1
|
Blaze J, Browne CJ, Futamura R, Javidfar B, Zachariou V, Nestler EJ, Akbarian S. tRNA epitranscriptomic alterations associated with opioid-induced reward-seeking and long-term opioid withdrawal in male mice. Neuropsychopharmacology 2024; 49:1276-1284. [PMID: 38332016 PMCID: PMC11224224 DOI: 10.1038/s41386-024-01813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
DNA cytosine methylation has been documented as a potential epigenetic mechanism of transcriptional regulation underlying opioid use disorder. However, methylation of RNA cytosine residues, which would drive another level of biological influence as an epitranscriptomic mechanism of gene and protein regulation has not been studied in the context of addiction. Here, we probed whether chronic morphine exposure could alter tRNA cytosine methylation (m5C) and resulting expression levels in the medial prefrontal cortex (mPFC), a brain region crucial for reward processing and executive function that exhibits opioid-induced molecular restructuring. We identified dynamic changes in glycine tRNA (tRNAGlyGCC) cytosine methylation, corresponding to altered expression levels of this tRNA at multiple timepoints following 15 days of daily morphine. Additionally, a robust increase in methylation, coupled with decreased expression, was present after 30 days of withdrawal, suggesting that repeated opioid administration produces changes to the tRNA regulome long after discontinuation. Furthermore, forebrain-wide knockout of neuronal Nsun2, a tRNA methyltransferase, was associated with disruption of opioid conditioned place preference, and this effect was recapitulated by regional mPFC Nsun2 knockout. Taken together, these studies provide a foundational link between the regulation of tRNA cytosine methylation and opioid reward and highlight the tRNA machinery as a potential therapeutic target in addiction.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Caleb J Browne
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Rita Futamura
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Behnam Javidfar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Venetia Zachariou
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Eric J Nestler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Cirzi C, Dyckow J, Legrand C, Schott J, Guo W, Perez Hernandez D, Hisaoka M, Parlato R, Pitzer C, van der Hoeven F, Dittmar G, Helm M, Stoecklin G, Schirmer L, Lyko F, Tuorto F. Queuosine-tRNA promotes sex-dependent learning and memory formation by maintaining codon-biased translation elongation speed. EMBO J 2023; 42:e112507. [PMID: 37609797 PMCID: PMC10548180 DOI: 10.15252/embj.2022112507] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
Queuosine (Q) is a modified nucleoside at the wobble position of specific tRNAs. In mammals, queuosinylation is facilitated by queuine uptake from the gut microbiota and is introduced into tRNA by the QTRT1-QTRT2 enzyme complex. By establishing a Qtrt1 knockout mouse model, we discovered that the loss of Q-tRNA leads to learning and memory deficits. Ribo-Seq analysis in the hippocampus of Qtrt1-deficient mice revealed not only stalling of ribosomes on Q-decoded codons, but also a global imbalance in translation elongation speed between codons that engage in weak and strong interactions with their cognate anticodons. While Q-dependent molecular and behavioral phenotypes were identified in both sexes, female mice were affected more severely than males. Proteomics analysis confirmed deregulation of synaptogenesis and neuronal morphology. Together, our findings provide a link between tRNA modification and brain functions and reveal an unexpected role of protein synthesis in sex-dependent cognitive performance.
