1
|
Ma L, Yan Y, Dai S, Shao D, Yi S, Wang J, Li J, Yan J. Research on prediction of human oral bioavailability of drugs based on improved deep forest. J Mol Graph Model 2024; 133:108851. [PMID: 39232489 DOI: 10.1016/j.jmgm.2024.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Human oral bioavailability is a crucial factor in drug discovery. In recent years, researchers have constructed a variety of different prediction models. However, given the limited size of human oral bioavailability data sets, the challenge of making accurate predictions with small sample sizes has become a critical issue in the field. The deep forest model, with its adaptively determinable number of cascade levels, can perform exceptionally well even on small-scale data. However, the original deep forest suffers unbalanced multi-grained scanning process and premature stopping of cascade forest training. In this paper, we propose a human oral bioavailability predict method based on an improved deep forest, called balanced multi-grained scanning mapping cascade forest (bgmc-forest). Firstly, the mordred descriptor method is selected to feature extraction, then enhanced features are obtained by the improved balanced multi-grained scanning, which solves the problem of missing features at both ends. And finally, the prediction results are obtained by feature mapping cascaded forests, which is based on principal component analysis and cascade forests, ensures the effectiveness of the cascade forest. The superiority of the model constructed in this paper is demonstrated through comparative experiments, while the effectiveness of the improved module is verified through ablation experiments. Finally the decision-making process of the model is explained by the shapley additive explanations interpretation algorithm.
Collapse
Affiliation(s)
- Lei Ma
- Kunming University of Science and Technology, Kunming, CN 650500, China
| | - Yukun Yan
- Kunming University of Science and Technology, Kunming, CN 650500, China
| | - Shaoxing Dai
- Kunming University of Science and Technology, Kunming, CN 650500, China
| | - Dangguo Shao
- Kunming University of Science and Technology, Kunming, CN 650500, China.
| | - Sanli Yi
- Kunming University of Science and Technology, Kunming, CN 650500, China
| | - Jiawei Wang
- Kunming University of Science and Technology, Kunming, CN 650500, China
| | - Jingtao Li
- Kunming University of Science and Technology, Kunming, CN 650500, China
| | - Jiangkai Yan
- Kunming University of Science and Technology, Kunming, CN 650500, China
| |
Collapse
|
2
|
Murmu A, Győrffy B. Artificial intelligence methods available for cancer research. Front Med 2024; 18:778-797. [PMID: 39115792 DOI: 10.1007/s11684-024-1085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/17/2024] [Indexed: 11/01/2024]
Abstract
Cancer is a heterogeneous and multifaceted disease with a significant global footprint. Despite substantial technological advancements for battling cancer, early diagnosis and selection of effective treatment remains a challenge. With the convenience of large-scale datasets including multiple levels of data, new bioinformatic tools are needed to transform this wealth of information into clinically useful decision-support tools. In this field, artificial intelligence (AI) technologies with their highly diverse applications are rapidly gaining ground. Machine learning methods, such as Bayesian networks, support vector machines, decision trees, random forests, gradient boosting, and K-nearest neighbors, including neural network models like deep learning, have proven valuable in predictive, prognostic, and diagnostic studies. Researchers have recently employed large language models to tackle new dimensions of problems. However, leveraging the opportunity to utilize AI in clinical settings will require surpassing significant obstacles-a major issue is the lack of use of the available reporting guidelines obstructing the reproducibility of published studies. In this review, we discuss the applications of AI methods and explore their benefits and limitations. We summarize the available guidelines for AI in healthcare and highlight the potential role and impact of AI models on future directions in cancer research.
Collapse
Affiliation(s)
- Ankita Murmu
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- National Laboratory for Drug Research and Development, Budapest, 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, 1094, Hungary
| | - Balázs Győrffy
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
- Department of Bioinformatics, Semmelweis University, Budapest, 1094, Hungary.
- Department of Biophysics, University of Pecs, Pecs, 7624, Hungary.
| |
Collapse
|
3
|
Huang W, Zeng R, Li Y, Hua Y, Liu L, Chen M, Xue M, Tu S, Huang F, Hu J. Identification of Alzheimer's disease and vascular dementia based on a Deep Forest and near-infrared spectroscopy analysis method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125209. [PMID: 39340951 DOI: 10.1016/j.saa.2024.125209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Alzheimer's disease (AD) and vascular dementia (VaD) typically do not exhibit distinct differences in clinical manifestations and auxiliary examination results, which leads to a high misdiagnosis rate. However, significant differences in treatment approaches and prognosis between these two diseases underscore the critical need for an accurate diagnosis of AD and VaD. In this study, serum samples from 33 patients with AD patients, 37 patients with VaD, and 130 healthy individuals were collected, employing near-infrared aquaphotomics technology in combination with deep learning for differential diagnoses. Through an analysis of water absorption patterns among different diseases via aquaphotomics, the efficacies of traditional machine learning methods (Support Vector Machine and Decision Trees) and deep learning approaches (Deep Forest) in modeling were compared. Ultimately, by leveraging feature extraction techniques in conjunction with deep learning, a differential diagnostic model for AD and VaD was successfully developed. The results revealed that aquaphotomics could identify a certain correlation between the number of hydrogen bonds in water molecules and the development of AD and VaD; the deep learning model was found to be superior to traditional machine learning models, achieving an accuracy of 98.67 %, sensitivity of 97.33 %, and specificity of 100.00 %. The bands identified using the Competitive Adaptive Reweighting Algorithm method, primarily located at approximately 1300-1500 nm, showed a significant correlation with water molecules containing four hydrogen bonds. These results highlighted the potential role of the water molecule hydrogen-bond network in disease development and were consistent with the aquaphotomics analysis results. Therefore, the differential diagnostic model developed by integrating near-infrared spectroscopy and deep learning was proven to be effective and feasible, providing accurate and rapid diagnostic methods for AD and VaD diagnoses.
