1
|
Li T, Shu X, Gao M, Huang C, Li T, Cao J, Ying X, Liu D, Liu J. N4-Allylcytidine: a new nucleoside analogue for RNA labelling and chemical sequencing. RSC Chem Biol 2024; 5:225-235. [PMID: 38456037 PMCID: PMC10915972 DOI: 10.1039/d3cb00189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024] Open
Abstract
RNA labelling has become indispensable in studying RNA biology. Nucleoside analogues with a chemical sequencing power represent desirable RNA labelling molecules because precise labelling information at base resolution can be obtained. Here, we report a new nucleoside analogue, N4-allylcytidine (a4C), which is able to tag RNA through both in vitro and in vivo pathways and further specifically reacts with iodine to form 3, N4-cyclized cytidine (cyc-C) in a catalyst-free, fast and complete manner. Full spectroscopic characterization concluded that cyc-C consisted of paired diastereoisomers with opposite chiral carbon centers in the fused 3, N4-five-membered ring. During RNA reverse transcription into complementary DNA, cyc-C induces base misincorporation due to the disruption of canonical hydrogen bonding by the cyclized structure and thus can be accurately identified by sequencing at single base resolution. With the chemical sequencing rationale of a4C, successful applications have been performed including pinpointing N4-methylcytidine methyltransferases' substrate modification sites, metabolically labelling mammalian cellular RNAs, and mapping active cellular RNA polymerase locations with the chromatin run-on RNA sequencing technique. Collectively, our work demonstrates that a4C is a promising molecule for RNA labelling and chemical sequencing and expands the toolkit for studying sophisticated RNA biology.
Collapse
Affiliation(s)
- Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Xiao Shu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Minsong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Chenyang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Ting Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
- Life Sciences Institute, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Xiner Ying
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Donghong Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
- Life Sciences Institute, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| |
Collapse
|
2
|
Shu X, Huang C, Li T, Cao J, Liu J. a 6A-seq: N 6-allyladenosine-based cellular messenger RNA metabolic labelling and sequencing. FUNDAMENTAL RESEARCH 2023; 3:657-664. [PMID: 38933292 PMCID: PMC11197751 DOI: 10.1016/j.fmre.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2024] Open
Abstract
The integration of RNA metabolic labelling by nucleoside analogues with high-throughput RNA sequencing has been harnessed to study RNA dynamics. The immunoprecipitation purification or chemical pulldown technique is generally required to enrich the analogue-labelled RNAs. Here we developed an a6A-seq method, which takes advantage of N6-allyladenosine (a6A) metabolic labelling on cellular mRNAs and profiles them in an immunoprecipitation-free and mutation-based manner. a6A plays a role as a chemical sequencing tag in that the iodination of a6A in mRNAs results in 1,N 6-cyclized adenosine (cyc-A), which induces base misincorporation during RNA reverse transcription, thus making a6A-labelled mRNAs detectable by sequencing. A nucleic acid melting assay was utilized to investigate why cyc-A prefers to be paired with guanine. a6A-seq was utilized to study cellular gene expression changes under a methionine-free stress condition. Compared with regular RNA-seq, a6A-seq could more sensitively detect the change of mRNA production over a time scale. The experiment of a6A-containing mRNA immunoprecipitation followed by qPCR successfully validated the high-throughput a6A-seq data. Together, our results show a6A-seq is an effective tool to study RNA dynamics.
Collapse
Affiliation(s)
- Xiao Shu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Chenyang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| |
Collapse
|
3
|
Awad RM, Breckpot K. Novel technologies for applying immune checkpoint blockers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:1-101. [PMID: 38225100 DOI: 10.1016/bs.ircmb.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Cancer cells develop several ways to subdue the immune system among others via upregulation of inhibitory immune checkpoint (ICP) proteins. These ICPs paralyze immune effector cells and thereby enable unfettered tumor growth. Monoclonal antibodies (mAbs) that block ICPs can prevent immune exhaustion. Due to their outstanding effects, mAbs revolutionized the field of cancer immunotherapy. However, current ICP therapy regimens suffer from issues related to systemic administration of mAbs, including the onset of immune related adverse events, poor pharmacokinetics, limited tumor accessibility and immunogenicity. These drawbacks and new insights on spatiality prompted the exploration of novel administration routes for mAbs for instance peritumoral delivery. Moreover, novel ICP drug classes that are adept to novel delivery technologies were developed to circumvent the drawbacks of mAbs. We therefore review the state-of-the-art and novel delivery strategies of ICP drugs.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
4
|
Tota EM, Devaraj NK. Site-specific Covalent Labeling of DNA Substrates by an RNA Transglycosylase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525207. [PMID: 36747847 PMCID: PMC9900779 DOI: 10.1101/2023.01.23.525207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bacterial tRNA guanine transglycosylases (TGTs) catalyze the exchange of guanine for the 7-deazaguanine queuine precursor, prequeuosine1 (preQ1). While the native nucleic acid substrate for bacterial TGTs is the anticodon loop of queuine-cognate tRNAs, the minimum recognition sequence for the enzyme is a structured hairpin containing the target G nucleobase in a "UGU" loop motif. Previous work has established an RNA modification system, RNA-TAG, in which E. coli TGT exchanges the target G on an RNA of interest for chemically modified preQ1 substrates linked to a small molecule reporter such as biotin or a fluorophore. While extending the substrate scope of RNA transglycosylases to include DNA would enable numerous applications, it has been previously reported that TGT is incapable of modifying native DNA. Here we demonstrate that TGT can in fact recognize and label specific DNA substrates. Through iterative testing of rationally mutated DNA hairpin sequences, we determined the minimal sequence requirements for transglycosylation of unmodified DNA by E. coli TGT. Controlling steric constraint in the DNA hairpin dramatically affects labeling efficiency, and, when optimized, can lead to near quantitative site-specific modification. We demonstrate the utility of our newly developed DNA-TAG system by rapidly synthesizing probes for fluorescent Northern blotting of spliceosomal U6 RNA and RNA FISH visualization of the long noncoding RNA, MALAT1. The ease and convenience of the DNA-TAG system will provide researchers with a tool for accessing a wide variety of affordable modified DNA substrates.