Collapse
Affiliation(s)
- Cansu Cirzi
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Julia Dyckow
- Department of Neurology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityHeidelbergGermany
| | - Carine Legrand
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRSParisFrance
| | - Johanna Schott
- Center for Molecular Biology of Heidelberg University (ZMBH)DKFZ‐ZMBH AllianceHeidelbergGermany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Wei Guo
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- Center for Molecular Biology of Heidelberg University (ZMBH)DKFZ‐ZMBH AllianceHeidelbergGermany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | | | - Miharu Hisaoka
- Center for Molecular Biology of Heidelberg University (ZMBH)DKFZ‐ZMBH AllianceHeidelbergGermany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Rosanna Parlato
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational NeurosciencesHeidelberg UniversityMannheimGermany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core (INBC), Medical Faculty HeidelbergHeidelberg UniversityHeidelbergGermany
| | | | - Gunnar Dittmar
- Department of Infection and ImmunityLuxembourg Institute of HealthStrassenLuxembourg
- Department of Life Sciences and MedicineUniversity of LuxembourgLuxembourg
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Science (IPBS)Johannes Gutenberg‐University MainzMainzGermany
| | - Georg Stoecklin
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- Center for Molecular Biology of Heidelberg University (ZMBH)DKFZ‐ZMBH AllianceHeidelbergGermany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityHeidelbergGermany
- Mannheim Center for Translational Neuroscience and Institute for Innate Immunoscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Frank Lyko
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Francesca Tuorto
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Center for Molecular Biology of Heidelberg University (ZMBH)DKFZ‐ZMBH AllianceHeidelbergGermany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| |
Collapse
|
3
|
Schwickert M, Fischer TR, Zimmermann RA, Hoba SN, Meidner JL, Weber M, Weber M, Stark MM, Koch J, Jung N, Kersten C, Windbergs M, Lyko F, Helm M, Schirmeister T. Discovery of Inhibitors of DNA Methyltransferase 2, an Epitranscriptomic Modulator and Potential Target for Cancer Treatment. J Med Chem 2022; 65:9750-9788. [PMID: 35849534 DOI: 10.1021/acs.jmedchem.2c00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Selective manipulation of the epitranscriptome could be beneficial for the treatment of cancer and also broaden the understanding of epigenetic inheritance. Inhibitors of the tRNA methyltransferase DNMT2, the enzyme catalyzing the S-adenosylmethionine-dependent methylation of cytidine 38 to 5-methylcytidine, were designed, synthesized, and analyzed for their enzyme-binding and -inhibiting properties. For rapid screening of potential DNMT2 binders, a microscale thermophoresis assay was established. Besides the natural inhibitors S-adenosyl-l-homocysteine (SAH) and sinefungin (SFG), we identified new synthetic inhibitors based on the structure of N-adenosyl-2,4-diaminobutyric acid (Dab). Structure-activity relationship studies revealed the amino acid side chain and a Y-shaped substitution pattern at the 4-position of Dab as crucial for DNMT2 inhibition. The most potent inhibitors are alkyne-substituted derivatives, exhibiting similar binding and inhibitory potencies as the natural compounds SAH and SFG. CaCo-2 assays revealed that poor membrane permeabilities of the acids and rapid hydrolysis of an ethylester prodrug might be the reasons for the insufficient activity in cellulo.
Collapse
Affiliation(s)
- Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - J Laurenz Meidner
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Moritz Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Martin M Stark
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Jonas Koch
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| |
Collapse
|
4
|
Liu J. 5-Methylcytosine profiles in mouse transcriptomes suggest the randomness of m 5C formation catalyzed by RNA methyltransferase. BMC Res Notes 2022; 15:81. [PMID: 35197120 PMCID: PMC8867762 DOI: 10.1186/s13104-022-05968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE 5-Methylcytosine (m5C) is a type of chemical modification on the nucleotides and is widespread in both DNA and RNA. Although the DNA m5C has been extensively studied over the past years, the distribution and biological function of RNA m5C still remain to be elucidated. Here, I explored the profiles of RNA m5C in four mouse tissues by applying a RNA cytosine methylation data analysis tool to public mouse RNA m5C data. RESULTS I found that the methylation rates of cytosine were the same with the averages of methylation level at single-nucleotide level. Furthermore, I gave a mathematical formula to describe the observed relationship and analyzed it deeply. The sufficient necessary condition for the given formula suggests that the methylation levels at most m5C sites are the same in four mouse tissues. Therefore, I proposed a hypothesis that the m5C formation catalyzed by RNA methyltransferase is random and with the same probability at most m5C sites, which is the methylation rate of cytosine. My hypothesis can be used to explain the observed profiles of RNA m5C in four mouse tissues and will be benefit to future studies of the distribution and biological function of RNA m5C in mammals.
