1
|
Reddy DJ, Guntuku G, Palla MS. Advancements in nanobody generation: Integrating conventional, in silico, and machine learning approaches. Biotechnol Bioeng 2024; 121:3375-3388. [PMID: 39054738 DOI: 10.1002/bit.28816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Nanobodies, derived from camelids and sharks, offer compact, single-variable heavy-chain antibodies with diverse biomedical potential. This review explores their generation methods, including display techniques on phages, yeast, or bacteria, and computational methodologies. Integrating experimental and computational approaches enhances understanding of nanobody structure and function. Future trends involve leveraging next-generation sequencing, machine learning, and artificial intelligence for efficient candidate selection and predictive modeling. The convergence of traditional and computational methods promises revolutionary advancements in precision biomedical applications such as targeted drug delivery and diagnostics. Embracing these technologies accelerates nanobody development, driving transformative breakthroughs in biomedicine and paving the way for precision medicine and biomedical innovation.
Collapse
Affiliation(s)
- D Jagadeeswara Reddy
- Pharmaceutical Biotechnology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - Girijasankar Guntuku
- Pharmaceutical Biotechnology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - Mary Sulakshana Palla
- GITAM School of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam, India
| |
Collapse
|
2
|
Botía M, Llamas-Amor E, Cerón JJ, Ramis-Vidal G, López-Juan AL, Benedé JL, Escribano D, Martínez-Subiela S, López-Arjona M. Cortisone in saliva of pigs: validation of a new assay and changes after thermal stress. BMC Vet Res 2024; 20:370. [PMID: 39155386 PMCID: PMC11331735 DOI: 10.1186/s12917-024-04195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Cortisone is derived from cortisol through the action of the enzyme 11β-hydroxysteroid dehydrogenase type II, and it has gained importance in recent years as a biomarker of stress. This study aimed to develop and validate an assay for the measurement of cortisone in pig saliva and evaluate whether its concentration varies in stressful situations. For this purpose, a specific immunoassay was developed and validated analytically, and a study was performed to evaluate whether cortisone concentrations in saliva can vary under heat stress conditions. RESULTS The assay proved to be accurate, reliable, and sensitive for the measurement of cortisone in pig saliva. The limit of detection of the assay was set at 0.006 ng/ml, and the lower limit of quantification was 0.023 ng/ml. It also correlated significantly with the results obtained by LC‒MS/MS (P = 0.003; r = 0.64). In addition, the cortisone concentration in animals subjected to prolonged heat stress decreased significantly 15 days after treatment (P < 0.0001). CONCLUSIONS According to these results, cortisone measured by this assay could be used as a tool for the non-invasive evaluation of thermal stress in pig saliva.
Collapse
Affiliation(s)
- María Botía
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - Eva Llamas-Amor
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain.
| | - Guillermo Ramis-Vidal
- Department of Animal Production, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo S/N, Murcia, 30100, Spain
| | - Andreu L López-Juan
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Valencia, Burjassot, 46100, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Valencia, Burjassot, 46100, Spain
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
- Department of Animal Production, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo S/N, Murcia, 30100, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - Marina López-Arjona
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, Barcelona, Cerdanyola del Vallès, 08193, Spain
| |
Collapse
|
3
|
Peng W, Jiang C, Cai G, Liu L, Guo X, Gao X, Li G, Zheng Z, Liu P, Liu P. Preparation of polyclonal antibody against thrombospondin 2 recombinant protein and its functional verification in pulmonary hypertension syndrome in broilers. Int J Biol Macromol 2024; 274:133284. [PMID: 38906344 DOI: 10.1016/j.ijbiomac.2024.133284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Cell migration regulated by Thrombospondin 2 (THSB2) is important for the development of pulmonary artery remodeling, but the mechanism by which THBS2-mediated cell migration regulates the development of pulmonary artery remodeling in broiler ascites syndrome (AS) is unclear. In addition, the lack of chicken THBS2 antibodies makes it difficult to study the mechanism in depth. In our study, we used recombinant gene technology, protein purification, and other techniques to obtain mouse anti-chicken THBS2 antibody and analyze its expression in broilers, ascites broilers and other animals. The results showed that we immunized mouse with recombinant THBS2 protein and obtained an antibody titer of 1:204,800, and the addition of astragalus polysaccharide as an immunomodulator during immunization significantly increased the titer of the antibody. Western blotting (WB) and immunofluorescence results showed that the THBS2 was significantly down-regulated in the ascites broiler. The THBS2 antibody we prepared can also detect THBS2 protein in duck, mouse, goat, and rabbit tissues. These results provide a foundation for further investigation of the role of THBS2 in pulmonary artery remodeling in broiler ascites syndrome and a powerful tool for studying the role of THBS2 in AS.