Collapse
|
5
|
Chen Z, Devi G, Arif A, Zamore PD, Sontheimer EJ, Watts JK. Tetrazine-Ligated CRISPR sgRNAs for Efficient Genome Editing. ACS Chem Biol 2022; 17:1045-1050. [PMID: 35446558 PMCID: PMC9127786 DOI: 10.1021/acschembio.2c00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022]
Abstract
CRISPR-Cas technology has revolutionized genome editing. Its broad and fast-growing application in biomedical research and therapeutics has led to increased demand for guide RNAs. The synthesis of chemically modified single-guide RNAs (sgRNAs) containing >100 nucleotides remains a bottleneck. Here we report the development of a tetrazine ligation method for the preparation of sgRNAs. A tetrazine moiety on the 3'-end of the crRNA and a norbornene moiety on the 5'-end of the tracrRNA enable successful ligation between crRNA and tracrRNA to form sgRNA under mild conditions. Tetrazine-ligated sgRNAs allow efficient genome editing of reporter and endogenous loci in human cells. High-efficiency editing requires structural optimization of the linker.
Collapse
Affiliation(s)
- Zexiang Chen
- RNA
Therapeutics Institute, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Gitali Devi
- RNA
Therapeutics Institute, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Amena Arif
- RNA
Therapeutics Institute, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Phillip D. Zamore
- RNA
Therapeutics Institute, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
- Howard
Hughes Medical Institute, University of
Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Erik J. Sontheimer
- RNA
Therapeutics Institute, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
- Program
in Molecular Medicine, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Jonathan K. Watts
- RNA
Therapeutics Institute, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
- Department
of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
6
|
Zhang D, Liu L, Jin S, Tota E, Li Z, Piao X, Zhang X, Fu XD, Devaraj NK. Site-Specific and Enzymatic Cross-Linking of sgRNA Enables Wavelength-Selectable Photoactivated Control of CRISPR Gene Editing. J Am Chem Soc 2022; 144:4487-4495. [PMID: 35257575 PMCID: PMC9469474 DOI: 10.1021/jacs.1c12166] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemical cross-linking enables rapid identification of RNA-protein and RNA-nucleic acid inter- and intramolecular interactions. However, no method exists to site-specifically and covalently cross-link two user-defined sites within an RNA. Here, we develop RNA-CLAMP, which enables site-specific and enzymatic cross-linking (clamping) of two selected guanine residues within an RNA. Intramolecular clamping can disrupt normal RNA function, whereas subsequent photocleavage of the cross-linker restores activity. We used RNA-CLAMP to clamp two stem loops within the single-guide RNA (sgRNA) of the CRISPR-Cas9 gene editing system via a photocleavable cross-linker, completely inhibiting gene editing. Visible light irradiation cleaved the cross-linker and restored gene editing with high spatiotemporal resolution. Design of two photocleavable linkers responsive to different wavelengths of light allowed multiplexed photoactivation of gene editing in mammalian cells. This photoactivated CRISPR-Cas9 gene editing platform benefits from undetectable background activity, provides a choice of activation wavelengths, and has multiplexing capabilities.
Collapse
Affiliation(s)
- Dongyang Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Luping Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Shuaijiang Jin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Ember Tota
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Zijie Li
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Xijun Piao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Xuan Zhang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Walunj MB, Srivatsan SG. Posttranscriptional Suzuki-Miyaura Cross-Coupling Yields Labeled RNA for Conformational Analysis and Imaging. Methods Mol Biol 2021; 2166:473-486. [PMID: 32710426 DOI: 10.1007/978-1-0716-0712-1_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemical labeling of RNA by using chemoselective reactions that work under biologically benign conditions is increasingly becoming valuable in the in vitro and in vivo analysis of RNA. Here, we describe a modular RNA labeling method based on a posttranscriptional Suzuki-Miyaura coupling reaction, which works under mild conditions and enables the direct installation of various biophysical reporters and tags. This two-part procedure involves the incorporation of a halogen-modified UTP analog (5-iodouridine-5'-triphosphate) by a transcription reaction. Subsequent posttranscriptional coupling with boronic acid/ester substrates in the presence of a palladium catalyst provides access to RNA labeled with (a) fluorogenic environment-sensitive nucleosides for probing nucleic acid structure and recognition, (b) fluorescent probes for microscopy, and (3) affinity tags for pull-down and immunoassays. It is expected that this method could also become useful for imaging nascent RNA transcripts in cells if the nucleotide analog can be metabolically incorporated and coupled with reporters by metal-assisted cross-coupling reactions.
Collapse
Affiliation(s)
- Manisha B Walunj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India.
| |
Collapse
|
8
|
Duan W, Huang F, Bi Y, Zhu L, Wang D, Liu Y, Wu J, Ge Y, Liu D. Design, synthesis and cell imaging of a simple peptide-based probe for the selective detection of RNA. Chem Commun (Camb) 2021; 57:2653-2656. [PMID: 33587737 DOI: 10.1039/d0cc06508k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present a novel peptide-based fluorescent "turn-on" molecule P1 for detecting RNA, in a double or single strand, AU-rich or CG-rich. Both computational and experimental studies indicate that the detection efficiency depends on the binding affinity of P1 and conformational changes. P1 could be applied for cell imaging without any additional transfection vectors. Selective detection of RNA in cells was determined by RNase digestion. Successful application of P1 for RNA imaging in cell mitosis reveals that it may have broad applications in research, biotechnology and medical science.
