1
|
Roychowdhury T, McNutt SW, Pasala C, Nguyen HT, Thornton DT, Sharma S, Botticelli L, Digwal CS, Joshi S, Yang N, Panchal P, Chakrabarty S, Bay S, Markov V, Kwong C, Lisanti J, Chung SY, Ginsberg SD, Yan P, De Stanchina E, Corben A, Modi S, Alpaugh ML, Colombo G, Erdjument-Bromage H, Neubert TA, Chalkley RJ, Baker PR, Burlingame AL, Rodina A, Chiosis G, Chu F. Phosphorylation-driven epichaperome assembly is a regulator of cellular adaptability and proliferation. Nat Commun 2024; 15:8912. [PMID: 39414766 PMCID: PMC11484706 DOI: 10.1038/s41467-024-53178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The intricate network of protein-chaperone interactions is crucial for maintaining cellular function. Recent discoveries have unveiled the existence of specialized chaperone assemblies, known as epichaperomes, which serve as scaffolding platforms that orchestrate the reconfiguration of protein-protein interaction networks, thereby enhancing cellular adaptability and proliferation. This study explores the structural and regulatory aspects of epichaperomes, with a particular focus on the role of post-translational modifications (PTMs) in their formation and function. A key finding is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 within an intrinsically disordered region, as critical determinants of epichaperome assembly. Our data demonstrate that phosphorylation of these serine residues enhances HSP90's interactions with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Moreover, we establish a direct link between epichaperome function and cellular physiology, particularly in contexts where robust proliferation and adaptive behavior are essential, such as in cancer and pluripotent stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone assemblies in diseases characterized by epichaperome dysregulation, thereby bridging the gap between fundamental research and precision medicine.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seth W McNutt
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luke Botticelli
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nan Yang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlene Kwong
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeanine Lisanti
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sun Young Chung
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Maimonides Medical Center, Brooklyn, NY, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary L Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Rowan University, Glassboro, NJ, USA
| | | | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Peter R Baker
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
2
|
Botticelli L, Bakhtina AA, Kaiser NK, Keller A, McNutt S, Bruce JE, Chu F. Chemical cross-linking and mass spectrometry enabled systems-level structural biology. Curr Opin Struct Biol 2024; 87:102872. [PMID: 38936319 PMCID: PMC11283951 DOI: 10.1016/j.sbi.2024.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Structural information on protein-protein interactions (PPIs) is essential for improved understanding of regulatory interactome networks that confer various physiological and pathological responses. Additionally, maladaptive PPIs constitute desirable therapeutic targets due to inherently high disease state specificity. Recent advances in chemical cross-linking strategies coupled with mass spectrometry (XL-MS) have positioned XL-MS as a promising technology to not only elucidate the molecular architecture of individual protein assemblies, but also to characterize proteome-wide PPI networks. Moreover, quantitative in vivo XL-MS provides a new capability for the visualization of cellular interactome dynamics elicited by drug treatments, disease states, or aging effects. The emerging field of XL-MS based complexomics enables unique insights on protein moonlighting and protein complex remodeling. These techniques provide complimentary information necessary for in-depth structural interactome studies to better comprehend how PPIs mediate function in living systems.
Collapse
Affiliation(s)
- Luke Botticelli
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Anna A Bakhtina
- Department of Genome Sciences, University of Washington, Seattle WA, USA
| | - Nathan K Kaiser
- Department of Genome Sciences, University of Washington, Seattle WA, USA
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle WA, USA
| | - Seth McNutt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle WA, USA.
| | - Feixia Chu
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
3
|
McNutt SW, Roychowdhury T, Pasala C, Nguyen HT, Thornton DT, Sharma S, Botticelli L, Digwal CS, Joshi S, Yang N, Panchal P, Chakrabarty S, Bay S, Markov V, Kwong C, Lisanti J, Chung SY, Ginsberg SD, Yan P, DeStanchina E, Corben A, Modi S, Alpaugh M, Colombo G, Erdjument-Bromage H, Neubert TA, Chalkley RJ, Baker PR, Burlingame AL, Rodina A, Chiosis G, Chu F. Phosphorylation-Driven Epichaperome Assembly: A Critical Regulator of Cellular Adaptability and Proliferation. RESEARCH SQUARE 2024:rs.3.rs-4114038. [PMID: 38645031 PMCID: PMC11030525 DOI: 10.21203/rs.3.rs-4114038/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intricate protein-chaperone network is vital for cellular function. Recent discoveries have unveiled the existence of specialized chaperone complexes called epichaperomes, protein assemblies orchestrating the reconfiguration of protein-protein interaction networks, enhancing cellular adaptability and proliferation. This study delves into the structural and regulatory aspects of epichaperomes, with a particular emphasis on the significance of post-translational modifications in shaping their formation and function. A central finding of this investigation is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 situated within an intrinsically disordered region, as critical determinants in epichaperome assembly. Our data demonstrate that the phosphorylation of these serine residues enhances HSP90's interaction with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Furthermore, this study establishes a direct link between epichaperome function and cellular physiology, especially in contexts where robust proliferation and adaptive behavior are essential, such as cancer and stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone complexes in diseases characterized by epichaperome dysregulation, bridging the gap between fundamental research and precision medicine.
