis, while critical for understanding disease mechanisms, are difficult to visualize and study. Here, we describe an approach to study the processes of initiation, progression, and metastasis of prostate cancer (PC) in a genetically engineered RapidCaP mouse model, which combines whole-organ imaging by serial two-photon tomography (STPT) and post hoc thick-section immunofluorescent (IF) analysis. STPT enables the detection of single tumor-initiating cells within the entire prostate, and consequent IF analysis reveals a transition from normal to transformed epithelial tissue and cell escape from the tumor focus. STPT imaging of the liver and brain reveal the distribution of multiple metastatic foci in the liver and an early-stage metastatic cell invasion in the brain. This imaging and data analysis pipeline can be readily applied to other mouse models of cancer, offering a highly versatile whole-organ platform to study in situ mechanisms of cancer initiation and progression. Scientists have long known that tumors are initiated by few cells. The detection of these cells with high resolution is a challenge due to the microscopic dimensions of organs. Taranda et al. use STP tomography combined with traditional histology to describe these events in prostate cancer and its metastasis.
Collapse
|
2
|
Liu H, Xie S, Fang F, Kalvakolanu DV, Xiao W. SHQ1 is an ER stress response gene that facilitates chemotherapeutics-induced apoptosis via sensitizing ER-stress response. Cell Death Dis 2020; 11:445. [PMID: 32522979 PMCID: PMC7286909 DOI: 10.1038/s41419-020-2656-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
SHQ1 was reported to control the biogenesis and assembly of H/ACA ribonucleoprotein particles (RNPs). It was independently isolated as a growth suppressor, GRIM1, in a genetic screen. Recent studies have indicated that SHQ1 inhibits prostate cancer growth and metastasis. SHQ1 facilitates MYC RNA splicing to promote T-acute lymphoblastic leukemia (T-ALL) development. Thus, the mechanisms of SHQ1 in cancers remain largely unknown. We report here that SHQ1 promotes tumor apoptosis and chemo-sensitivity in hepatocellular carcinoma (HCC) cells. In HCC tissues from patients, expression of SHQ1 was significantly decreased in the tumor compared to adjacent tissues. Experiments with HCC xenograft models revealed that restoring SHQ1 levels enhanced the anti-tumor activity of the endoplasmic reticulum (ER) stress inducer tunicamycin (TM) and common chemotherapy drug paclitaxel (PTX). Mechanistically, SHQ1 is an ER-stress response gene which is regulated by p50ATF6 and XBP1s through an ER stress response like element located on the SHQ1 promoter. SHQ1 interacts with the ER chaperone GRP78 to release ER sensors PERK/IRE1α/ATF6 from GRP78/ER-sensor complexes, leading to hyper-activation of unfolded protein response (UPR). In the persistent ER stress conditions of a HepG2 xenograft tumor model, SHQ1-mediated hyper-activation of ER-sensor signaling induces apoptosis. Our study thus demonstrates a SHQ1-mediated ER-stress response feedback loop that promotes tumor sensitivity to chemotherapeutics.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Anhui, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, 230027, Anhui, Hefei, China
| | - Siqi Xie
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Anhui, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, 230027, Anhui, Hefei, China
| | - Fang Fang
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Anhui, Hefei, China. .,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China. .,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, 230027, Anhui, Hefei, China.
| | - Dhananjaya V Kalvakolanu
- Department of Microbiology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Weihua Xiao
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Anhui, Hefei, China. .,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China. .,Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, 230027, Anhui, Hefei, China.
| |
Collapse
|
3
|
Nowak DG, Katsenelson KC, Watrud KE, Chen M, Mathew G, D'Andrea VD, Lee MF, Swamynathan MM, Casanova-Salas I, Jibilian MC, Buckholtz CL, Ambrico AJ, Pan CH, Wilkinson JE, Newton AC, Trotman LC. The PHLPP2 phosphatase is a druggable driver of prostate cancer progression. J Cell Biol 2019; 218:1943-1957. [PMID: 31092557 PMCID: PMC6548123 DOI: 10.1083/jcb.201902048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
Nowak et al. show that loss of the AKT-inactivating phosphatase PHLPP2 paradoxically blocks prostate tumor growth and metastasis. PHLPP2, they find, is critical for MYC stability, suggesting that PHLPP2 inhibitors may present a therapeutic opportunity to target MYC. Metastatic prostate cancer commonly presents with targeted, bi-allelic mutations of the PTEN and TP53 tumor suppressor genes. In contrast, however, most candidate tumor suppressors are part of large recurrent hemizygous deletions, such as the common chromosome 16q deletion, which involves the AKT-suppressing phosphatase PHLPP2. Using RapidCaP, a genetically engineered mouse model of Pten/Trp53 mutant metastatic prostate cancer, we found that complete loss of Phlpp2 paradoxically blocks prostate tumor growth and disease progression. Surprisingly, we find that Phlpp2 is essential for supporting Myc, a key driver of lethal prostate cancer. Phlpp2 dephosphorylates threonine-58 of Myc, which renders it a limiting positive regulator of Myc stability. Furthermore, we show that small-molecule inhibitors of PHLPP2 can suppress MYC and kill PTEN mutant cells. Our findings reveal that the frequent hemizygous deletions on chromosome 16q present a druggable vulnerability for targeting MYC protein through PHLPP2 phosphatase inhibitors.