Collapse
Affiliation(s)
- Wen Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chenxi Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Gaofeng Cai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Liling Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhanhong Zheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
4
|
Sun L, Li C, Zhao N, Wang B, Li H, Wang H, Zhang X, Zhao X. Host protein EPCAM interacting with EtMIC8-EGF is essential for attachment and invasion of Eimeria tenella in chickens. Microb Pathog 2024; 188:106549. [PMID: 38281605 DOI: 10.1016/j.micpath.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
The five epidermal growth factor-like domains (EGF) of Eimeria tenella microneme protein 8 (EtMIC8) (EtMIC8-EGF) plays a vital role in host cell attachment and invasion. These processes require interactions between parasite proteins and receptors on the surface of host cells. In this study, five chicken membrane proteins potentially interacting with EtMIC8-EGF were identified using the GST pull-down assay and mass spectrometry analysis, and only chicken (Gallus gallus) epithelial cell adhesion molecule (EPCAM) could bind to EtMIC8-EGF. EPCAM-specific antibody and recombinant EPCAM protein (rEPCAM) inhibited the EtMIC8-EGF binding to host cells in a concentration-dependent manner. Furthermore, the rEPCAM protein showed a binding activity to sporozoites in vitro, and a significant reduction of E. tenella invasion in DF-1 cells was further observed after pre-incubation of sporozoites with rEPCAM. The specific anti-EPCAM antibody further significantly decreased weight loss, lesion score and oocyst output during E. tenella infection, displaying partial inhibition of E. tenella infection. These results indicate that chicken EPCAM is an important EtMIC8-interacting host protein involved in E. tenella-host cell adhesion and invasion. The findings will contribute to a better understanding of the role of adhesion-associated microneme proteins in E. tenella.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Chao Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding City, 071000, Hebei Province, China
| | - Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Bingxiang Wang
- Shandong Vocational Animal Science and Veterinary College, Weifang City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Hairong Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| |
Collapse
|
5
|
Trier NH, Friis T. Production of Antibodies to Peptide Targets Using Hybridoma Technology. Methods Mol Biol 2024; 2821:135-156. [PMID: 38997486 DOI: 10.1007/978-1-0716-3914-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hybridoma technology is a well-established and indispensable tool for generating high-quality monoclonal antibodies and has become one of the most common methods for monoclonal antibody production. In this process, antibody-producing B cells are isolated from mice following immunization of mice with a specific immunogen and fused with an immortal myeloma cell line to form antibody-producing hybridoma cell lines. Hybridoma-derived monoclonal antibodies not only serve as powerful research and diagnostic reagents but have also emerged as the most rapidly expanding class of therapeutic biologicals. In spite of the development of new high-throughput monoclonal antibody generation technologies, hybridoma technology still is applied for antibody production due to its ability to preserve innate functions of immune cells and to preserve natural cognate antibody paring information. In this chapter, an overview of hybridoma technology and the laboratory procedures used for hybridoma production and antibody screening of peptide-specific antibodies are presented.