Collapse
Affiliation(s)
- Seth W McNutt
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- co-first author, equally contributed to the work
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- co-first author, equally contributed to the work
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luke Botticelli
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nan Yang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charlene Kwong
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeanine Lisanti
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sun Young Chung
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mary Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Peter R Baker
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- These authors jointly supervised this work: Feixia Chu, Gabriela Chiosis
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
- These authors jointly supervised this work: Feixia Chu, Gabriela Chiosis
| |
Collapse
|
4
|
Canessa EH, Spathis R, Novak JS, Beedle A, Nagaraju K, Bello L, Pegoraro E, Hoffman EP, Hathout Y. Characterization of the dystrophin-associated protein complex by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:90-105. [PMID: 36420714 DOI: 10.1002/mas.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The dystrophin-associated protein complex (DAPC) is a highly organized multiprotein complex that plays a pivotal role in muscle fiber structure integrity and cell signaling. The complex is composed of three distinct interacting subgroups, intracellular peripheral proteins, transmembrane glycoproteins, and extracellular glycoproteins subcomplexes. Dystrophin protein nucleates the DAPC and is important for connecting the intracellular actin cytoskeletal filaments to the sarcolemma glycoprotein complex that is connected to the extracellular matrix via laminin, thus stabilizing the sarcolemma during muscle fiber contraction and relaxation. Genetic mutations that lead to lack of expression or altered expression of any of the DAPC proteins are associated with different types of muscle diseases. Hence characterization of this complex in healthy and dystrophic muscle might bring insights into its role in muscle pathogenesis. This review highlights the role of mass spectrometry in characterizing the DAPC interactome as well as post-translational glycan modifications of some of its components such as α-dystroglycan. Detection and quantification of dystrophin using targeted mass spectrometry are also discussed in the context of healthy versus dystrophic skeletal muscle.
Collapse
Affiliation(s)
- Emily H Canessa
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY, Binghamton, New York, USA
- Biomedical Engineering Department, Binghamton University, SUNY, Binghamton, New York, USA
| | - Rita Spathis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY, Binghamton, New York, USA
| | - James S Novak
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, District of Columbia, USA
- Department of Genomics and Precision Medicine and Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Aaron Beedle
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY, Binghamton, New York, USA
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY, Binghamton, New York, USA
| | - Luca Bello
- Department of Neuroscience, ERN Neuromuscular Center, University of Padova, Padua, Italy
| | - Elena Pegoraro
- Department of Neuroscience, ERN Neuromuscular Center, University of Padova, Padua, Italy
| | - Eric P Hoffman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY, Binghamton, New York, USA
| | - Yetrib Hathout
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY, Binghamton, New York, USA
| |
Collapse
|
5
|
Vogt PK, Hart JR, Yang S, Zhou Q, Yang D, Wang MW. Structural and mechanistic insights provided by single particle cryo-EM analysis of phosphoinositide 3-kinase (PI3Kα). Biochim Biophys Acta Rev Cancer 2023; 1878:188947. [PMID: 37394020 PMCID: PMC10530483 DOI: 10.1016/j.bbcan.2023.188947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Recent cryo-electron microscopic (cryo-EM) investigations have succeeded in the analysis of various structural conformations and functional states of PI3Kα, a dimer consisting of the catalytic subunit p110α and the regulatory subunit p85α of class IA of phosphoinositide 3-kinase. High resolution structures have been obtained of the unliganded and of BYL-719-bound PI3Kα. The latter provides information on excessively flexible domains of p85α that are then further analyzed with nanobodies and CXMS (chemical cross-linking, digestion and mass spectrometry). Analysis of p110α helical and kinase domain mutations reveals mutant-specific features that can be linked to the gain of function in enzymatic and signaling activities.
Collapse
Affiliation(s)
- Peter K Vogt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States of America.
| | - Jonathan R Hart
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States of America
| | - Su Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States of America
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center for Deepsea Bioresources, Sanya 572025, China; Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Zhang B, Gao H, Gong Z, Zhao L, Zhong B, Sui Z, Liang Z, Zhang Y, Zhao Q, Zhang L. Improved Cross-Linking Coverage for Protein Complexes Containing Low Levels of Lysine by Using an Enrichable Photo-Cross-Linker. Anal Chem 2023. [PMID: 37303169 DOI: 10.1021/acs.analchem.2c05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical cross-linking coupled with mass spectrometry (XL-MS) is an important technique for the structural analysis of protein complexes where the coverage of amino acids and the identification of cross-linked sites are crucial. Photo-cross-linking has multisite reactivity and is valuable for the structural analysis of chemical cross-linking. However, a high degree of heterogeneity results from this multisite reactivity, which results in samples with higher complexity and lower abundance. Additionally, the applicability of photo-cross-linking is limited to purified protein complexes. In this work, we demonstrate a photo-cross-linker, alkynyl-succinimidyl-diazirine (ASD) with the reactive groups of N-hydroxysuccinimide ester and diazirine, as well as the click-enrichable alkyne group. Photo-cross-linkers can provide higher site reactivity for proteins that contain only a small number of lysine residues, thereby complementing the more commonly used lysine-targeting cross-linkers. By systematically analyzing proteins with differing lysine contents and differing flexibilities, we demonstrated clear enhancement in structure elucidation for proteins containing less lysine and with high flexibility. In addition, enrichment approaches of alkynyl-azide click chemistry conjugated with biotin-streptavidin purification (coinciding with parallel orthogonal digestion) improved the identification coverage of cross-links. We show that this photo-cross-linking approach can be used for membrane proteome-wide complex analysis. This method led to the identification of a total of 14066 lysine-X cross-linked site pairs from a total of 2784 proteins. Thus, this cross-linker is a valuable addition to a photo-cross-linking toolkit and improves the identification coverage of XL-MS in functional structure analysis.