Collapse
Affiliation(s)
- Wenxiu Duan
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Analysis of RNA Modifications by Second- and Third-Generation Deep Sequencing: 2020 Update. Genes (Basel) 2021; 12:genes12020278. [PMID: 33669207 PMCID: PMC7919787 DOI: 10.3390/genes12020278] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
The precise mapping and quantification of the numerous RNA modifications that are present in tRNAs, rRNAs, ncRNAs/miRNAs, and mRNAs remain a major challenge and a top priority of the epitranscriptomics field. After the keystone discoveries of massive m6A methylation in mRNAs, dozens of deep sequencing-based methods and protocols were proposed for the analysis of various RNA modifications, allowing us to considerably extend the list of detectable modified residues. Many of the currently used methods rely on the particular reverse transcription signatures left by RNA modifications in cDNA; these signatures may be naturally present or induced by an appropriate enzymatic or chemical treatment. The newest approaches also include labeling at RNA abasic sites that result from the selective removal of RNA modification or the enhanced cleavage of the RNA ribose-phosphate chain (perhaps also protection from cleavage), followed by specific adapter ligation. Classical affinity/immunoprecipitation-based protocols use either antibodies against modified RNA bases or proteins/enzymes, recognizing RNA modifications. In this survey, we review the most recent achievements in this highly dynamic field, including promising attempts to map RNA modifications by the direct single-molecule sequencing of RNA by nanopores.
Collapse
|
10
|
Abstract
Labeling of nucleic acids is required for many studies aiming to elucidate their functions and dynamics in vitro and in cells. Out of the numerous labeling concepts that have been devised, covalent labeling provides the most stable linkage, an unrivaled choice of small and highly fluorescent labels and - thanks to recent advances in click chemistry - an incredible versatility. Depending on the approach, site-, sequence- and cell-specificity can be achieved. DNA and RNA labeling are rapidly developing fields that bring together multiple areas of research: on the one hand, synthetic and biophysical chemists develop new fluorescent labels and isomorphic nucleobases as well as faster and more selective bioorthogonal reactions. On the other hand, the number of enzymes that can be harnessed for post-synthetic and site-specific labeling of nucleic acids has increased significantly. Together with protein engineering and genetic manipulation of cells, intracellular and cell-specific labeling has become possible. In this review, we provide a structured overview of covalent labeling approaches for nucleic acids and highlight notable developments, in particular recent examples. The majority of this review will focus on fluorescent labeling; however, the principles can often be readily applied to other labels. We will start with entirely chemical approaches, followed by chemo-enzymatic strategies and ribozymes, and finish with metabolic labeling of nucleic acids. Each section is subdivided into direct (or one-step) and two-step labeling approaches and will start with DNA before treating RNA.
Collapse
Affiliation(s)
- Nils Klöcker
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, D-48149 Münster, Germany.
| | | | | |
Collapse
|
11
|
Espinasse A, Lembke HK, Cao AA, Carlson EE. Modified nucleoside triphosphates in bacterial research for in vitro and live-cell applications. RSC Chem Biol 2020; 1:333-351. [PMID: 33928252 PMCID: PMC8081287 DOI: 10.1039/d0cb00078g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Modified nucleoside triphosphates (NTPs) are invaluable tools to probe bacterial enzymatic mechanisms, develop novel genetic material, and engineer drugs and proteins with new functionalities. Although the impact of nucleobase alterations has predominantly been studied due to their importance for protein recognition, sugar and phosphate modifications have also been investigated. However, NTPs are cell impermeable due to their negatively charged phosphate tail, a major hurdle to achieving live bacterial studies. Herein, we review the recent advances made to investigate and evolve bacteria and their processes with the use of modified NTPs by exploring alterations in one of the three moieties: the nucleobase, the sugar and the phosphate tail. We also present the innovative methods that have been devised to internalize NTPs into bacteria for in vivo applications.
Collapse
Affiliation(s)
- Adeline Espinasse
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Angela A. Cao
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
- Department of Medicinal Chemistry, University of Minnesota208 Harvard Street SEMinneapolisMinnesota 55454USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota321 Church St SEMinneapolisMinnesota 55454USA
| |
Collapse
|
12
|
Walunj MB, Srivatsan SG. Nucleic Acid Conformation Influences Postsynthetic Suzuki-Miyaura Labeling of Oligonucleotides. Bioconjug Chem 2020; 31:2513-2521. [PMID: 33089687 PMCID: PMC7611128 DOI: 10.1021/acs.bioconjchem.0c00466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemoselective transformations that work under physiological conditions have emerged as powerful tools to label nucleic acids in cell-free and cellular environments. However, detailed studies investigating the influence of nucleic acid conformation on the performance of such chemoselective nucleic labeling methods are less explored. Given that nucleic acids adopt complex structures, it is highly important to study the scope of the chemical modification method in the context of nucleic acid conformations. Here we report a systematic study on the effect of local conformation on the postsynthetic Suzuki-Miyaura functionalization of human telomeric (H-Telo) DNA repeat oligonucleotide (ON) sequences, which form multiple G-quadruplex (GQ) structures. 5-Iodo-2'-deoxyuridine (IdU)-modified H-Telo ONs were synthesized by the solid-phase method, and when subjected to Suzuki-Miyaura cross-coupling reaction, its efficiency was found to depend on the type of conformation and the position of IdU label in different loops of the GQ structure. IdU-labeled GQs gave better yields as compared to single-stranded random coil structures. However, the IdU-labeled duplex under different ionic conditions did not undergo the coupling reaction. Further, using this method, we directly installed an environment-sensitive fluorescent probe, which photophysically reported the formation as well as distinguished different GQ topologies of telomeric repeat. Collectively, this systematic study underscores the influence of nucleic acid conformation, which has to be taken into account when establishing postsynthetic chemoselective functionalization strategies.