Collapse
Affiliation(s)
- Dawid G Nowak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY .,Division of Hematology and Medical Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | | | | | - Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Grinu Mathew
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | | - Matthew F Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | | | | - Megan C Jibilian
- Division of Hematology and Medical Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Caroline L Buckholtz
- Division of Hematology and Medical Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | | | - Chun-Hao Pan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | | - Alexandra C Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA
| | | |
Collapse
|
4
|
Epigenetic and non-epigenetic functions of the RYBP protein in development and disease. Mech Ageing Dev 2018; 174:111-120. [DOI: 10.1016/j.mad.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
|
5
|
Chen Z, Zhang M, Qiao Y, Yang J, Yin Q. MicroRNA-1297 contributes to the progression of human cervical carcinoma through PTEN. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1120-1126. [PMID: 29916735 DOI: 10.1080/21691401.2018.1479711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The human cervical carcinoma oncogenic mechanisms still remain elusive. Thus, we proposed to understand the biological role of a newly discovered therapeutic miRNA. METHODS MiR-1297 related to human cervical carcinoma was selected for this study. TaqMan qRT- PCR assay was used to profile miRNA, phosphatase and tensin homolog (PTEN) expression in randomly chosen tumour with non-tumour tissues, and the apoptosis factors expression. Cell proliferation was monitored by CCK-8 assay and colony formation assay. Apoptosis was determined by flow cytometry. Protein level was determined by western blotting. 3'UTR was performed to validate the direct binding sites of miR-1297 on PTEN. SPSS was used for statistical analyses. RESULTS MiR-1297 is repressed and PTEN activated in human cervical cancer tissues. After miR-1297 overexpression, HeLa cells had an increase in cell proliferation and decrease in apoptosis. PTEN expression is negatively correlation with miR-1297. PTEN silencing display the similar pattern as miRNA-1297 overexpression to inhibit HeLa cell growth and apoptosis in vitro. CONCLUSIONS Our data indicate that miR-1297 contribute to the human cervical carcinoma through PTEN. miR-1297 could be a reasonable miRNA for future studies.
Collapse
Affiliation(s)
- Zhihua Chen
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Mengzhen Zhang
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yuhuan Qiao
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Junjuan Yang
- b Women&infants Hospital Of Zhengzhou , Zhengzhou , China
| | - Qinan Yin
- c National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
6
|
Riedel M, Berthelsen MF, Bakiri L, Wagner EF, Thomsen MK. Virus Delivery of CRISPR Guides to the Murine Prostate for Gene Alteration. J Vis Exp 2018. [PMID: 29757291 DOI: 10.3791/57525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
With an increasing incidence of prostate cancer, identification of new tumor drivers or modulators is crucial. Genetically engineered mouse models (GEMM) for prostate cancer are hampered by tumor heterogeneity and its complex microevolution dynamics. Traditional prostate cancer mouse models include, amongst others, germline and conditional knockouts, transgenic expression of oncogenes, and xenograft models. Generation of de novo mutations in these models is complex, time-consuming, and costly. In addition, most of traditional models target the majority of the prostate epithelium, whereas human prostate cancer is well known to evolve as an isolated event in only a small subset of cells. Valuable models need to simulate not only prostate cancer initiation, but also progression to advanced disease. Here we describe a method to target a few cells in the prostate epithelium by transducing cells by viral particles. The delivery of an engineered virus to the murine prostate allows alteration of gene expression in the prostate epithelia. Virus type and quantity will hereby define the number of targeted cells for gene alteration by transducing a few cells for cancer initiation and many cells for gene therapy. Through surgery-based injection in the anterior lobe, distal from the urinary track, the tumor in this model can expand without impairing the urinary function of the animal. Furthermore, by targeting only a subset of prostate epithelial cells the technique enables clonal expansion of the tumor, and therefore mimics human tumor initiation, progression, as well as invasion through the basal membrane. This novel technique provides a powerful prostate cancer model with improved physiological relevance. Animal suffering is limited, and since no additional breeding is required, overall animal count is reduced. At the same time, analysis of new candidate genes and pathways is accelerated, which in turn is more cost efficient.