Collapse
Affiliation(s)
| | - Tina Friis
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| |
Collapse
|
6
|
Seisenberger C, Graf T, Sticht S, Haindl M, Mohn U, Wegele H, Wiedmann M, Wohlrab S. The agony of choice: Impact of the host animal species on the enzyme-linked immunosorbent assay performance for host cell protein quantification. Biotechnol Bioeng 2023; 120:184-193. [PMID: 36251621 DOI: 10.1002/bit.28265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Host cell proteins (HCPs) are inevitable process-related impurities in biotherapeutics commonly monitored by enzyme-linked immunosorbent assays (ELISAs). Of particular importance for their reliable detection are the anti-HCP polyclonal antibodies (pAbs), supposed to detect a broad range of HCPs. The present study focuses on the identification of suitable host animal species for the development of high-performance CHO-HCP ELISAs, assuming the generation of pAbs with adequate coverage and specificity. Hence, antibodies derived from immunization of sheep, goats, donkeys, rabbits, and chickens were compared concerning their amount of HCP-specific antibodies, coverage, and performance in a sandwich ELISA. Immunization of sheep, goats, donkeys, and rabbits met all test criteria, whereas the antibodies from chickens cannot be recommended based on the results of this study. Additionally, a mixture of antibodies from the five host species was prepared to assess if coverage and ELISA performance can be improved by a multispecies approach. Comparable results were obtained for the single- and multispecies ELISAs in different in-process samples, indicating no substantial improvement for the latter in ELISA performance while raising ethical and financial concerns.
Collapse
Affiliation(s)
| | - Tobias Graf
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg, Germany
| | - Sarah Sticht
- Antibody and Protein Technologies, Roche Diagnostics GmbH, Penzberg, Germany
| | - Markus Haindl
- Gene and Cell Therapy Unit, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ulrich Mohn
- Biotech Production, Roche Diagnostics GmbH, Penzberg, Germany
| | - Harald Wegele
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg, Germany
| | - Michael Wiedmann
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg, Germany
| | - Stefanie Wohlrab
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
7
|
Li H, Sun L, Jiang Y, Wang B, Wu Z, Sun J, Zhang X, Li H, Zhao X. Identification and characterization of Eimeria tenella EtTrx1 protein. Vet Parasitol 2022; 310:109785. [PMID: 35994916 DOI: 10.1016/j.vetpar.2022.109785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022]
Abstract
Thioredoxin (Trx) is a widespread protein regulator of redox reactions in all organisms. It operates together with NADPH and thioredoxin reductase as a general protein disulfide catalytic system. Recently, Trx has been found to be related to the process by which apicomplexan protozoa invade host cells. In this study, Eimeria tenella thioredoxin (EtTrx1) was identified and its gene structural features, expression levels at different developmental stages, localization in sporozoites, roles in adhesion and invasion, and immunogenicity were investigated. Sequence analysis indicated that EtTrx1 contains a Trx domain with a WCGPC motif in 29-33 aa and a typical Trx fold, and belongs to thioredoxin family. EtTrx1 was detected on the surface of sporozoites using anti-EtTrx1 polyclonal antibodies under non-permeabilized conditions by indirect immunofluorescence assay (IFA) and also in a secretion form. EtTrx1 protein was highly transcribed and expressed in merozoites and sporozoites by quantitative PCR and western blot. The attachment assay showed that the adherence rates of yeast cells expressing EtTrx1 on the surface to host cells were 3.1-fold higher than those of the blank control. Specific anti-EtTrx1 antibodies inhibited the invasion of sporozoites into DF-1 cells. The highest inhibition rate was up to 36.75% compared to the control group. Immunization with recombinant EtTrx1 peptides also showed significant protection against lethal infections in chickens. It could offer moderate protective efficacy (Anticoccidial Index [ACI]: 163.70), induce humoral responses, and be an effective candidate for the development of new vaccines.