Collapse
Affiliation(s)
- Wenchang Huang
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Rui Zeng
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Yuanpeng Li
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, 541004, China.
| | - Yisheng Hua
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Lingli Liu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Meiyuan Chen
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Mengjiao Xue
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shan Tu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, 541004, China.
| | - Furong Huang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Junhui Hu
- College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, 541004, China
| |
Collapse
|
4
|
Kamble P, Nagar PR, Bhakhar KA, Garg P, Sobhia ME, Naidu S, Bharatam PV. Cancer pharmacoinformatics: Databases and analytical tools. Funct Integr Genomics 2024; 24:166. [PMID: 39294509 DOI: 10.1007/s10142-024-01445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cancer is a subject of extensive investigation, and the utilization of omics technology has resulted in the generation of substantial volumes of big data in cancer research. Numerous databases are being developed to manage and organize this data effectively. These databases encompass various domains such as genomics, transcriptomics, proteomics, metabolomics, immunology, and drug discovery. The application of computational tools into various core components of pharmaceutical sciences constitutes "Pharmacoinformatics", an emerging paradigm in rational drug discovery. The three major features of pharmacoinformatics include (i) Structure modelling of putative drugs and targets, (ii) Compilation of databases and analysis using statistical approaches, and (iii) Employing artificial intelligence/machine learning algorithms for the discovery of novel therapeutic molecules. The development, updating, and analysis of databases using statistical approaches play a pivotal role in pharmacoinformatics. Multiple software tools are associated with oncoinformatics research. This review catalogs the databases and computational tools related to cancer drug discovery and highlights their potential implications in the pharmacoinformatics of cancer.
Collapse
Affiliation(s)
- Pradnya Kamble
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Prinsa R Nagar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Kaushikkumar A Bhakhar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Srivatsava Naidu
- Center of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
5
|
Ozcelik F, Dundar MS, Yildirim AB, Henehan G, Vicente O, Sánchez-Alcázar JA, Gokce N, Yildirim DT, Bingol NN, Karanfilska DP, Bertelli M, Pojskic L, Ercan M, Kellermayer M, Sahin IO, Greiner-Tollersrud OK, Tan B, Martin D, Marks R, Prakash S, Yakubi M, Beccari T, Lal R, Temel SG, Fournier I, Ergoren MC, Mechler A, Salzet M, Maffia M, Danalev D, Sun Q, Nei L, Matulis D, Tapaloaga D, Janecke A, Bown J, Cruz KS, Radecka I, Ozturk C, Nalbantoglu OU, Sag SO, Ko K, Arngrimsson R, Belo I, Akalin H, Dundar M. The impact and future of artificial intelligence in medical genetics and molecular medicine: an ongoing revolution. Funct Integr Genomics 2024; 24:138. [PMID: 39147901 DOI: 10.1007/s10142-024-01417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Artificial intelligence (AI) platforms have emerged as pivotal tools in genetics and molecular medicine, as in many other fields. The growth in patient data, identification of new diseases and phenotypes, discovery of new intracellular pathways, availability of greater sets of omics data, and the need to continuously analyse them have led to the development of new AI platforms. AI continues to weave its way into the fabric of genetics with the potential to unlock new discoveries and enhance patient care. This technology is setting the stage for breakthroughs across various domains, including dysmorphology, rare hereditary diseases, cancers, clinical microbiomics, the investigation of zoonotic diseases, omics studies in all medical disciplines. AI's role in facilitating a deeper understanding of these areas heralds a new era of personalised medicine, where treatments and diagnoses are tailored to the individual's molecular features, offering a more precise approach to combating genetic or acquired disorders. The significance of these AI platforms is growing as they assist healthcare professionals in the diagnostic and treatment processes, marking a pivotal shift towards more informed, efficient, and effective medical practice. In this review, we will explore the range of AI tools available and show how they have become vital in various sectors of genomic research supporting clinical decisions.