Collapse
Affiliation(s)
- Junfeng Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,China National Center for Bioinformation, Beijing, 100101, China. .,Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
| |
Collapse
|
5
|
Tönges S, Venkatesh G, Andriantsoa R, Hanna K, Gatzmann F, Raddatz G, Carneiro VC, Lyko F. Location-Dependent DNA Methylation Signatures in a Clonal Invasive Crayfish. Front Cell Dev Biol 2021; 9:794506. [PMID: 34957121 PMCID: PMC8695926 DOI: 10.3389/fcell.2021.794506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
DNA methylation is an important epigenetic modification that has been repeatedly implied in organismal adaptation. However, many previous studies that have linked DNA methylation patterns to environmental parameters have been limited by confounding factors, such as cell-type heterogeneity and genetic variation. In this study, we analyzed DNA methylation variation in marbled crayfish, a clonal and invasive freshwater crayfish that is characterized by a largely tissue-invariant methylome and negligible genetic variation. Using a capture-based subgenome bisulfite sequencing approach that covers a small, variably methylated portion of the marbled crayfish genome, we identified specific and highly localized DNA methylation signatures for specimens from geographically and ecologically distinct wild populations. These results were replicated both biologically and technically by re-sampling at different time points and by using independent methodology. Finally, we show specific methylation signatures for laboratory animals and for laboratory animals that were reared at a lower temperature. Our results thus demonstrate the existence of context-dependent DNA methylation signatures in a clonal animal.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Blaze J, Navickas A, Phillips HL, Heissel S, Plaza-Jennings A, Miglani S, Asgharian H, Foo M, Katanski CD, Watkins CP, Pennington ZT, Javidfar B, Espeso-Gil S, Rostandy B, Alwaseem H, Hahn CG, Molina H, Cai DJ, Pan T, Yao WD, Goodarzi H, Haghighi F, Akbarian S. Neuronal Nsun2 deficiency produces tRNA epitranscriptomic alterations and proteomic shifts impacting synaptic signaling and behavior. Nat Commun 2021; 12:4913. [PMID: 34389722 PMCID: PMC8363735 DOI: 10.1038/s41467-021-24969-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Epitranscriptomic mechanisms linking tRNA function and the brain proteome to cognition and complex behaviors are not well described. Here, we report bi-directional changes in depression-related behaviors after genetic disruption of neuronal tRNA cytosine methylation, including conditional ablation and transgene-derived overexpression of Nsun2 in the mouse prefrontal cortex (PFC). Neuronal Nsun2-deficiency was associated with a decrease in tRNA m5C levels, resulting in deficits in expression of 70% of tRNAGly isodecoders. Altogether, 1488/5820 proteins changed upon neuronal Nsun2-deficiency, in conjunction with glycine codon-specific defects in translational efficiencies. Loss of Gly-rich proteins critical for glutamatergic neurotransmission was associated with impaired synaptic signaling at PFC pyramidal neurons and defective contextual fear memory. Changes in the neuronal translatome were also associated with a 146% increase in glycine biosynthesis. These findings highlight the methylation sensitivity of glycinergic tRNAs in the adult PFC. Furthermore, they link synaptic plasticity and complex behaviors to epitranscriptomic modifications of cognate tRNAs and the proteomic homeostasis associated with specific amino acids.