Collapse
Affiliation(s)
- Huihui Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Yingying Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Bingxiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Zhiyuan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Jinkun Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
8
|
The use of ribosome-nascent chain complex-seq to reveal the translated mRNA profile and the role of ASN1 in resistance to Verticillium wilt in cotton. Genomics 2021; 113:3872-3880. [PMID: 34563615 DOI: 10.1016/j.ygeno.2021.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/19/2021] [Accepted: 09/18/2021] [Indexed: 11/22/2022]
Abstract
We combined traditional mRNA-seq and RNC-seq together to reveal post-transcriptional regulation events impacting gene expression and interactions between the serious fungal pathogen Verticillium dahliae and a susceptible host, Gossypium hirsutum TM-1. After screening the differentially expressed and translated genes, V. dahliae infection was observed to influence gene transcription and translation in its host. Interestingly, the asparagine synthase (ASN1) gene transcripts increased significantly with the increase of infection time, while the rate of ASN1 protein accumulation in host TM-1 was distinctly lower than that in resistant hosts. We knocked down the ASN1 gene in resistant plants (ZZM2), and found that Verticillium-resistance was significantly reduced upon knockdown of ASN1. Our study revealed both transcriptional and post-transcriptional regulation of gene expression in TM-1 cotton plants infected by V. dahliae, and showed that ASN1 functions in the V. dahliae resistance process. These insights support breeding of disease resistance in cotton.
Collapse
|
9
|
Nguyen-Phuoc KH, Duong ND, Phan TV, Do KYT, Nguyen NTT, Tran TL, Tran-Van H. Generation and evaluation of polyclonal antibodies specific for ToxA from Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (AHPND) in shrimp. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2021; 10:23-32. [PMID: 33681394 PMCID: PMC7936389 DOI: 10.22099/mbrc.2020.38774.1561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute Hepatopancreatic Necrosis Disease (AHPND) is a newly emerging shrimp disease with mortality up to 100 percent caused by Vibrio parahaemolyticus which carries a plasmid encoding for two toxins, ToxA and ToxB. In 2013, the Global Aquaculture Alliance (GAA) estimated shrimp farming decline in Asia accounted for 1-billion US dollar lost. Currently, diagnosis using PCR method does not meet the demand of in situ detection, which is based on antigen-antibody interaction, has not been developed yet. In this present study, we proceeded to create the toxin and its antibody for lateral flow development. First, recombinant toxin ToxA was generated by gene manipulation. After that, purified ToxA was used to immunize rabbits. Finally, antisera from rabbits and protein-A purified antibodies were evaluated for titer, specificity, and detection threshold. Results showed that recombinant ToxA was overexpressed in soluble fraction at 37oC with 1mM IPTG. Purification by affinity chromatography was able to isolate recombinant ToxA with the purity up to 94.49%. In ELISA experiment, the immunized antisera reached a titer of up to 1/5,210,000 with 1µg/ml of antigen, and detection threshold was 100ng recombinant toxin. After purification, the detection threshold of purified polyclonal antibodies was 25ng toxin per dot. These results laid a groundwork for the development of AHPND detection kit based on antigen - antibody interactions.
Collapse
Affiliation(s)
- Khai-Hoan Nguyen-Phuoc
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh, Vietnam.,Vietnam National University, Ho Chi Minh, Vietnam.,First authorship shared
| | - Ngoc-Diem Duong
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh, Vietnam.,Vietnam National University, Ho Chi Minh, Vietnam.,Pasteur Institute in Ho Chi Minh City, Vietnam.,First authorship shared
| | - Thach Van Phan
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh, Vietnam.,Vietnam National University, Ho Chi Minh, Vietnam
| | | | | | - Thuoc Linh Tran
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh, Vietnam.,Vietnam National University, Ho Chi Minh, Vietnam
| | - Hieu Tran-Van
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh, Vietnam.,Vietnam National University, Ho Chi Minh, Vietnam
| |
Collapse
|
10
|
Abstract
For work in Xenopus, frog-specific antibodies must usually be raised, although a few antibodies against mammalian proteins cross-react. To produce an immunogen for antibody production, human embryonic kidney (HEK) expression systems can be used as described here. For most laboratories, the actual method of raising the antibody is determined by local ethical regulations controlling the adjuvant and injection protocols used. Because these steps are often outsourced, they are not included in this protocol.