Collapse
Affiliation(s)
- Manisha B. Walunj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| |
Collapse
|
13
|
George JT, Srivatsan SG. Bioorthogonal chemistry-based RNA labeling technologies: evolution and current state. Chem Commun (Camb) 2020; 56:12307-12318. [PMID: 33026365 PMCID: PMC7611129 DOI: 10.1039/d0cc05228k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To understand the structure and ensuing function of RNA in various cellular processes, researchers greatly rely on traditional as well as contemporary labeling technologies to devise efficient biochemical and biophysical platforms. In this context, bioorthogonal chemistry based on chemoselective reactions that work under biologically benign conditions has emerged as a state-of-the-art labeling technology for functionalizing biopolymers. Implementation of this technology on sugar, protein, lipid and DNA is fairly well established. However, its use in labeling RNA has posed challenges due to the fragile nature of RNA. In this feature article, we provide an account of bioorthogonal chemistry-based RNA labeling techniques developed in our lab along with a detailed discussion on other technologies put forward recently. In particular, we focus on the development and applications of covalent methods to label RNA by transcription and posttranscription chemo-enzymatic approaches. It is expected that existing as well as new bioorthogonal functionalization methods will immensely advance our understanding of RNA and support the development of RNA-based diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune 411008, India.
| | | |
Collapse
|
14
|
Ghaem Maghami M, Dey S, Lenz AK, Höbartner C. Repurposing Antiviral Drugs for Orthogonal RNA-Catalyzed Labeling of RNA. Angew Chem Int Ed Engl 2020; 59:9335-9339. [PMID: 32162405 PMCID: PMC7318677 DOI: 10.1002/anie.202001300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/29/2020] [Indexed: 12/16/2022]
Abstract
In vitro selected ribozymes are promising tools for site-specific labeling of RNA. Previously known nucleic acid catalysts attached fluorescently labeled adenosine or guanosine derivatives through 2',5'-branched phosphodiester bonds to the RNA of interest. Herein, we report new ribozymes that use orthogonal substrates, derived from the antiviral drug tenofovir, and attach bioorthogonal functional groups, as well as affinity handles and fluorescent reporter units through a hydrolytically more stable phosphonate ester linkage. The tenofovir transferase ribozymes were identified by in vitro selection and are orthogonal to nucleotide transferase ribozymes. As genetically encodable functional RNAs, these ribozymes may be developed for potential cellular applications. The orthogonal ribozymes addressed desired target sites in large RNAs in vitro, as shown by fluorescent labeling of E. coli 16S and 23S rRNAs in total cellular RNA.
Collapse
Affiliation(s)
- Mohammad Ghaem Maghami
- Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany.,International Max Planck Research School Molecular Biology, University of Göttingen, Germany
| | - Surjendu Dey
- Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Ann-Kathrin Lenz
- Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Claudia Höbartner
- Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany.,International Max Planck Research School Molecular Biology, University of Göttingen, Germany
| |
Collapse
|
15
|
Ghaem Maghami M, Dey S, Lenz A, Höbartner C. Repurposing Antiviral Drugs for Orthogonal RNA‐Catalyzed Labeling of RNA. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mohammad Ghaem Maghami
- Universität WürzburgInstitut für Organische Chemie Am Hubland 97074 Würzburg Germany
- International Max Planck Research School Molecular BiologyUniversity of Göttingen Germany
| | - Surjendu Dey
- Universität WürzburgInstitut für Organische Chemie Am Hubland 97074 Würzburg Germany
| | - Ann‐Kathrin Lenz
- Universität WürzburgInstitut für Organische Chemie Am Hubland 97074 Würzburg Germany
| | - Claudia Höbartner
- Universität WürzburgInstitut für Organische Chemie Am Hubland 97074 Würzburg Germany
- International Max Planck Research School Molecular BiologyUniversity of Göttingen Germany
| |
Collapse
|
16
|
Westerich KJ, Chandrasekaran KS, Gross-Thebing T, Kueck N, Raz E, Rentmeister A. Bioorthogonal mRNA labeling at the poly(A) tail for imaging localization and dynamics in live zebrafish embryos. Chem Sci 2020; 11:3089-3095. [PMID: 33623655 PMCID: PMC7879197 DOI: 10.1039/c9sc05981d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Live imaging of mRNA in cells and organisms is important for understanding the dynamic aspects underlying its function.
Live imaging of mRNA in cells and organisms is important for understanding the dynamic aspects underlying its function. Ideally, labeling of mRNA should not alter its structure or function, nor affect the biological system. However, most methods applied in vivo make use of genetically encoded tags and reporters that significantly enhance the size of the mRNA of interest. Alternately, we utilize the 3′ poly(A) tail as a non-coding repetitive hallmark to covalently label mRNAs via bioorthogonal chemistry with different fluorophores from a wide range of spectra without significantly changing the size. We demonstrate that the labeled mRNAs can be visualized in cells and zebrafish embryos, and that they are efficiently translated. Importantly, the labeled mRNAs acquired the proper subcellular localization in developing zebrafish embryos and their dynamics could be tracked in vivo.
Collapse
Affiliation(s)
- Kim J Westerich
- Institute of Cell Biology Center for Molecular Biology of Inflammation , University of Münster , D-48149 Münster , Germany .
| | - Karthik S Chandrasekaran
- Institut für Biochemie , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Theresa Gross-Thebing
- Institute of Cell Biology Center for Molecular Biology of Inflammation , University of Münster , D-48149 Münster , Germany .
| | - Nadine Kueck
- Institut für Biochemie , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Erez Raz
- Cells in Motion Interfaculty Centre (CiMIC) , Waldeyerstraße 15 , D-48149 Münster , Germany.,Institute of Cell Biology Center for Molecular Biology of Inflammation , University of Münster , D-48149 Münster , Germany .
| | - Andrea Rentmeister
- Cells in Motion Interfaculty Centre (CiMIC) , Waldeyerstraße 15 , D-48149 Münster , Germany.,Institut für Biochemie , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| |
Collapse
|
17
|
Anhäuser L, Hüwel S, Zobel T, Rentmeister A. Multiple covalent fluorescence labeling of eukaryotic mRNA at the poly(A) tail enhances translation and can be performed in living cells. Nucleic Acids Res 2019; 47:e42. [PMID: 30726958 PMCID: PMC6468298 DOI: 10.1093/nar/gkz084] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Post-transcriptional regulation of gene expression occurs by multiple mechanisms, including subcellular localization of mRNA and alteration of the poly(A) tail length. These mechanisms play crucial roles in the dynamics of cell polarization and embryonic development. Furthermore, mRNAs are emerging therapeutics and chemical alterations to increase their translational efficiency are highly sought after. We show that yeast poly(A) polymerase can be used to install multiple azido-modified adenosine nucleotides to luciferase and eGFP-mRNAs. These mRNAs can be efficiently reacted in a bioorthogonal click reaction with fluorescent reporters without degradation and without sequence alterations in their coding or untranslated regions. Importantly, the modifications in the poly(A) tail impact positively on the translational efficiency of reporter-mRNAs in vitro and in cells. Therefore, covalent fluorescent labeling at the poly(A) tail presents a new way to increase the amount of reporter protein from exogenous mRNA and to label genetically unaltered and translationally active mRNAs.