Collapse
Affiliation(s)
- J Blaze
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - A Navickas
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - H L Phillips
- Departments of Psychiatry and Behavioral Sciences, Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - S Heissel
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - A Plaza-Jennings
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - S Miglani
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - H Asgharian
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - M Foo
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - C D Katanski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - C P Watkins
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Z T Pennington
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - B Javidfar
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - S Espeso-Gil
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - B Rostandy
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - H Alwaseem
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - C G Hahn
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - H Molina
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - D J Cai
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - T Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - W D Yao
- Departments of Psychiatry and Behavioral Sciences, Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - H Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - F Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Research and Development Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - S Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Tao Y, Yang Y, Zhang Y, Dai X. Current status and future trends in methylation detection approaches. Epigenomics 2021; 13:335-339. [PMID: 33661022 DOI: 10.2217/epi-2020-0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ying Tao
- The Fourth People's Hospital of Zhenjiang, Prenatal diagnosis center, Zhenjiang, Jiangsu 212000, China
| | - Yan Yang
- The Fourth People's Hospital of Zhenjiang, Prenatal diagnosis center, Zhenjiang, Jiangsu 212000, China
| | - Yuxin Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Analysis of RNA Modifications by Second- and Third-Generation Deep Sequencing: 2020 Update. Genes (Basel) 2021; 12:genes12020278. [PMID: 33669207 PMCID: PMC7919787 DOI: 10.3390/genes12020278] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
The precise mapping and quantification of the numerous RNA modifications that are present in tRNAs, rRNAs, ncRNAs/miRNAs, and mRNAs remain a major challenge and a top priority of the epitranscriptomics field. After the keystone discoveries of massive m6A methylation in mRNAs, dozens of deep sequencing-based methods and protocols were proposed for the analysis of various RNA modifications, allowing us to considerably extend the list of detectable modified residues. Many of the currently used methods rely on the particular reverse transcription signatures left by RNA modifications in cDNA; these signatures may be naturally present or induced by an appropriate enzymatic or chemical treatment. The newest approaches also include labeling at RNA abasic sites that result from the selective removal of RNA modification or the enhanced cleavage of the RNA ribose-phosphate chain (perhaps also protection from cleavage), followed by specific adapter ligation. Classical affinity/immunoprecipitation-based protocols use either antibodies against modified RNA bases or proteins/enzymes, recognizing RNA modifications. In this survey, we review the most recent achievements in this highly dynamic field, including promising attempts to map RNA modifications by the direct single-molecule sequencing of RNA by nanopores.
Collapse
|
9
|
Liu J, An Z, Luo J, Li J, Li F, Zhang Z. Episo: quantitative estimation of RNA 5-methylcytosine at isoform level by high-throughput sequencing of RNA treated with bisulfite. Bioinformatics 2020; 36:2033-2039. [PMID: 31794005 PMCID: PMC7141862 DOI: 10.1093/bioinformatics/btz900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 01/17/2023] Open
Abstract
Motivation RNA 5-methylcytosine (m5C) is a type of post-transcriptional modification that may be involved in numerous biological processes and tumorigenesis. RNA m5C can be profiled at single-nucleotide resolution by high-throughput sequencing of RNA treated with bisulfite (RNA-BisSeq). However, the exploration of transcriptome-wide profile and potential function of m5C in splicing remains to be elucidated due to lack of isoform level m5C quantification tool. Results We developed a computational package to quantify Epitranscriptomal RNA m5C at the transcript isoform level (named Episo). Episo consists of three tools: mapper, quant and Bisulfitefq, for mapping, quantifying and simulating RNA-BisSeq data, respectively. The high accuracy of Episo was validated using an improved m5C-specific methylated RNA immunoprecipitation (meRIP) protocol, as well as a set of in silico experiments. By applying Episo to public human and mouse RNA-BisSeq data, we found that the RNA m5C is not evenly distributed among the transcript isoforms, implying the m5C may subject to be regulated at isoform level. Availability and implementation Episo is released under the GNU GPLv3+ license. The resource code Episo is freely accessible from https://github.com/liujunfengtop/Episo (with Tophat/cufflink) and https://github.com/liujunfengtop/Episo/tree/master/Episo_Kallisto (with Kallisto). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Junfeng Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ziyang An
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feifei Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chellamuthu A, Gray SG. The RNA Methyltransferase NSUN2 and Its Potential Roles in Cancer. Cells 2020; 9:cells9081758. [PMID: 32708015 PMCID: PMC7463552 DOI: 10.3390/cells9081758] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022] Open
Abstract
5-methylcytosine is often associated as an epigenetic modifier in DNA. However, it is also found increasingly in a plethora of RNA species, predominantly transfer RNAs, but increasingly found in cytoplasmic and mitochondrial ribosomal RNAs, enhancer RNAs, and a number of long noncoding RNAs. Moreover, this modification can also be found in messenger RNAs and has led to an increasing appreciation that RNA methylation can functionally regulate gene expression and cellular activities. In mammalian cells, the addition of m5C to RNA cytosines is carried out by enzymes of the NOL1/NOP2/SUN domain (NSUN) family as well as the DNA methyltransferase homologue DNMT2. In this regard, NSUN2 is a critical RNA methyltransferase for adding m5C to mRNA. In this review, using non-small cell lung cancer and other cancers as primary examples, we discuss the recent developments in the known functions of this RNA methyltransferase and its potential critical role in cancer.