Collapse
Affiliation(s)
- Maya Z Piccinni
- European Xenopus Resource Centre, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Matthew J Guille
- European Xenopus Resource Centre, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| |
Collapse
|
11
|
López-Arjona M, Tecles F, Mateo SV, Contreras-Aguilar MD, Martínez-Miró S, Cerón JJ, Martínez-Subiela S. Measurement of cortisol, cortisone and 11β-hydroxysteroid dehydrogenase type 2 activity in hair of sows during different phases of the reproductive cycle. Vet J 2020; 259-260:105458. [PMID: 32553232 DOI: 10.1016/j.tvjl.2020.105458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/25/2022]
Abstract
Two sensitive assays based on AlphaLISA technology were developed and validated for the measurement of cortisol and cortisone in hair of pigs, that also enabled estimation of 11β-hydroxysteroid dehydrogenase type 2 activity. These assays were applied to hair samples from sows (n = 32) collected at 5 days before, and at 23 and 59 after farrowing, in reproductive cycles in two different periods: spring-summer (n = 16) and winter-spring (n = 16). The assays were precise (imprecision <12%) and accurate (recovery range, 80-115%) for cortisol and cortisone determination. Hair cortisone concentrations and the cortisone/cortisol ratio (an estimate of 11β-hydroxysteroid dehydrogenase isoenzyme type 2 activity) increased after farrowing more than cortisol, being these changes of higher magnitude during periods of higher atmospheric temperature. The measurement of hair cortisone concentrations and estimations of the activity of the 11β-hydroxysteroid dehydrogenase isoenzyme type 2, measured by the assays developed in this study, are complementary biomarkers to hair cortisol, and can increase at periods associated with stress, such as farrowing and lactation, especially at high atmospheric temperatures. .
Collapse
Affiliation(s)
- M López-Arjona
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| | - F Tecles
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| | - S V Mateo
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| | - M D Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| | - S Martínez-Miró
- Departament of Animal Production, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| | - J J Cerón
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain.
| | - S Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
12
|
Sotoudeh N, Noormohammadi Z, Habibi-Anbouhi M, Kazemi-Lomedasht F, Behdani M. Evaluation of Laboratory Application of Camelid Sera Containing Heavy-Chain Polyclonal Antibody Against Recombinant Cytotoxic T-Lymphocyte-Associated Protein-4. Monoclon Antib Immunodiagn Immunother 2019; 38:235-241. [PMID: 31718460 DOI: 10.1089/mab.2019.0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) is a critical negative immunomodulatory receptor that is normally expressed in activated T cells and noticeably, in many cancerous cells. Indeed, molecular detection of CTLA-4 protein is crucial in basic research. In this work, the extracellular domain of the human CTLA-4 (hCTLA-4) protein was cloned, expressed, and purified. Subsequently, this protein was used as an antigen for camel (Camelus dromedarius) immunization to obtain polyclonal camelid sera against this protein. Furthermore, we evaluated the benefits of applying camelid hyperimmune sera containing heavy-chain antibodies in different antibody-based techniques. Our results indicated that hCTLA-4 protein was successfully expressed in the prokaryotic system. The polyclonal antibody (pAb) that raised against recombinant hCTLA-4 protein was able to detect the CTLA-4 protein in antibody-based techniques, such as enzyme-linked immunosorbent assay, western blotting, flow cytometry and immunohistochemistry (IHC) staining. This study shows that, due to the advantages such as multi-epitope-binding ability, camelid pAbs are potent to efficiently apply for molecular detection of CTLA-4 receptors in fundamental antibody-based researches such as IHC.