Collapse
Affiliation(s)
- Beirong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhou Gong
- CAS Innovation Academy for Precision Measurement Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | - Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bowen Zhong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| |
Collapse
|
7
|
Lee MS, Jeon J, Park S, Lim J, Yang HS. Rationally designed bioactive milk-derived protein scaffolds enhanced new bone formation. Bioact Mater 2023; 20:368-380. [PMID: 35784638 PMCID: PMC9213433 DOI: 10.1016/j.bioactmat.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, a number of studies reported that casein was composed of various multifunctional bioactive peptides such as casein phosphopeptide and β-casochemotide-1 that bind calcium ions and induce macrophage chemotaxis, which is crucial for bone homeostasis and bone fracture repair by cytokines secreted in the process. We hypothesized that the effects of the multifunctional biopeptides in casein would contribute to improving bone regeneration. Thus, we designed a tissue engineering platform that consisted of casein and polyvinyl alcohol, which was a physical-crosslinked scaffold (milk-derived protein; MDP), via simple freeze-thaw cycles and performed surface modification using 3,4-dihydroxy-l-phenylalanine (DOPA), a mussel adhesive protein, for immobilizing adhesive proteins and cytokines for recruiting cells in vivo (MDP-DOPA). Both the MDP and MDP-DOPA groups proved indirectly contribution of macrophages migration as RAW 264.7 cells were highly migrated toward materials by contained bioactive peptides. We implanted MDP and MDP-DOPA in a mouse calvarial defect orthotopic model and evaluated whether MDP-DOPA showed much faster mineral deposition and higher bone density than that of the no-treatment and MDP groups. The MDP-DOPA group showed the accumulation of host M2 macrophages and mesenchymal stem cells (MSCs) around the scaffold, whereas MDP presented mostly M1 macrophages in the early stage. Bioactive peptide-containing scaffold was fabricated via simple freeze-thaw cycles, and subsequently, the surface was modified with adhesive protein. We confirmed that the multifunctional biopeptides regulated the migration of macrophages and enhanced osteogenic differentiation. The bioactive peptide-containing scaffold showed much faster and higher mineral deposition in vivo animal studies compared to the other groups.
Collapse
Affiliation(s)
- Min Suk Lee
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jin Jeon
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sihyeon Park
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Juhan Lim
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio-Medical Engineering Core-Facility, Dankook University, Cheonan, 31116, Republic of Korea
- Corresponding author. Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
8
|
Feng H, Zhao Q, Zhang B, Hu H, Liu M, Wu K, Li X, Zhang X, Zhang L, Liu Y. Enabling Photo-Crosslinking and Photo-Sensitizing Properties for Synthetic Fluorescent Protein Chromophores. Angew Chem Int Ed Engl 2023; 62:e202215215. [PMID: 36370037 DOI: 10.1002/anie.202215215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Synthetic fluorescent protein chromophores have been reported for their singlet state fluorescence properties and applications in bioimaging, but rarely for the triplet state chemistries. Herein, we enabled their photo-sensitizing and photo-crosslinking properties through rational modulations. Extension of molecular conjugation and introduction of heavy atoms promoted the generation of reactive oxygen species. Unlike other photosensitizers, these chromophores selectively photo-crosslinked aggregated proteins and uncovered the interactome profiles. We also exemplified their general applications in chromophore-assisted light inactivation, photodynamic therapy and photo induced polymerization. Theoretical calculation, pathway analysis and transient absorption spectroscopy provided mechanistic insights for this triplet state chemistry. Overall, this work expands the function and application of synthetic fluorescent protein chromophores by enabling their triplet excited state properties.
Collapse
Affiliation(s)
- Huan Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Beirong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Hu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Meng Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Xin Zhang
- Department of Chemistry and Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
9
|
del Caño-Ochoa F, Rubio-del-Campo A, Ramón-Maiques S. A Tailored Strategy to Crosslink the Aspartate Transcarbamoylase Domain of the Multienzymatic Protein CAD. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020660. [PMID: 36677714 PMCID: PMC9863657 DOI: 10.3390/molecules28020660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
CAD is a 1.5 MDa hexameric protein with four enzymatic domains responsible for initiating de novo biosynthesis of pyrimidines nucleotides: glutaminase, carbamoyl phosphate synthetase, aspartate transcarbamoylase (ATC), and dihydroorotase. Despite its central metabolic role and implication in cancer and other diseases, our understanding of CAD is poor, and structural characterization has been frustrated by its large size and sensitivity to proteolytic cleavage. Recently, we succeeded in isolating intact CAD-like particles from the fungus Chaetomium thermophilum with high yield and purity, but their study by cryo-electron microscopy is hampered by the dissociation of the complex during sample grid preparation. Here we devised a specific crosslinking strategy to enhance the stability of this mega-enzyme. Based on the structure of the isolated C. thermophilum ATC domain, we inserted by site-directed mutagenesis two cysteines at specific locations that favored the formation of disulfide bridges and covalent oligomers. We further proved that this covalent linkage increases the stability of the ATC domain without damaging the structure or enzymatic activity. Thus, we propose that this cysteine crosslinking is a suitable strategy to strengthen the contacts between subunits in the CAD particle and facilitate its structural characterization.