Collapse
Affiliation(s)
- Lea Anhäuser
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Straße 2, 48149 Münster, Germany
| | - Sabine Hüwel
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Straße 2, 48149 Münster, Germany
| | - Thomas Zobel
- Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Straße 2, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| |
Collapse
|
18
|
Muthmann N, Hartstock K, Rentmeister A. Chemo-enzymatic treatment of RNA to facilitate analyses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1561. [PMID: 31392842 DOI: 10.1002/wrna.1561] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Labeling RNA is a recurring problem to make RNA compatible with state-of-the-art methodology and comes in many flavors. Considering only cellular applications, the spectrum still ranges from site-specific labeling of individual transcripts, for example, for live-cell imaging of mRNA trafficking, to metabolic labeling in combination with next generation sequencing to capture dynamic aspects of RNA metabolism on a transcriptome-wide scale. Combining the specificity of RNA-modifying enzymes with non-natural substrates has emerged as a valuable strategy to modify RNA site- or sequence-specifically with functional groups suitable for subsequent bioorthogonal reactions and thus label RNA with reporter moieties such as affinity or fluorescent tags. In this review article, we will cover chemo-enzymatic approaches (a) for in vitro labeling of RNA for application in cells, (b) for treatment of total RNA, and (c) for metabolic labeling of RNA. This article is categorized under: RNA Processing < RNA Editing and Modification RNA Methods < RNA Analyses in vitro and In Silico RNA Methods < RNA Analyses in Cells.
Collapse
Affiliation(s)
- Nils Muthmann
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Katja Hartstock
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
19
|
Seitz O. Templated chemistry for bioorganic synthesis and chemical biology. J Pept Sci 2019; 25:e3198. [PMID: 31309674 PMCID: PMC6771651 DOI: 10.1002/psc.3198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
In light of the 2018 Max Bergmann Medal, this review discusses advancements on chemical biology-driven templated chemistry developed in the author's laboratories. The focused review introduces the template categories applied to orient functional units such as functional groups, chromophores, biomolecules, or ligands in space. Unimolecular templates applied in protein synthesis facilitate fragment coupling of unprotected peptides. Templating via bimolecular assemblies provides control over proximity relationships between functional units of two molecules. As an instructive example, the coiled coil peptide-templated labelling of receptor proteins on live cells will be shown. Termolecular assemblies provide the opportunity to put the proximity of functional units on two (bio)molecules under the control of a third party molecule. This allows the design of conditional bimolecular reactions. A notable example is DNA/RNA-triggered peptide synthesis. The last section shows how termolecular and multimolecular assemblies can be used to better characterize and understand multivalent protein-ligand interactions.
Collapse
Affiliation(s)
- Oliver Seitz
- Department of ChemistryHumboldt University BerlinBerlinGermany
| |
Collapse
|
20
|
Park HS, Kietrys AM, Kool ET. Simple alkanoyl acylating agents for reversible RNA functionalization and control. Chem Commun (Camb) 2019; 55:5135-5138. [PMID: 30977472 PMCID: PMC6541391 DOI: 10.1039/c9cc01598a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We describe the synthesis and RNA acylation activity of a series of minimalist azidoalkanoyl imidazole reagents, with the aim of functionalizing RNA at 2'-hydroxyl groups at stoichiometric to superstoichiometric levels. We find marked effects of small structural changes on their ability to acylate and be reductively removed, and identify reagents and methods that enable efficient RNA functionalization and control.
Collapse
Affiliation(s)
- Hyun Shin Park
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
21
|
Flamme M, McKenzie LK, Sarac I, Hollenstein M. Chemical methods for the modification of RNA. Methods 2019; 161:64-82. [PMID: 30905751 DOI: 10.1016/j.ymeth.2019.03.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
RNA is often considered as being the vector for the transmission of genetic information from DNA to the protein synthesis machinery. However, besides translation RNA participates in a broad variety of fundamental biological roles such as gene expression and regulation, protein synthesis, and even catalysis of chemical reactions. This variety of function combined with intricate three-dimensional structures and the discovery of over 100 chemical modifications in natural RNAs require chemical methods for the modification of RNAs in order to investigate their mechanism, location, and exact biological roles. In addition, numerous RNA-based tools such as ribozymes, aptamers, or therapeutic oligonucleotides require the presence of additional chemical functionalities to strengthen the nucleosidic backbone against degradation or enhance the desired catalytic or binding properties. Herein, the two main methods for the chemical modification of RNA are presented: solid-phase synthesis using phosphoramidite precursors and the enzymatic polymerization of nucleoside triphosphates. The different synthetic and biochemical steps required for each method are carefully described and recent examples of practical applications based on these two methods are discussed.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France; Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Luke K McKenzie
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
22
|
Milisavljevič N, Perlíková P, Pohl R, Hocek M. Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates. Org Biomol Chem 2019; 16:5800-5807. [PMID: 30063056 DOI: 10.1039/c8ob01498a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We synthesized a small library of eighteen 5-substituted pyrimidine or 7-substituted 7-deazapurine nucleoside triphosphates bearing methyl, ethynyl, phenyl, benzofuryl or dibenzofuryl groups through cross-coupling reactions of nucleosides followed by triphosphorylation or through direct cross-coupling reactions of halogenated nucleoside triphosphates. We systematically studied the influence of the modification on the efficiency of T7 RNA polymerase catalyzed synthesis of modified RNA and found that modified ATP, UTP and CTP analogues bearing smaller modifications were good substrates and building blocks for the RNA synthesis even in difficult sequences incorporating multiple modified nucleotides. Bulky dibenzofuryl derivatives of ATP and GTP were not substrates for the RNA polymerase. In the case of modified GTP analogues, a modified procedure using a special promoter and GMP as initiator needed to be used to obtain efficient RNA synthesis. The T7 RNA polymerase synthesis of modified RNA can be very efficiently used for synthesis of modified RNA but the method has constraints in the sequence of the first three nucleotides of the transcript, which must contain a non-modified G in the +1 position.