Collapse
Affiliation(s)
- Nazli Sotoudeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Fatemeh Kazemi-Lomedasht
- Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran.,Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| |
Collapse
|
13
|
Giraud M, Delapierre FD, Wijkhuisen A, Bonville P, Thévenin M, Cannies G, Plaisance M, Paul E, Ezan E, Simon S, Fermon C, Féraudet-Tarisse C, Jasmin-Lebras G. Evaluation of In-Flow Magnetoresistive Chip Cell-Counter as a Diagnostic Tool. BIOSENSORS 2019; 9:E105. [PMID: 31480476 PMCID: PMC6784370 DOI: 10.3390/bios9030105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
Inexpensive simple medical devices allowing fast and reliable counting of whole cells are of interest for diagnosis and treatment monitoring. Magnetic-based labs on a chip are one of the possibilities currently studied to address this issue. Giant magnetoresistance (GMR) sensors offer both great sensitivity and device integrability with microfluidics and electronics. When used on a dynamic system, GMR-based biochips are able to detect magnetically labeled individual cells. In this article, a rigorous evaluation of the main characteristics of this magnetic medical device (specificity, sensitivity, time of use and variability) are presented and compared to those of both an ELISA test and a conventional flow cytometer, using an eukaryotic malignant cell line model in physiological conditions (NS1 murine cells in phosphate buffer saline). We describe a proof of specificity of a GMR sensor detection of magnetically labeled cells. The limit of detection of the actual system was shown to be similar to the ELISA one and 10 times higher than the cytometer one.
Collapse
Affiliation(s)
- Manon Giraud
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, CEDEX, 91191 Gif-sur-Yvette, France
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse, CEA, INRA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | | | - Anne Wijkhuisen
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse, CEA, INRA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Pierre Bonville
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, CEDEX, 91191 Gif-sur-Yvette, France
| | - Mathieu Thévenin
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, CEDEX, 91191 Gif-sur-Yvette, France
| | - Gregory Cannies
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, CEDEX, 91191 Gif-sur-Yvette, France
| | - Marc Plaisance
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse, CEA, INRA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Elodie Paul
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, CEDEX, 91191 Gif-sur-Yvette, France
| | - Eric Ezan
- Direction des Programmes et des Partenariats Publics, Département de la Recherche Fondamentale, CEA, 91191 Gif-sur-Yvette, France
| | - Stéphanie Simon
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse, CEA, INRA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Claude Fermon
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, CEDEX, 91191 Gif-sur-Yvette, France
| | - Cécile Féraudet-Tarisse
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse, CEA, INRA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | | |
Collapse
|
14
|
Wu L, Hu Y, He Y, Xia Y, Lu H, Cao Z, Yi X, Wang J. Dual-channel surface plasmon resonance monitoring of intracellular levels of the p53-MDM2 complex and caspase-3 induced by MDM2 antagonist Nutlin-3. Analyst 2019; 144:3959-3966. [PMID: 31134974 DOI: 10.1039/c9an00301k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MDM2 can mediate the degradation of tumor suppressor p53 through an autoregulatory feedback loop, in which MDM2 abolishes wild-type p53 function and accelerates malignant transformation. However, the incorporation of MDM2 antagonist Nutlin-3 could reactivate the transcriptional activity of p53, up-regulate caspase-3, and induce apoptosis. In this work, the simultaneous and label-free monitoring of p53-MDM2 complex and caspase-3 levels in cancer cells before and after Nutlin-3 treatment was conducted using dual-channel surface plasmon resonance (SPR). The p53-MDM2 complex was captured in one fluidic channel covered with consensus double-stranded (ds)-DNA, while the other channel was pre-immobilized with caspase-3-specific biotinylated DEVD-containing peptides. To amplify the SPR signals, the attachment of streptavidin (SA)-conjugated anti-MDM2 antibody in both channels was achieved. The signal diversity before and after Nutlin-3 treatment is indicative of the difference in the levels of the intracellular p53-MDM2 complex and caspase-3. The limit of detection for p53-MDM2 and caspase-3 down to 4.54 pM and 0.03 ng mL-1, respectively, was attained. Upon treatment with Nutlin-3, MCF-7 cancer cells with wild-type p53 showed decreased expression of the p53-MDM2 complex and an increased caspase-3 level, while MDA-MB-231 cancer cells with mutant p53 exhibited an elevated caspase-3 level and unchanged p53-MDM2 complex expression. The apoptosis of MCF-7 and MDA-MB-231 cancer cells upon Nutlin-3 treatment follows a p53-dependent and a p53-independent pathway, respectively. The proposed method is sensitive, selective and label-free, holding great promise for assaying intracellular p53-MDM2 complex and caspase-3 levels and differentiating Nutlin-3-mediated p53-dependent or p53-independent apoptotic pathways.