Collapse
Affiliation(s)
| | | | - Santiago Ramón-Maiques
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaime Roig 11, 46010 Valencia, Spain
- Group CB06/07/0077 at the Instituto de Biomedicina de Valencia (IBV-CSIC) of CIBERER-ISCIII, Centro de Investigación Biomédica en Red de Enfermedades Raras, Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
10
|
Gao H, Zhao Q, Gong Z, Zhong B, Chen J, Sui Z, Li X, Liang Z, Zhang Y, Zhang L. Alkynyl-Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures. Anal Chem 2022; 94:12398-12406. [PMID: 36031802 DOI: 10.1021/acs.analchem.2c02205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coverage of chemical crosslinking coupled with mass spectrometry (CXMS) is of great importance to determine its ability for deciphering protein structures. At present, N-hydroxysuccinimidyl (NHS) ester-based crosslinkers targeting lysines have been predominantly used in CXMS. However, they are not always effective for some proteins with few lysines. Other amino acid residues such as carboxyl could be crosslinked to complement lysines and improve the crosslinking coverage of CXMS, but the low intrinsic chemical reactivity of carboxyl compromises the application of carboxyl-selective crosslinkers for complex samples. To enhance the crosslinking efficiency targeting acidic residues and realize in-depth crosslinking analysis of complex samples, we developed three new alkynyl-enrichable carboxyl-selective crosslinkers with different reactive groups such as hydrazide, amino, and aminooxy. The crosslinking efficiencies of the three crosslinkers were systematically evaluated, giving the best reactivity of the amino-functionalized crosslinker BAP. Furthermore, BAP was extended to the crosslinking analysis of Escherichia coli lysate in combination with efficient crosslink enrichment. A total of 1291 D/E-D/E crosslinks involved in 392 proteins were identified under a false discovery rate (FDR) of ≤1%. Obvious structural complementarity of BAP was exhibited to the lysine-targeting crosslinker, facilitating the capability of CXMS for protein structure elucidation. To the best of our knowledge, this was the first time for the carboxyl-selective crosslinker to achieve proteome-wide crosslinking analysis of the whole cell lysate. Collectively, we believe that this work not only expands on a promising toolkit of CXMS targeting acidic residues but also provides a valuable guideline to advance the performance of carboxyl-selective crosslinkers.
Collapse
Affiliation(s)
- Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, Liaoning, China.,University of Chinese Academy of Sciences, Beijing100039, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, Liaoning, China
| | - Zhou Gong
- CAS Innovation Academy for Precision Measurement Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Chinese Academy of Sciences, Wuhan430071, Hubei, China
| | - Bowen Zhong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, Liaoning, China
| | - Jing Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, Liaoning, China.,School of Chemistry and Material Science, University of Science and Technology of China, Hefei230026, Anhui, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, Liaoning, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, Liaoning, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, Liaoning, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, Liaoning, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, Liaoning, China
| |
Collapse
|
11
|
Gao H, Zhao L, Zhong B, Zhang B, Gong Z, Zhao B, Liu Y, Zhao Q, Zhang L, Zhang Y. In-Depth In Vivo Crosslinking in Minutes by a Compact, Membrane-Permeable, and Alkynyl-Enrichable Crosslinker. Anal Chem 2022; 94:7551-7558. [PMID: 35575683 DOI: 10.1021/acs.analchem.2c00335] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical crosslinking coupled with mass spectrometry (CXMS) has emerged as a powerful technique to obtain the dynamic conformations and interaction interfaces of protein complexes. Limited by the poor cell membrane permeability, chemical reactivity, and biocompatibility of crosslinkers, in vivo crosslinking to capture the dynamics of protein complexes with finer temporal resolution and higher coverage is attractive but challenging. In this work, a trifunctional crosslinker bis(succinimidyl) with propargyl tag (BSP), involving compact size, proper amphipathy, and enrichment capacity, was developed to enable better cell membrane permeability and efficient crosslinking in 5 min without obvious cellular interference. Followed by a two-step enrichment method based on click chemistry at the peptide level, 13,098 crosslinked peptides (5068 inter-crosslinked peptides and 8030 intra-crosslinked peptides) were identified under the data threshold of peptide-spectrum matches (PSMs) ≥2 on the basic of the FDR control of 1%, which was the most comprehensive dataset for homo species cells by a non-cleavable crosslinker. Besides, the interactome network comprising 1519 proteins connected by 2913 interaction edges in various intracellular compartments, as well as 80S ribosome structural dynamics, were characterized, showing the great potential of our in vivo crosslinking approach in minutes. All these results demonstrated that our developed BSP could provide a valuable toolkit for the in-depth in vivo analysis of protein-protein interactions (PPIs) and protein architectures with finer temporal resolution.
Collapse
Affiliation(s)
- Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bowen Zhong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Beirong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhou Gong
- CAS Innovation Academy for Precision Measurement Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yi Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
12
|
Jack A, Ferro LS, Trnka MJ, Wehri E, Nadgir A, Nguyenla X, Fox D, Costa K, Stanley S, Schaletzky J, Yildiz A. SARS-CoV-2 nucleocapsid protein forms condensates with viral genomic RNA. PLoS Biol 2021; 19:e3001425. [PMID: 34634033 PMCID: PMC8553124 DOI: 10.1371/journal.pbio.3001425] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/28/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection causes Coronavirus Disease 2019 (COVID-19), a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. While the N protein forms spherical assemblies with homopolymeric RNA substrates that do not form base pairing interactions, it forms asymmetric condensates with viral RNA strands. Cross-linking mass spectrometry (CLMS) identified a region that drives interactions between N proteins in condensates, and deletion of this region disrupts phase separation. We also identified small molecules that alter the size and shape of N protein condensates and inhibit the proliferation of SARS-CoV-2 in infected cells. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.