Collapse
Affiliation(s)
- Nemanja Milisavljevič
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic.
| | | | | | | |
Collapse
|
23
|
Abstract
Attachment of hydrophobic groups to RNA is challenging because of their poor aqueous solubility. One-step acylation of RNA 2'-OH groups in water using a water-soluble imidazole leaving group is described. The effect of the hydrophobic groups on hybridization is reported. Furthermore, propargyl-functionalized RNA is shown to be readily labeled with a fluorophore. Lastly, heptyl-functionalized RNA is found to exhibit the unusual property of solubility in organic solvents.
Collapse
Affiliation(s)
- Willem A. Velema
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Walunj MB, Tanpure AA, Srivatsan SG. Post-transcriptional labeling by using Suzuki-Miyaura cross-coupling generates functional RNA probes. Nucleic Acids Res 2018; 46:e65. [PMID: 29546376 PMCID: PMC6009664 DOI: 10.1093/nar/gky185] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Pd-catalyzed C-C bond formation, an important vertebra in the spine of synthetic chemistry, is emerging as a valuable chemoselective transformation for post-synthetic functionalization of biomacromolecules. While methods are available for labeling protein and DNA, development of an analogous procedure to label RNA by cross-coupling reactions remains a major challenge. Herein, we describe a new Pd-mediated RNA oligonucleotide (ON) labeling method that involves post-transcriptional functionalization of iodouridine-labeled RNA transcripts by using Suzuki-Miyaura cross-coupling reaction. 5-Iodouridine triphosphate (IUTP) is efficiently incorporated into RNA ONs at one or more sites by T7 RNA polymerase. Further, using a catalytic system made of Pd(OAc)2 and 2-aminopyrimidine-4,6-diol (ADHP) or dimethylamino-substituted ADHP (DMADHP), we established a modular method to functionalize iodouridine-labeled RNA ONs in the presence of various boronic acid and ester substrates under very mild conditions (37°C and pH 8.5). This method is highly chemoselective, and offers direct access to RNA ONs labeled with commonly used fluorescent and affinity tags and new fluorogenic environment-sensitive nucleoside probes in a ligand-controlled stereoselective fashion. Taken together, this simple approach of generating functional RNA ON probes by Suzuki-Miyaura coupling will be a very important addition to the resources and tools available for analyzing RNA motifs.
Collapse
Affiliation(s)
- Manisha B Walunj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
25
|
Abstract
Click chemistry has emerged as a powerful tool in our arsenal for unlocking new biology. This includes its utility in both chemical biology and drug discovery. An emerging application of click chemistry is in the development of biochemical assays for high-throughput screening to identify new chemical probes and drug leads. This Feature Article will discuss the advancements in click chemistry that were necessary for the development of a new class of biochemical assay, catalytic enzyme-linked click chemistry assay or cat-ELCCA. Inspired by enzyme immunoassays, cat-ELCCA was designed as a click chemistry-based amplification assay where bioorthogonally-tagged analytes and enzymes are used in place of the enzyme-linked secondary antibodies used in immunoassays. The result is a robust assay format with demonstrated applicability in several important areas of biology and drug discovery, including post-translational modifications, pre-microRNA maturation, and protein-protein and RNA-protein interactions. Through the use of cat-ELCCA and other related click chemistry-based assays, new chemical probes for interrogating promising drug targets have been discovered. These examples will be discussed, in addition to a future outlook on the impact of this approach in probe and drug discovery.
Collapse
Affiliation(s)
- Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
26
|
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 2018; 46:4895-4950. [PMID: 28660957 DOI: 10.1039/c7cs00184c] [Citation(s) in RCA: 669] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.
Collapse
Affiliation(s)
- B L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Z Guo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - G J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| |
Collapse
|
27
|
Sabale PM, Ambi UB, Srivatsan SG. A Lucifer-Based Environment-Sensitive Fluorescent PNA Probe for Imaging Poly(A) RNAs. Chembiochem 2018; 19:826-835. [PMID: 29396904 PMCID: PMC5972818 DOI: 10.1002/cbic.201700661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Fluorescence‐based oligonucleotide (ON) hybridization probes greatly aid the detection and profiling of RNA sequences in cells. However, certain limitations such as target accessibility and hybridization efficiency in cellular environments hamper their broad application because RNAs can form complex and stable structures. In this context, we have developed a robust hybridization probe suitable for imaging RNA in cells by combining the properties of 1) a new microenvironment‐sensitive fluorescent nucleobase analogue, obtained by attaching the Lucifer chromophore (1,8‐naphthalimide) at the 5‐position of uracil, and 2) a peptide nucleic acid (PNA) capable of forming stable hybrids with RNA. The fluorescence of the PNA base analogue labeled with the Lucifer chromophore, when incorporated into PNA oligomers and hybridized to complementary and mismatched ONs, is highly responsive to its neighboring base environment. Notably, the PNA base reports the presence of an adenine repeat in an RNA ON with reasonable enhancement in fluorescence. This feature of the emissive analogue enabled the construction of a poly(T) PNA probe for the efficient visualization of polyadenylated [poly(A)] RNAs in cells—poly(A) being an important motif that plays vital roles in the lifecycle of many types of RNA. Our results demonstrate that such responsive fluorescent nucleobase analogues, when judiciously placed in PNA oligomers, could generate useful hybridization probes to detect nucleic acid sequences in cells and also to image them.