Collapse
Affiliation(s)
- Maria Riedel
- Department of Clinical Medicine, Aarhus University
| | | | - Latifa Bakiri
- GDD, Cancer Cell Biology Program, National Cancer Research Center (CNIO)
| | - Erwin F Wagner
- GDD, Cancer Cell Biology Program, National Cancer Research Center (CNIO)
| | | |
Collapse
|
7
|
Naguib A, Mathew G, Reczek CR, Watrud K, Ambrico A, Herzka T, Salas IC, Lee MF, El-Amine N, Zheng W, Di Francesco ME, Marszalek JR, Pappin DJ, Chandel NS, Trotman LC. Mitochondrial Complex I Inhibitors Expose a Vulnerability for Selective Killing of Pten-Null Cells. Cell Rep 2018; 23:58-67. [PMID: 29617673 PMCID: PMC6003704 DOI: 10.1016/j.celrep.2018.03.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/08/2018] [Accepted: 03/08/2018] [Indexed: 01/21/2023] Open
Abstract
A hallmark of advanced prostate cancer (PC) is the concomitant loss of PTEN and p53 function. To selectively eliminate such cells, we screened cytotoxic compounds on Pten-/-;Trp53-/- fibroblasts and their Pten-WT reference. Highly selective killing of Pten-null cells can be achieved by deguelin, a natural insecticide. Deguelin eliminates Pten-deficient cells through inhibition of mitochondrial complex I (CI). Five hundred-fold higher drug doses are needed to obtain the same killing of Pten-WT cells, even though deguelin blocks their electron transport chain equally well. Selectivity arises because mitochondria of Pten-null cells consume ATP through complex V, instead of producing it. The resulting glucose dependency can be exploited to selectively kill Pten-null cells with clinically relevant CI inhibitors, especially if they are lipophilic. In vivo, deguelin suppressed disease in our genetically engineered mouse model for metastatic PC. Our data thus introduce a vulnerability for highly selective targeting of incurable PC with inhibitors of CI.
Collapse
Affiliation(s)
- Adam Naguib
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Grinu Mathew
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Colleen R Reczek
- Northwestern Medical School, Cell and Molecular Biology, Chicago, IL, USA
| | - Kaitlin Watrud
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Alexandra Ambrico
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Tali Herzka
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | | | - Matthew F Lee
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Nour El-Amine
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Wu Zheng
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - M Emilia Di Francesco
- Institute for Applied Cancer Science, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Institute for Applied Cancer Science, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA
| | - Navdeep S Chandel
- Northwestern Medical School, Cell and Molecular Biology, Chicago, IL, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cancer Biology, Cold Spring Harbor, NY, USA.
| |
Collapse
|
8
|
Hieronymus H, Iaquinta PJ, Wongvipat J, Gopalan A, Murali R, Mao N, Carver BS, Sawyers CL. Deletion of 3p13-14 locus spanning FOXP1 to SHQ1 cooperates with PTEN loss in prostate oncogenesis. Nat Commun 2017; 8:1081. [PMID: 29057879 PMCID: PMC5651901 DOI: 10.1038/s41467-017-01198-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/25/2017] [Indexed: 01/01/2023] Open
Abstract
A multigenic locus at 3p13-14, spanning FOXP1 to SHQ1, is commonly deleted in prostate cancer and lost broadly in a range of cancers but has unknown significance to oncogenesis or prognosis. Here, we report that FOXP1-SHQ1 deletion cooperates with PTEN loss to accelerate prostate oncogenesis and that loss of component genes correlates with prostate, breast, and head and neck cancer recurrence. We demonstrate that Foxp1-Shq1 deletion accelerates prostate tumorigenesis in mice in combination with Pten loss, consistent with the association of FOXP1-SHQ1 and PTEN loss observed in human cancers. Tumors with combined Foxp1-Shq1 and Pten deletion show increased proliferation and anaplastic dedifferentiation, as well as mTORC1 hyperactivation with reduced Akt phosphorylation. Foxp1-Shq1 deletion restores expression of AR target genes repressed in tumors with Pten loss, circumventing PI3K-mediated repression of the androgen axis. Moreover, FOXP1-SHQ1 deletion has prognostic relevance, with cancer recurrence associated with combined loss of PTEN and FOXP1-SHQ1 genes.