Collapse
Affiliation(s)
- Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
| | - Luke S. Ferro
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Michael J. Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Eddie Wehri
- Center for Emerging and Neglected Diseases, University of California, Berkeley, California, United States of America
| | - Amrut Nadgir
- Physics Department, University of California, Berkeley, California, United States of America
| | - Xammy Nguyenla
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, California, United States of America
| | - Douglas Fox
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, California, United States of America
| | - Katelyn Costa
- Press West Illustrations, Boston, Massachusetts, United States of America
| | - Sarah Stanley
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, California, United States of America
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, University of California, Berkeley, California, United States of America
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Physics Department, University of California, Berkeley, California, United States of America
| |
Collapse
|
13
|
Ziemianowicz DS, Saltzberg D, Pells T, Crowder DA, Schräder C, Hepburn M, Sali A, Schriemer DC. IMProv: A Resource for Cross-link-Driven Structure Modeling that Accommodates Protein Dynamics. Mol Cell Proteomics 2021; 20:100139. [PMID: 34418567 PMCID: PMC8452774 DOI: 10.1016/j.mcpro.2021.100139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 11/01/2022] Open
Abstract
Proteomics methodology has expanded to include protein structural analysis, primarily through cross-linking mass spectrometry (XL-MS) and hydrogen-deuterium exchange mass spectrometry (HX-MS). However, while the structural proteomics community has effective tools for primary data analysis, there is a need for structure modeling pipelines that are accessible to the proteomics specialist. Integrative structural biology requires the aggregation of multiple distinct types of data to generate models that satisfy all inputs. Here, we describe IMProv, an app in the Mass Spec Studio that combines XL-MS data with other structural data, such as cryo-EM densities and crystallographic structures, for integrative structure modeling on high-performance computing platforms. The resource provides an easily deployed bundle that includes the open-source Integrative Modeling Platform program (IMP) and its dependencies. IMProv also provides functionality to adjust cross-link distance restraints according to the underlying dynamics of cross-linked sites, as characterized by HX-MS. A dynamics-driven conditioning of restraint values can improve structure modeling precision, as illustrated by an integrative structure of the five-membered Polycomb Repressive Complex 2. IMProv is extensible to additional types of data.
Collapse
Affiliation(s)
- Daniel S Ziemianowicz
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Saltzberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, California, USA
| | - Troy Pells
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - D Alex Crowder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christoph Schräder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Morgan Hepburn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, California, USA
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada; Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
14
|
Laserna V, Istrate A, Kafuta K, Hakala TA, Knowles TPJ, Alcarazo M, Bernardes GJL. Protein Conjugation by Electrophilic Alkynylation Using 5-(Alkynyl)dibenzothiophenium Triflates. Bioconjug Chem 2021; 32:1570-1575. [PMID: 34232618 DOI: 10.1021/acs.bioconjchem.1c00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-(Alkynyl)dibenzothiophenium triflates are introduced as new reagents to prepare different protein conjugates through site-selective cysteine alkynylation. The protocol developed allows a highly efficient label of free cysteine-containing proteins with relevant biological roles, such as ubiquitin, the C2A domain of Synaptotagmin-I, or HER2 targeting nanobodies. An electrophilic bis-alkynylating reagent was also designed. The second alkynylating handle thus introduced in the desired protein enables access to protein-thiol, protein-peptide, and protein-protein conjugates, and even diubiquitin dimers can be prepared through this approach. The low excess of reagent needed, mild reaction conditions used, short reaction times, and stability of the S-C(alkyne) bonds at physiological conditions make this approach an interesting addition to the toolbox of classical, site-selective cysteine-conjugation methods.
Collapse
Affiliation(s)
- Victor Laserna
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Alena Istrate
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Kevin Kafuta
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077-Göttingen, Germany
| | - Tuuli A Hakala
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom.,Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077-Göttingen, Germany
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
15
|
Weissenberger G, Henderikx RJM, Peters PJ. Understanding the invisible hands of sample preparation for cryo-EM. Nat Methods 2021; 18:463-471. [PMID: 33963356 DOI: 10.1038/s41592-021-01130-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/30/2021] [Indexed: 02/03/2023]
Abstract
Cryo-electron microscopy (cryo-EM) is rapidly becoming an attractive method in the field of structural biology. With the exploding popularity of cryo-EM, sample preparation must evolve to prevent congestion in the workflow. The dire need for improved microscopy samples has led to a diversification of methods. This Review aims to categorize and explain the principles behind various techniques in the preparation of vitrified samples for the electron microscope. Various aspects and challenges in the workflow are discussed, from sample optimization and carriers to deposition and vitrification. Reliable and versatile specimen preparation remains a challenge, and we hope to give guidelines and posit future directions for improvement.
Collapse
Affiliation(s)
- Giulia Weissenberger
- CryoSol-World, Maastricht, the Netherlands.,Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands
| | - Rene J M Henderikx
- CryoSol-World, Maastricht, the Netherlands.,Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
16
|
Felker D, Zhang H, Bo Z, Lau M, Morishima Y, Schnell S, Osawa Y. Mapping protein-protein interactions in homodimeric CYP102A1 by crosslinking and mass spectrometry. Biophys Chem 2021; 274:106590. [PMID: 33894563 DOI: 10.1016/j.bpc.2021.106590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/28/2022]
Abstract
Covalent crosslinking and mass spectrometry techniques hold great potential in the study of multiprotein complexes, but a major challenge is the inability to differentiate intra- and inter- protein crosslinks in homomeric complexes. In the current study we use CYP102A1, a well-characterized homodimeric P450, to examine a subtractive method that utilizes limited crosslinking with disuccinimidyl dibutyric urea (DSBU) and isolation of the monomer, in addition to the crosslinked dimer, to identify inter-monomer crosslinks. The utility of this approach was examined with the use of MS-cleavable crosslinker DSBU and recently published cryo-EM based structures of the CYP102A1 homodimer. Of the 31 unique crosslinks found, 26 could be fit to the reported structures whereas 5 exceeded the spatial constraints. Not only did these crosslinks validate the cryo-EM structure, they point to new conformations of CYP102A1 that bring the flavins in closer proximity to the heme.
Collapse
Affiliation(s)
- Dana Felker
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5632, USA.
| | - Haoming Zhang
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5632, USA.
| | - Zhiyuan Bo
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5632, USA.
| | - Miranda Lau
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5632, USA.
| | - Yoshihiro Morishima
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5632, USA.