Collapse
Affiliation(s)
- Pramod M Sabale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Uddhav B Ambi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
28
|
Roszyk L, Kollenda S, Hennig S. Using a Specific RNA-Protein Interaction To Quench the Fluorescent RNA Spinach. ACS Chem Biol 2017; 12:2958-2964. [PMID: 29058870 DOI: 10.1021/acschembio.7b00332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNAs are involved in interaction networks with other biomolecules and are crucial for proper cell function. Yet their biochemical analysis remains challenging. For Förster Resonance Energy Transfer (FRET), a common tool to study such interaction networks, two interacting molecules have to be fluorescently labeled. "Spinach" is a genetically encodable RNA aptamer that starts to fluoresce upon binding of an organic molecule. Therefore, it is a biological fluorophore tag for RNAs. However, spinach has never been used in a FRET assembly before. Here, we describe how spinach is quenched when close to acceptors. We used RNA-DNA hybridization to bring quenchers or red organic dyes in close proximity to spinach. Furthermore, we investigate RNA-protein interactions quantitatively on the example of Pseudomonas aeruginosa phage coat protein 7 (PP7) and its interacting pp7-RNA. We utilize spinach quenching as a fully genetically encodable system even under lysate conditions. Therefore, this work represents a direct method to analyze RNA-protein interactions by quenching the spinach aptamer.
Collapse
Affiliation(s)
- Laura Roszyk
- Chemical
Genomics Centre of the Max-Planck Society, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Sebastian Kollenda
- Institute
for Inorganic Chemistry, University of Duisburg Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Sven Hennig
- Chemical
Genomics Centre of the Max-Planck Society, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Division
of Organic Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| |
Collapse
|
29
|
Zhou CY, Alexander SC, Devaraj NK. Fluorescent turn-on probes for wash-free mRNA imaging via covalent site-specific enzymatic labeling. Chem Sci 2017; 8:7169-7173. [PMID: 29081948 PMCID: PMC5635419 DOI: 10.1039/c7sc03150e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/28/2017] [Indexed: 11/21/2022] Open
Abstract
Investigating the many roles RNA plays in cellular regulation and function has increased demand for tools to explore RNA tracking and localization within cells.
Investigating the many roles RNA plays in cellular regulation and function has increased demand for tools to explore RNA tracking and localization within cells. Our recently reported RNA-TAG (transglycosylation at guanine) approach uses an RNA-modifying enzyme, tRNA-guanine transglycosylase (TGT), to accomplish covalent labeling of an RNA of interest with fluorescent tracking agents in a highly selective and efficient manner. Unfortunately, labeling by this method currently suffers from a high nonspecific fluorescent background and is currently unsuitable for imaging RNA within complex cellular environments. Herein we report the design and synthesis of novel fluorogenic thiazole orange probes that significantly lower nonspecific binding and background fluorescence and, as a result, provide up to a 100-fold fluorescence intensity increase after labeling. Using these fluorogenic labeling agents, we were able to image mRNA expressed in Chinese Hamster Ovary cells in a wash-free manner.
Collapse
Affiliation(s)
- Cun Yu Zhou
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr La Jolla , San Diego , CA 92093 , USA .
| | - Seth C Alexander
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr La Jolla , San Diego , CA 92093 , USA .
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry , University of California , 9500 Gilman Dr La Jolla , San Diego , CA 92093 , USA .
| |
Collapse
|
30
|
Alexander SC, Devaraj NK. Developing a Fluorescent Toolbox To Shed Light on the Mysteries of RNA. Biochemistry 2017; 56:5185-5193. [PMID: 28671838 DOI: 10.1021/acs.biochem.7b00510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Technologies that detect and image RNA have illuminated the complex roles played by RNA, redefining the traditional and superficial role first outlined by the central dogma of biology. Because there is such a wide diversity of RNA structure arising from an assortment of functions within biology, a toolbox of approaches have emerged for investigation of this important class of biomolecules. These methods are necessary to detect and elucidate the localization and dynamics of specific RNAs and in doing so unlock our understanding of how RNA dysregulation leads to disease. Current methods for detecting and imaging RNA include in situ hybridization techniques, fluorescent aptamers, RNA binding proteins fused to fluorescent reporters, and covalent labeling strategies. Because of the inherent diversity of these methods, each approach comes with a set of strengths and limitations that leave room for future improvement. This perspective seeks to highlight the most recent advances and remaining challenges for the wide-ranging toolbox of technologies that illuminate RNA's contribution to cellular complexity.