Collapse
Affiliation(s)
- Haley Hieronymus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Phillip J Iaquinta
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - John Wongvipat
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Rajmohan Murali
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Ninghui Mao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Brett S Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Department of Urology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | | |
Collapse
|
9
|
Herzig JK, Bullinger L, Tasdogan A, Zimmermann P, Schlegel M, Teleanu V, Weber D, Rücker FG, Paschka P, Dolnik A, Schneider E, Kuchenbauer F, Heidel FH, Buske C, Döhner H, Döhner K, Gaidzik VI. Protein phosphatase 4 regulatory subunit 2 (PPP4R2) is recurrently deleted in acute myeloid leukemia and required for efficient DNA double strand break repair. Oncotarget 2017; 8:95038-95053. [PMID: 29221109 PMCID: PMC5707003 DOI: 10.18632/oncotarget.21119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
We have previously identified a recurrent deletion at chromosomal band 3p14.1-p13 in patients with acute myeloid leukemia (AML). Among eight protein-coding genes, this microdeletion affects the protein phosphatase 4 regulatory subunit 2 (PPP4R2), which plays an important role in DNA damage response (DDR). Investigation of mRNA expression during murine myelopoiesis determined that Ppp4r2 is higher expressed in more primitive hematopoietic cells. PPP4R2 expression in primary AML samples compared to healthy bone marrow was significantly lower, particularly in patients with 3p microdeletion or complex karyotype. To identify a functional role of PPP4R2 in hematopoiesis and leukemia, we genetically inactivated Ppp4r2 by RNAi in murine hematopoietic stem and progenitor cells and murine myeloid leukemia. Furthermore, we ectopically expressed PPP4R2 in a deficient human myeloid leukemic cell line. While PPP4R2 is involved in DDR of both hematopoietic and leukemic cells, our findings indicate that PPP4R2 deficiency impairs de-phosphorylation of phosphorylated key DDR proteins KRAB-domain associated protein 1 (pKAP1), histone variant H2AX (γH2AX), tumor protein P53 (pP53), and replication protein A2 (pRPA2). Potential impact of affected DNA repair processes in primary AML cases with regard to differential PPP4R2 expression or 3p microdeletion is also supported by our results obtained by gene expression profiling and whole exome sequencing. Impaired DDR and increased DNA damage by PPP4R2 suppression is one possible mechanism by which the 3p microdeletion may contribute to the pathogenesis of AML. Further studies are warranted to determine the potential benefit of inefficient DNA repair upon PPP4R2 deletion to the development of therapeutic agents.
Collapse
Affiliation(s)
- Julia K Herzig
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Alpaslan Tasdogan
- Institute of Immunology, Ulm University, Ulm, Germany.,Current/Present address: Children's Medical Center Research Institute, UT Southwestern, Dallas, TX, USA
| | - Philipp Zimmermann
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Martin Schlegel
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Veronica Teleanu
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Frank G Rücker
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Peter Paschka
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Anna Dolnik
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Edith Schneider
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Florian H Heidel
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Innere Medizin II, Hämatologie und Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Verena I Gaidzik
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
10
|
Chen M, Nowak DG, Narula N, Robinson B, Watrud K, Ambrico A, Herzka TM, Zeeman ME, Minderer M, Zheng W, Ebbesen SH, Plafker KS, Stahlhut C, Wang VMY, Wills L, Nasar A, Castillo-Martin M, Cordon-Cardo C, Wilkinson JE, Powers S, Sordella R, Altorki NK, Mittal V, Stiles BM, Plafker SM, Trotman LC. The nuclear transport receptor Importin-11 is a tumor suppressor that maintains PTEN protein. J Cell Biol 2017; 216:641-656. [PMID: 28193700 PMCID: PMC5350510 DOI: 10.1083/jcb.201604025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/21/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN) protein levels are critical for tumor suppression. However, the search for a recurrent cancer-associated gene alteration that causes PTEN degradation has remained futile. In this study, we show that Importin-11 (Ipo11) is a transport receptor for PTEN that is required to physically separate PTEN from elements of the PTEN degradation machinery. Mechanistically, we find that the E2 ubiquitin-conjugating enzyme and IPO11 cargo, UBE2E1, is a limiting factor for PTEN degradation. Using in vitro and in vivo gene-targeting methods, we show that Ipo11 loss results in degradation of Pten, lung adenocarcinoma, and neoplasia in mouse prostate with aberrantly high levels of Ube2e1 in the cytoplasm. These findings explain the correlation between loss of IPO11 and PTEN protein in human lung tumors. Furthermore, we find that IPO11 status predicts disease recurrence and progression to metastasis in patients choosing radical prostatectomy. Thus, our data introduce the IPO11 gene as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele.