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, 7744 MS II, 1137 E. Catherine St., Ann Arbor, MI 48109-5622, USA.
| | - Yoichi Osawa
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5632, USA.
| |
Collapse
|
17
|
Jack A, Ferro LS, Trnka MJ, Wehri E, Nadgir A, Nguyenla X, Costa K, Stanley S, Schaletzky J, Yildiz A. SARS-CoV-2 nucleocapsid protein forms condensates with viral genomic RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.09.14.295824. [PMID: 32995779 PMCID: PMC7523105 DOI: 10.1101/2020.09.14.295824] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes COVID-19, a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. Phase separation is driven, in part, by hydrophobic and electrostatic interactions. While the N protein forms spherical assemblies with unstructured RNA, it forms asymmetric condensates with viral RNA strands that contain secondary structure elements. Cross-linking mass spectrometry identified a region that forms interactions between N proteins in condensates, and truncation of this region disrupts phase separation. We also identified small molecules that alter the formation of N protein condensates. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.
Collapse
Affiliation(s)
- Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley CA
| | - Luke S. Ferro
- Department of Molecular and Cellular Biology, University of California, Berkeley CA
| | - Michael J. Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco CA
| | - Eddie Wehri
- Center for Emerging and Neglected Diseases, University of California, Berkeley CA
| | - Amrut Nadgir
- Physics Department, University of California, Berkeley CA
| | - Xammy Nguyenla
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, CA
| | | | - Sarah Stanley
- Department of Molecular and Cellular Biology, University of California, Berkeley CA
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, CA
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, University of California, Berkeley CA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley CA
- Department of Molecular and Cellular Biology, University of California, Berkeley CA
- Physics Department, University of California, Berkeley CA
| |
Collapse
|
18
|
Kaltashov IA, Bobst CE, Pawlowski J, Wang G. Mass spectrometry-based methods in characterization of the higher order structure of protein therapeutics. J Pharm Biomed Anal 2020; 184:113169. [PMID: 32092629 DOI: 10.1016/j.jpba.2020.113169] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Higher order structure of protein therapeutics is an important quality attribute, which dictates both potency and safety. While modern experimental biophysics offers an impressive arsenal of state-of-the-art tools that can be used for the characterization of higher order structure, many of them are poorly suited for the characterization of biopharmaceutical products. As a result, these analyses were traditionally carried out using classical techniques that provide relatively low information content. Over the past decade, mass spectrometry made a dramatic debut in this field, enabling the characterization of higher order structure of biopharmaceuticals as complex as monoclonal antibodies at a level of detail that was previously unattainable. At present, mass spectrometry is an integral part of the analytical toolbox across the industry, which is critical not only for quality control efforts, but also for discovery and development.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| | - Cedric E Bobst
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Jake Pawlowski
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Guanbo Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
19
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
20
|
Irwin MJ, Gupta R, Gao XZ, Cahill KB, Chu F, Cote RH. The molecular architecture of photoreceptor phosphodiesterase 6 (PDE6) with activated G protein elucidates the mechanism of visual excitation. J Biol Chem 2019; 294:19486-19497. [PMID: 31690623 DOI: 10.1074/jbc.ra119.011002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/25/2019] [Indexed: 11/06/2022] Open
Abstract
Photoreceptor phosphodiesterase 6 (PDE6) is the central effector of the visual excitation pathway in both rod and cone photoreceptors, and PDE6 mutations that alter PDE6 structure or regulation can result in several human retinal diseases. The rod PDE6 holoenzyme consists of two catalytic subunits (Pαβ) whose activity is suppressed in the dark by binding of two inhibitory γ-subunits (Pγ). Upon photoactivation of rhodopsin, the heterotrimeric G protein (transducin) is activated, resulting in binding of the activated transducin α-subunit (Gtα) to PDE6, displacement of Pγ from the PDE6 active site, and enzyme activation. Although the biochemistry of this pathway is understood, a lack of detailed structural information about the PDE6 activation mechanism hampers efforts to develop therapeutic interventions for managing PDE6-associated retinal diseases. To address this gap, here we used a cross-linking MS-based approach to create a model of the entire interaction surface of Pγ with the regulatory and catalytic domains of Pαβ in its nonactivated state. Following reconstitution of PDE6 and activated Gtα with liposomes and identification of cross-links between Gtα and PDE6 subunits, we determined that the PDE6-Gtα protein complex consists of two Gtα-binding sites per holoenzyme. Each Gtα interacts with the catalytic domains of both catalytic subunits and induces major changes in the interaction sites of the Pγ subunit with the catalytic subunits. These results provide the first structural model for the activated state of the transducin-PDE6 complex during visual excitation, enhancing our understanding of the molecular etiology of inherited retinal diseases.
Collapse
Affiliation(s)
- Michael J Irwin
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Richa Gupta
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Xiong-Zhuo Gao
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Karyn B Cahill
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Feixia Chu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Rick H Cote
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| |
Collapse
|
21
|
Sadr Karimi S, Pante N. Carbon nanotubes as molecular transporters to study a new mechanism for molecular entry into the cell nucleus using actin polymerization force. PLoS One 2019; 14:e0221562. [PMID: 31437229 PMCID: PMC6705785 DOI: 10.1371/journal.pone.0221562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
The transport of macromolecules into the cell nucleus occurs through nuclear pore complexes (NPCs) and is mediated by cellular receptors. Recently, a novel mechanism of nuclear entry, in which actin polymerization provides a propulsive force driving the transport through the NPC, has been proposed. This mechanism is used by the nucleocapsid from baculovirus, one of the largest viruses to replicate in the nucleus of their host cells, which crosses the NPC and enters the nucleus independently of cellular receptors. The baculovirus nucleocapsid contains a protein that hijacks the cellular actin polymerization machinery to assemble actin filaments that propel the nucleocapsid through the host cell cytoplasm. In this study, we functionalized carbon nanotubes by covalently attaching a protein domain responsible for inducing actin polymerization and investigated their nuclear entry. We found that the functionalized carbon nanotubes were able to enter the cell nucleus under permissive conditions for actin polymerization, but not when this process was inhibited. We conclude that the mechanical force generated by actin polymerization can drive cargo entry into the cell nucleus. Our results support a novel force-driven mechanism for molecular entry into the cell nucleus.