Collapse
Affiliation(s)
- Seth C Alexander
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
31
|
Tosevski V, Ulashchik E, Trovato A, Cappella P. CyTOF Mass Cytometry for Click Proliferation Assays. ACTA ACUST UNITED AC 2017; 81:7.50.1-7.50.14. [PMID: 28678421 DOI: 10.1002/cpcy.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel cell analyzers, including polychromatic flow cytometers and isotopical cytometry by time of flight (CyTOF) mass cytometers, enable simultaneous measurement of virtually bondless characteristics at the single-cell level. BrdU assays for quantifying cellular proliferation are common but have several limitations, including the need for a DNA denaturation step and inability to simultaneously resolve multiple parameters and phenotypic complexity. Click chemistry reactions have become popular in the past decade, as they can resolve these issues. This protocol introduces a novel assay able to bridge flow cytometry and CyTOF analysis for active S-phase determination in cell cycle applications, combining well-established click chemistry with a novel iodo-deoxyuridine (IdU) azide derivative and a cross-reactive anti-IdU antibody for detecting incorporated EdU during DNA synthesis. This method is preferred over traditional BrdU-based assays for complex and multiparametric experiments. It provides a feasible cost-effective approach for detecting ethynyl-labeled nucleotides, with the advantage of combining flow and mass cytometry analyses. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Vinko Tosevski
- Mass Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Egor Ulashchik
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus.,Primetech ALC, Minsk, Belarus
| | | | | |
Collapse
|
32
|
Affiliation(s)
- Masato Ikeda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu 501-1193
| | - Marina Kabumoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193
| |
Collapse
|
33
|
Posttranscriptional chemical labeling of RNA by using bioorthogonal chemistry. Methods 2017; 120:28-38. [DOI: 10.1016/j.ymeth.2017.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022] Open
|
34
|
George JT, Srivatsan SG. Vinyluridine as a Versatile Chemoselective Handle for the Post-transcriptional Chemical Functionalization of RNA. Bioconjug Chem 2017; 28:1529-1536. [PMID: 28406614 DOI: 10.1021/acs.bioconjchem.7b00169] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of modular and efficient methods to functionalize RNA with biophysical probes is very important in advancing the understanding of the structural and functional relevance of RNA in various cellular events. Herein, we demonstrate a two-step bioorthogonal chemical functionalization approach for the conjugation of multiple probes onto RNA transcripts using a 5-vinyl-modified uridine nucleotide analog (VUTP). VUTP, containing a structurally noninvasive and versatile chemoselective handle, was efficiently incorporated into RNA transcripts by in vitro transcription reactions. Furthermore, we show for the first time the use of a palladium-mediated oxidative Heck reaction in functionalizing RNA with fluorogenic probes by reacting vinyl-labeled RNA transcripts with appropriate boronic acid substrates. The vinyl label also permitted the post-transcriptional functionalization of RNA by a reagent-free inverse electron demand Diels-Alder (IEDDA) reaction in the presence of tetrazine substrates. Collectively, our results demonstrate that the incorporation of VUTP provides newer possibilities for the modular functionalization of RNA with variety of reporters.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune , Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune , Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
35
|
Custer TC, Walter NG. In vitro labeling strategies for in cellulo fluorescence microscopy of single ribonucleoprotein machines. Protein Sci 2017; 26:1363-1379. [PMID: 28028853 PMCID: PMC5477532 DOI: 10.1002/pro.3108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly poorly understood. Intracellular single-molecule fluorescence microscopy provides a powerful emerging tool for probing the pertinent mechanistic parameters that govern cellular RNA functions, including those of protein coding messenger RNAs (mRNAs). Progress has been hampered, however, by the scarcity of efficient high-yield methods to fluorescently label RNA molecules without the need to drastically increase their molecular weight through artificial appendages that may result in altered behavior. Herein, we employ T7 RNA polymerase to body label an RNA with a cyanine dye, as well as yeast poly(A) polymerase to strategically place multiple 2'-azido-modifications for subsequent fluorophore labeling either between the body and tail or randomly throughout the tail. Using a combination of biochemical and single-molecule fluorescence microscopy approaches, we demonstrate that both yeast poly(A) polymerase labeling strategies result in fully functional mRNA, whereas protein coding is severely diminished in the case of body labeling.
Collapse
Affiliation(s)
- Thomas C Custer
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, 48109.,Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
36
|
Muttach F, Muthmann N, Rentmeister A. Chemo-enzymatic modification of eukaryotic mRNA. Org Biomol Chem 2017; 15:278-284. [DOI: 10.1039/c6ob02144a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Posttranscriptional modification at its 5′ cap renders mRNA amenable to bioorthogonal click reactions which can be performed in living cells.
Collapse
Affiliation(s)
- Fabian Muttach
- University of Münster
- Department of Chemistry
- Institute of Biochemistry
- 48149 Münster
- Germany
| | - Nils Muthmann
- University of Münster
- Department of Chemistry
- Institute of Biochemistry
- 48149 Münster
- Germany
| | - Andrea Rentmeister
- University of Münster
- Department of Chemistry
- Institute of Biochemistry
- 48149 Münster
- Germany
| |
Collapse
|
37
|
Wu H, Alexander SC, Jin S, Devaraj NK. A Bioorthogonal Near-Infrared Fluorogenic Probe for mRNA Detection. J Am Chem Soc 2016; 138:11429-32. [PMID: 27510580 DOI: 10.1021/jacs.6b01625] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is significant interest in developing methods that visualize and detect RNA. Bioorthogonal template-driven tetrazine ligations could be a powerful route to visualizing nucleic acids in native cells, yet past work has been limited with respect to the diversity of fluorogens that can be activated via a tetrazine reaction. Herein we report a novel bioorthogonal tetrazine uncaging reaction that harnesses tetrazine reactivity to unmask vinyl ether caged fluorophores spanning the visible spectrum, including a near-infrared (NIR)-emitting cyanine dye. Vinyl ether caged fluorophores and tetrazine partners are conjugated to high-affinity antisense nucleic acid probes, which show highly selective fluorogenic reactivity when annealed to their respective target RNA sequences. A target sequence in the 3' untranslated region of an expressed mRNA was detected in live cells employing appropriate nucleic acid probes bearing a tetrazine-reactive NIR fluorogen. Given the expansion of tetrazine fluorogenic chemistry to NIR dyes, we believe highly selective proximity-induced fluorogenic tetrazine reactions could find broad uses in illuminating endogenous biomolecules in cells and tissues.
Collapse
Affiliation(s)
- Haoxing Wu
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Seth C Alexander
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Shuaijiang Jin
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
38
|
Kikuchi N, Kolpashchikov DM. Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures. Chembiochem 2016; 17:1589-92. [PMID: 27305425 DOI: 10.1002/cbic.201600323] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 12/25/2022]
Abstract
Split spinach aptamer (SSA) probes for fluorescent analysis of nucleic acids were designed and tested. In SSA design, two RNA or RNA/DNA strands hybridized to a specific nucleic acid analyte and formed a binding site for low-fluorescent 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) dye, which resulted in up to a 270-fold increase in fluorescence. The major advantage of the SSA over state-of-the art fluorescent probes is high selectivity: it produces only background fluorescence in the presence of a single-base-mismatched analyte, even at room temperature. SSA is therefore a promising tool for label-free analysis of nucleic acids at ambient temperatures.
Collapse
Affiliation(s)
- Nanami Kikuchi
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.
| |
Collapse
|
39
|
|