Collapse
Affiliation(s)
- Ling Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dalila R N, Md Arshad MK, Gopinath SCB, Norhaimi WMW, Fathil MFM. Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS 2) productions. Biosens Bioelectron 2019; 132:248-264. [PMID: 30878725 DOI: 10.1016/j.bios.2019.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 02/04/2023]
Abstract
Two-dimensional (2D) layered nanomaterials have triggered an intensive interest due to the fascinating physiochemical properties with the exceptional physical, optical and electrical characteristics that transpired from the quantum size effect of their ultra-thin structure. Among the family of 2D nanomaterials, molybdenum disulfide (MoS2) features distinct characteristics related to the existence of direct energy bandgap, which significantly lowers the leakage current and surpasses other 2D materials. In this overview, we expatiate the novel strategies to synthesize MoS2 that cover techniques such as liquid exfoliation, chemical vapour deposition, mechanical exfoliation, hydrothermal reaction, and Van Der Waal epitaxial growth on the substrate. We extend the discussion on the recent progress in biosensing applications of the produced MoS2, highlighting the important surface-to-volume of ultrathin MoS2 structure, which enhances the overall performance of the devices. Further, envisioned the missing piece with the current MoS2-based biosensors towards developing the future strategies.
Collapse
Affiliation(s)
- N Dalila R
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - M K Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia; School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis, Malaysia.
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia; School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - W M W Norhaimi
- School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis, Malaysia
| | - M F M Fathil
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| |
Collapse
|
16
|
Talib NAA, Salam F, Sulaiman Y. Development of Highly Sensitive Immunosensor for Clenbuterol Detection by Using Poly(3,4-ethylenedioxythiophene)/Graphene Oxide Modified Screen-Printed Carbon Electrode. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4324. [PMID: 30544568 PMCID: PMC6308686 DOI: 10.3390/s18124324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/29/2018] [Accepted: 11/03/2018] [Indexed: 12/31/2022]
Abstract
Clenbuterol (CLB) is an antibiotic and illegal growth promoter drug that has a long half-life and easily remains as residue and contaminates the animal-based food product that leads to various health problems. In this work, electrochemical immunosensor based on poly(3,4-ethylenedioxythiophene)/graphene oxide (PEDOT/GO) modified screen-printed carbon electrode (SPCE) for CLB detection was developed for antibiotic monitoring in a food product. The modification of SPCE with PEDOT/GO as a sensor platform was performed through electropolymerization, while the electrochemical assay was accomplished while using direct competitive format in which the free CLB and clenbuterol-horseradish peroxidase (CLB-HRP) in the solution will compete to form binding with the polyclonal anti-clenbuterol antibody (Ab) immobilized onto the modified electrode surface. A linear standard CLB calibration curve with R² = 0.9619 and low limit of detection (0.196 ng mL-1) was reported. Analysis of milk samples indicated that this immunosensor was able to detect CLB in real samples and the results that were obtained were comparable with enzyme-linked immunosorbent assays (ELISA).