Collapse
Affiliation(s)
- Shaghayegh Sadr Karimi
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nelly Pante
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
22
|
Chu F, Hogan D, Gupta R, Gao XZ, Nguyen HT, Cote RH. Allosteric Regulation of Rod Photoreceptor Phosphodiesterase 6 (PDE6) Elucidated by Chemical Cross-Linking and Quantitative Mass Spectrometry. J Mol Biol 2019; 431:3677-3689. [PMID: 31394113 DOI: 10.1016/j.jmb.2019.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/29/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022]
Abstract
Photoreceptor phosphodiesterase (PDE6) is the central effector enzyme in the visual excitation pathway in rod and cone photoreceptors. Its tight regulation is essential for the speed, sensitivity, recovery, and adaptation of visual signaling. The rod PDE6 holoenzyme (Pαβγ2) is composed of a catalytic heterodimer (Pαβ) that binds two inhibitory γ subunits. Each of the two catalytic subunits (Pα and Pβ) contains a catalytic domain responsible for cGMP hydrolysis and two tandem GAF domains, one of which binds cGMP noncatalytically. Unlike related GAF-containing PDEs where cGMP binding allosterically activates catalysis, the physiological significance of cGMP binding to the GAF domains of PDE6 is unknown. To elucidate the structural determinants of PDE6 allosteric regulators, we biochemically characterized PDE6 complexes in various allosteric states (Pαβ, Pαβ-cGMP, Pαβγ2, and Pαβγ2-cGMP) with a quantitative cross-linking/mass spectrometry approach. We employed a normalization strategy to dissect the cross-linking reactivity of individual residues in order to assess the spatial cross-linking propensity of detected pairs. In addition to identifying cross-linked pairs that undergo conformational changes upon ligand binding, we observed an asymmetric binding of the inhibitory γ-subunit and the noncatalytic cGMP to the GAFa domains of rod PDE6, as well as a stable open conformation of Pαβ catalytic dimer in different allosteric states. These results advance our understanding of the exquisite regulatory control of the lifetime of rod PDE6 activation/deactivation during visual signaling, as well as providing a structural basis for interpreting how mutations in rod PDE6 subunits can lead to retinal diseases.
Collapse
Affiliation(s)
- Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA.
| | - Donna Hogan
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Richa Gupta
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Xiong-Zhuo Gao
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Rick H Cote
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
23
|
MacRae AJ, Coltri P, Hrabeta-Robinson E, Chalkley RJ, Burlingame AL, Jurica MS. A two-step probing method to compare lysine accessibility across macromolecular complex conformations. RNA Biol 2019; 16:1346-1354. [PMID: 31213125 DOI: 10.1080/15476286.2019.1632777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Structural models of large and dynamic molecular complexes are appearing in increasing numbers, in large part because of recent technical advances in cryo-electron microscopy. However, the inherent complexity of such biological assemblies comprising dozens of moving parts often limits the resolution of structural models and leaves the puzzle as to how each functional configuration transitions to the next. Orthogonal biochemical information is crucial to understanding the molecular interactions that drive those rearrangements. We present a two-step method for chemical probing detected by tandem mass-spectrometry to globally assess the reactivity of lysine residues within purified macromolecular complexes. Because lysine side chains often balance the negative charge of RNA in ribonucleoprotein complexes, the method is especially useful for detecting changes in protein-RNA interactions. By probing the E. coli 30S ribosome subunit, we established that the reactivity pattern of lysine residues quantitatively reflects structure models derived from X-ray crystallography. We also used the strategy to assess differences in three conformations of purified human spliceosomes in the context of recent cryo-electron microscopy models. Our results demonstrate that the probing method yields powerful biochemical information that helps contextualize architectural rearrangements of intermediate resolution structures of macromolecular complexes, often solved in multiple conformations.
Collapse
Affiliation(s)
- Andrew J MacRae
- Department of Molecular, Cell and Developmental Biology, University California , Santa Cruz , USA.,Center for Molecular Biology of RNA, University of California Santa Cruz , Santa Cruz , CA , USA
| | - Patricia Coltri
- Department of Molecular, Cell and Developmental Biology, University California , Santa Cruz , USA.,Department of Cell and Developmental Biology, University of São Paulo , São Paulo , Brazil
| | - Eva Hrabeta-Robinson
- Department of Molecular, Cell and Developmental Biology, University California , Santa Cruz , USA
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco , CA , USA
| | - A L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco , CA , USA
| | - Melissa S Jurica
- Department of Molecular, Cell and Developmental Biology, University California , Santa Cruz , USA.,Center for Molecular Biology of RNA, University of California Santa Cruz , Santa Cruz , CA , USA
| |
Collapse
|
24
|
Trnka MJ, Pellarin R, Robinson PJ. Role of integrative structural biology in understanding transcriptional initiation. Methods 2019; 159-160:4-22. [PMID: 30890443 PMCID: PMC6617507 DOI: 10.1016/j.ymeth.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Integrative structural biology combines data from multiple experimental techniques to generate complete structural models for the biological system of interest. Most commonly cross-linking data sets are employed alongside electron microscopy maps, crystallographic structures, and other data by computational methods that integrate all known information and produce structural models at a level of resolution that is appropriate to the input data. The precision of these modelled solutions is limited by the sparseness of cross-links observed, the length of the cross-linking reagent, the ambiguity arisen from the presence of multiple copies of the same protein, and structural and compositional heterogeneity. In recent years integrative structural biology approaches have been successfully applied to a range of RNA polymerase II complexes. Here we will provide a general background to integrative structural biology, a description of how it should be practically implemented and how it has furthered our understanding of the biology of large transcriptional assemblies. Finally, in the context of recent breakthroughs in microscope and direct electron detector technology, where increasingly EM is capable of resolving structural features directly without the aid of other structural techniques, we will discuss the future role of integrative structural techniques.