Collapse
Affiliation(s)
- Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Dawid G Nowak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Navneet Narula
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brian Robinson
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Kaitlin Watrud
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Tali M Herzka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | | | - Wu Zheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Saya H Ebbesen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,The Watson School of Biological Sciences, Cold Spring Harbor, NY 11724
| | - Kendra S Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | | | - Lorna Wills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Abu Nasar
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | | | | | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Scott Powers
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brendon M Stiles
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Scott M Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | |
Collapse
|
11
|
Nalla AK, Williams TF, Collins CP, Rae DT, Trobridge GD. Lentiviral vector-mediated insertional mutagenesis screen identifies genes that influence androgen independent prostate cancer progression and predict clinical outcome. Mol Carcinog 2016; 55:1761-1771. [PMID: 26512949 PMCID: PMC5393267 DOI: 10.1002/mc.22425] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/24/2015] [Accepted: 10/18/2015] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PC) is the second leading cause of cancer related deaths in US men. Androgen deprivation therapy (ADT) improves clinical outcome, but tumors often recur and progress to androgen independent prostate cancer (AIPC) which no longer responds to ADT. The progression to AIPC is due to genetic alterations that allow PC cancer cells to grow in the absence of androgen. Here we performed an insertional mutagenesis screen using a replication-incompetent lentiviral vector (LV) to identify the genes that promote AIPC in an orthotopic mouse model. Androgen sensitive PC cells, LNCaP, were mutagenized with LV and injected into the prostate of male mice. After tumor development, mice were castrated to select for cells that proliferate in the absence of androgen. Proviral integration sites and nearby dysregulated genes were identified in tumors developed in an androgen deficient environment. Using publically available datasets, the expression of these candidate androgen independence genes in human PC tissues were analyzed. A total of 11 promising candidate AIPC genes were identified: GLYATL1, FLNA, OBSCN, STRA13, WHSC1, ARFGAP3, KDM2A, FAM83H, CLDN7, CNOT6, and B3GNT9. Seven out the 11 candidate genes; GLYATL1, OBSCN, STRA13, KDM2A, FAM83H, CNOT6, and B3GNT6, have not been previously implicated in PC. An in vitro clonogenic assay showed that knockdown of KDM2A, FAM83H, and GLYATL1 genes significantly inhibited the colony forming ability of LNCaP cells. Additionally, we showed that a combination of four genes, OBSCN, FAM83H, CLDN7, and ARFGAP3 could significantly predicted the recurrence risk in PC patients after prostatectomy (P = 5.3 × 10-5 ). © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arun K Nalla
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Theodore F Williams
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Casey P Collins
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Dustin T Rae
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Grant D Trobridge
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington.
- School of Molecular Biosciences, Washington State University, Pullman, Washington.
| |
Collapse
|
12
|
Wang W, Dong B, Ittmann MM, Yang F. A Versatile Gene Delivery System for Efficient and Tumor Specific Gene Manipulation in vivo. Discoveries (Craiova) 2016; 4. [PMID: 27376150 PMCID: PMC4926771 DOI: 10.15190/d.2016.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Replication-Competent Avian Sarcoma-leukosis virus long-terminal repeat with splice acceptor (RCAS)-Tumor Virus A (TVA) gene delivery system has been created based on the fact that avian sarcoma leukosis virus subgroup A only infects cells expressing its receptor, TVA. This system has been successfully applied to create various mouse models for human cancers. Here we briefly discuss the advantages and the potential caveats of using this RCAS-TVA gene delivery system in cancer research. We also introduce and discuss how our newly designed RCAS-based gene delivery system (RCI-Oncogene, for RCAS-Cre-IRES-Oncogene) allows concise and efficient manipulation of gene expression in tumors in vivo, and how this system can be used to rapidly study the biological function of gene(s) and/or the collaborative actions of multiple genes in regulating tumor initiation, progression and/or metastasis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
13
|
Pulido R. A rapid guide to PTEN function. Methods 2015; 77-78:1-2. [PMID: 25843296 DOI: 10.1016/j.ymeth.2015.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Rafael Pulido
- Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| |
Collapse
|