Collapse
Affiliation(s)
- Nurul Ain A Talib
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Faridah Salam
- Biodiagnostic-Biosensor Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang 43400, Selangor, Malaysia.
| | - Yusran Sulaiman
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
17
|
Agrawal S, Abud EM, Snigdha S, Agrawal A. IgM response against amyloid-beta in aging: a potential peripheral protective mechanism. ALZHEIMERS RESEARCH & THERAPY 2018; 10:81. [PMID: 30115117 PMCID: PMC6097437 DOI: 10.1186/s13195-018-0412-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/23/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The immune system plays a major role in the pathogenesis of age-related dementia, including Alzheimer's disease (AD). An insight into age-associated changes in the immune response to amyloid-beta (Aβ) in individuals without AD may be beneficial in identifying mechanisms preventing accumulation of Aβ. METHODS We examined the response of human monocyte-derived dendritic cells (DCs), T cells, and peripheral blood mononuclear cells (PBMCs) from healthy aged and young subjects to Aβ peptide 1-42, Aβ fibrils, and recombinant, nonaggregated tau-4 protein with a view to understand the role of peripheral immunity in AD. RESULTS Our studies revealed that DCs from healthy aged subjects display weak reactivity towards the Aβ peptide and no reactivity towards Aβ fibrils and tau compared with their young counterparts. An analysis of old and young PBMCs revealed that there is no significant T-cell memory against Aβ peptide, fibrils, or tau. Remarkably, the plasma levels of IgM antibodies specific to Aβ peptide 1-42 were significantly increased in aged subjects compared with young subjects, while IgG levels were comparable. Aβ peptide-specific IgM and IgG levels were also determined in the plasma of AD subjects compared with age-matched controls to demonstrate that the immune response against Aβ is stronger in AD patients. A decline in Aβ peptide-specific IgM antibodies was observed in AD patients compared with age-matched controls. In contrast, the levels of IgG as well as interleukin-21, the major cytokine involved in class switching, were increased in AD and patients with mild cognitive impairment, indicating a strong immune response against Aβ. CONCLUSIONS Collectively, low immunogenicity of Aβ in healthy controls may prevent inflammation while the generation of specific IgM antibodies may help in the clearance of Aβ in healthy subjects.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Edsel M Abud
- UCI-MIND, University of California, Irvine, Irvine, CA, 92697, USA
| | - Shikha Snigdha
- UCI-MIND, University of California, Irvine, Irvine, CA, 92697, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
18
|
Development of Polyclonal Antibody against Clenbuterol for Immunoassay Application. Molecules 2018; 23:molecules23040789. [PMID: 29596322 PMCID: PMC6017646 DOI: 10.3390/molecules23040789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
Abstract
Development of an immunoassay for clenbuterol (CLB) detection required an anti-CLB antibody as an important bioreceptor. In this study, we report our work on production and purification of a rabbit-derived polyclonal anti-CLB antibody. The antibody was then purified by nProtein A Sepharose affinity column and the antibody purity was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The activities of purified antibody were evaluated based on high antibody titer determined from enzyme-linked immunosorbent assay (ELISA). The sensitivity and selectivity of this antibody was evaluated and exhibits negligible cross-reactivity to antibiotics other than β-agonist families. Evaluation of the antibody as bioreceptor in immunoassay was performed using direct competitive ELISA and exhibited linear calibration plot (R2 = 0.9484). The antibody was used to detect the content of CLB in spiked milk samples and the recovery of more than 92% indicating significant performance as bioreceptor for the development of a rapid and simple immunoassay.
Collapse
|
19
|
Antibodies - Nature's analytical masterpieces. Methods 2017; 116:1-3. [PMID: 28351694 DOI: 10.1016/j.ymeth.2017.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|