Collapse
Affiliation(s)
- Anitha Chellamuthu
- Department of Clinical Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland;
| | - Steven G. Gray
- Department of Clinical Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland;
- Thoracic Oncology Research Group, St. James’s Hospital, Dublin D08 RX0X, Ireland
- Correspondence:
| |
Collapse
|
11
|
Krainer J, Weinhäusel A, Hanak K, Pulverer W, Özen S, Vierlinger K, Pabinger S. EPIC-TABSAT: analysis tool for targeted bisulfite sequencing experiments and array-based methylation studies. Nucleic Acids Res 2020; 47:W166-W170. [PMID: 31106358 PMCID: PMC6602470 DOI: 10.1093/nar/gkz398] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/25/2022] Open
Abstract
DNA methylation is one of the major epigenetic modifications and has frequently demonstrated its suitability as diagnostic and prognostic biomarker. In addition to chip and sequencing based epigenome wide methylation profiling methods, targeted bisulfite sequencing (TBS) has been established as a cost-effective approach for routine diagnostics and target validation applications. Yet, an easy-to-use tool for the analysis of TBS data in combination with array-based methylation results has been missing. Consequently, we have developed EPIC-TABSAT, a user-friendly web-based application for the analysis of targeted sequencing data that additionally allows the integration of array-based methylation results. The tool can handle multiple targets as well as multiple sequencing files in parallel and covers the complete data analysis workflow from calculation of quality metrics to methylation calling and interactive result presentation. The graphical user interface offers an unprecedented way to interpret TBS data alone or in combination with array-based methylation studies. Together with the computation of target-specific epialleles it is useful in validation, research, and routine diagnostic environments. EPIC-TABSAT is freely accessible to all users at https://tabsat.ait.ac.at/.
Collapse
Affiliation(s)
- Julie Krainer
- Austrian Institute of Technology, Center for Health & Bioresources, Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Andreas Weinhäusel
- Austrian Institute of Technology, Center for Health & Bioresources, Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Karel Hanak
- Austrian Institute of Technology, Center for Health & Bioresources, Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Walter Pulverer
- Austrian Institute of Technology, Center for Health & Bioresources, Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Seza Özen
- Department of Pediatric Rheumatology, Hacettepe University, Hacettepe Hst., 06230 Ankara, Turkey
| | - Klemens Vierlinger
- Austrian Institute of Technology, Center for Health & Bioresources, Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Stephan Pabinger
- Austrian Institute of Technology, Center for Health & Bioresources, Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| |
Collapse
|
12
|
Jin G, Xu M, Zou M, Duan S. The Processing, Gene Regulation, Biological Functions, and Clinical Relevance of N4-Acetylcytidine on RNA: A Systematic Review. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:13-24. [PMID: 32171170 PMCID: PMC7068197 DOI: 10.1016/j.omtn.2020.01.037] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/24/2022]
Abstract
N4-acetylcytidine (ac4C) is often considered to be a conservative, chemically modified nucleoside present on tRNA and rRNA. Recent studies have shown extensive ac4C modifications in human and yeast mRNAs. ac4C helps to correctly read codons during translation and improves translation efficiency and the stability of mRNA. At present, the research of ac4C involves a variety of detection methods. The formation of ac4C is closely related to N-acetyltransferase 10 (NAT10) and its helpers, such as putative tRNA acetyltransferase (TAN1) for tRNA ac4C and small nucleolar RNA (snoRNA) for rRNA ac4C. Also, ac4C is associated with the development, progression, and prognosis of a variety of human diseases. Here, we summarize the history of ac4C research and the detection technologies of ac4C. We then summarized the role and mechanism of ac4C in gene-expression regulation and demonstrated the relevance of ac4C to a variety of human diseases, especially cancer. Finally, we list the future challenges of the ac4C research and demonstrate a research strategy for the interactions among several abundant modified nucleosides on mRNA.
Collapse
Affiliation(s)
- Gehui Jin
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengsha Zou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
13
|
Jantsch MF, Schaefer MR. "Mining the Epitranscriptome: Detection of RNA editing and RNA modifications". Methods 2019; 156:1-4. [PMID: 30825978 DOI: 10.1016/j.ymeth.2019.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|