Collapse
Affiliation(s)
- Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Riccardo Pellarin
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756 CNRS & IP, Paris, France
| | - Philip J Robinson
- Department of Biological Sciences, Birkbeck University of London, Institute of Structural and Molecular Biology, London, United Kingdom.
| |
Collapse
|
25
|
Development of a stable chemically cross-linked erythropoietin dimer for use in the quality control of erythropoietin therapeutic products. Anal Bioanal Chem 2019; 411:2755-2758. [PMID: 30972470 PMCID: PMC6522647 DOI: 10.1007/s00216-019-01768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 11/18/2022]
Abstract
Erythropoietin (EPO) is a glycoprotein hormone which promotes red cell replenishment and is also a global biotherapeutic medicine widely used to treat anaemia resulting, for example, from chemotherapy. Requirements of the European Pharmacopoeia stipulate that the level of dimer must be quantified in clinical EPO products (with a limit of 2%). Quantification is hampered by the lack of reference preparations containing stable measurable levels of EPO dimer, but the reproducible generation of a stable dimerised EPO preparation is challenging. We describe here the development of a lyophilised, chemically cross-linked EPO preparation, which has good stability and may be used for calibration and system suitability assurance for the size exclusion chromatographic separation of EPO preparations. Graphical abstract ![]()
Collapse
|
26
|
Hotta Y, Kaneko T, Hayashi R, Yamamoto A, Morimoto S, Chiba J, Tomohiro T. Photoinduced Electron Transfer‐Regulated Protein Labeling With a Coumarin‐Based Multifunctional Photocrosslinker. Chem Asian J 2019; 14:398-402. [DOI: 10.1002/asia.201801673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Yusuke Hotta
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Tsukasa Kaneko
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Ryuji Hayashi
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Akito Yamamoto
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Shota Morimoto
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
- Department of Pharmaceutical SciencesSuzuka University of Medical Science Suzuka Mie 510-0293 Japan
| | - Junya Chiba
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Takenori Tomohiro
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| |
Collapse
|
27
|
Zheng Q, Pang Z, Liu J, Zhou Y, Sun Y, Yin Z, Lou Z. Photoaffinity palladium reagents for capture of protein–protein interactions. Org Biomol Chem 2019; 17:6369-6373. [DOI: 10.1039/c9ob01048c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A straightforward strategy using palladium-mediated reagents to reliably incorporate different photoaffinity groups into peptides/proteins for crosslinking of interacting partners is described.
Collapse
Affiliation(s)
- Qizhen Zheng
- Center of Basic Molecular Science
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Zhengyuan Pang
- Center of Basic Molecular Science
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Jingwei Liu
- Center of Basic Molecular Science
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yi Zhou
- Center of Basic Molecular Science
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yang Sun
- Center of Basic Molecular Science
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Zheng Yin
- Center of Basic Molecular Science
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Zhiyong Lou
- Collaborative Innovation Center of Biotherapy and MOE Key Laboratory of Protein Science
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
28
|
Ziemianowicz DS, Ng D, Schryvers AB, Schriemer DC. Photo-Cross-Linking Mass Spectrometry and Integrative Modeling Enables Rapid Screening of Antigen Interactions Involving Bacterial Transferrin Receptors. J Proteome Res 2018; 18:934-946. [DOI: 10.1021/acs.jproteome.8b00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Yuan H, Jiang B, Zhao B, Zhang L, Zhang Y. Recent Advances in Multidimensional Separation for Proteome Analysis. Anal Chem 2018; 91:264-276. [DOI: 10.1021/acs.analchem.8b04894] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huiming Yuan
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Bo Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Baofeng Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
30
|
Chavez JD, Bruce JE. Chemical cross-linking with mass spectrometry: a tool for systems structural biology. Curr Opin Chem Biol 2018; 48:8-18. [PMID: 30172868 DOI: 10.1016/j.cbpa.2018.08.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/14/2023]
Abstract
Biological processes supporting life are orchestrated by a highly dynamic array of protein structures and interactions comprising the interactome. Defining the interactome, visualizing how structures and interactions change and function to support life is essential to improved understanding of fundamental molecular processes, but represents a challenge unmet by any single analytical technique. Chemical cross-linking with mass spectrometry provides identification of proximal amino acid residues within proteins and protein complexes, yielding low resolution structural information. This approach has predominantly been employed to provide structural insight on isolated protein complexes, and has been particularly useful for molecules that are recalcitrant to conventional structural biology studies. Here we discuss recent developments in cross-linking and mass spectrometry technologies that are providing large-scale or systems-level interactome data with successful applications to isolated organelles, cell lysates, virus particles, intact bacterial and mammalian cultured cells and tissue samples.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
31
|
Kaltashov IA. Mass spectrometry-based methods to study macromolecular higher order structure and interactions. Methods 2018; 144:1-2. [DOI: 10.1016/j.ymeth.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|