Collapse
Affiliation(s)
- Firat Ozcelik
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Sait Dundar
- Department of Electrical and Computer Engineering, Graduate School of Engineering and Sciences, Abdullah Gul University, Kayseri, Turkey
| | - A Baki Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gary Henehan
- School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - José A Sánchez-Alcázar
- Centro de Investigación Biomédica en Red: Enfermedades Raras, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Instituto de Salud Carlos III, Sevilla, Spain
| | - Nuriye Gokce
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Duygu T Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurdeniz Nalbant Bingol
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Dijana Plaseska Karanfilska
- Research Centre for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | | | - Lejla Pojskic
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Mehmet Ercan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Miklos Kellermayer
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Izem Olcay Sahin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Busra Tan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Donald Martin
- University Grenoble Alpes, CNRS, TIMC-IMAG/SyNaBi (UMR 5525), Grenoble, France
| | - Robert Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Satya Prakash
- Department of Biomedical Engineering, University of McGill, Montreal, QC, Canada
| | - Mustafa Yakubi
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tommaso Beccari
- Department of Pharmeceutical Sciences, University of Perugia, Perugia, Italy
| | - Ratnesh Lal
- Neuroscience Research Institute, University of California, Santa Barbara, USA
| | - Sehime G Temel
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Isabelle Fournier
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - M Cerkez Ergoren
- Department of Medical Genetics, Near East University Faculty of Medicine, Nicosia, Cyprus
| | - Adam Mechler
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Michel Salzet
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, Lecce, 73100, Italy
| | - Dancho Danalev
- University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Qun Sun
- Department of Food Science and Technology, Sichuan University, Chengdu, China
| | - Lembit Nei
- School of Engineering Tallinn University of Technology, Tartu College, Tartu, Estonia
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Dana Tapaloaga
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Andres Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - James Bown
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | | | - Iza Radecka
- School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Celal Ozturk
- Department of Software Engineering, Erciyes University, Kayseri, Turkey
| | - Ozkan Ufuk Nalbantoglu
- Department of Computer Engineering, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Reynir Arngrimsson
- Iceland Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
6
|
Lenhof K, Eckhart L, Rolli LM, Lenhof HP. Trust me if you can: a survey on reliability and interpretability of machine learning approaches for drug sensitivity prediction in cancer. Brief Bioinform 2024; 25:bbae379. [PMID: 39101498 PMCID: PMC11299037 DOI: 10.1093/bib/bbae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
With the ever-increasing number of artificial intelligence (AI) systems, mitigating risks associated with their use has become one of the most urgent scientific and societal issues. To this end, the European Union passed the EU AI Act, proposing solution strategies that can be summarized under the umbrella term trustworthiness. In anti-cancer drug sensitivity prediction, machine learning (ML) methods are developed for application in medical decision support systems, which require an extraordinary level of trustworthiness. This review offers an overview of the ML landscape of methods for anti-cancer drug sensitivity prediction, including a brief introduction to the four major ML realms (supervised, unsupervised, semi-supervised, and reinforcement learning). In particular, we address the question to what extent trustworthiness-related properties, more specifically, interpretability and reliability, have been incorporated into anti-cancer drug sensitivity prediction methods over the previous decade. In total, we analyzed 36 papers with approaches for anti-cancer drug sensitivity prediction. Our results indicate that the need for reliability has hardly been addressed so far. Interpretability, on the other hand, has often been considered for model development. However, the concept is rather used intuitively, lacking clear definitions. Thus, we propose an easily extensible taxonomy for interpretability, unifying all prevalent connotations explicitly or implicitly used within the field.
Collapse
Affiliation(s)
- Kerstin Lenhof
- Center for Bioinformatics, Chair for Bioinformatics, Saarland Informatics Campus (E2.1) Saarland University, Campus, D-66123 Saarbrücken, Saarland, Germany
| | - Lea Eckhart
- Center for Bioinformatics, Chair for Bioinformatics, Saarland Informatics Campus (E2.1) Saarland University, Campus, D-66123 Saarbrücken, Saarland, Germany
| | - Lisa-Marie Rolli
- Center for Bioinformatics, Chair for Bioinformatics, Saarland Informatics Campus (E2.1) Saarland University, Campus, D-66123 Saarbrücken, Saarland, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Chair for Bioinformatics, Saarland Informatics Campus (E2.1) Saarland University, Campus, D-66123 Saarbrücken, Saarland, Germany
| |
Collapse
|
7
|
Yao L, Guan J, Xie P, Chung C, Deng J, Huang Y, Chiang Y, Lee T. AMPActiPred: A three-stage framework for predicting antibacterial peptides and activity levels with deep forest. Protein Sci 2024; 33:e5006. [PMID: 38723168 PMCID: PMC11081525 DOI: 10.1002/pro.5006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024]
Abstract
The emergence and spread of antibiotic-resistant bacteria pose a significant public health threat, necessitating the exploration of alternative antibacterial strategies. Antibacterial peptide (ABP) is a kind of antimicrobial peptide (AMP) that has the potential ability to fight against bacteria infection, offering a promising avenue for developing novel therapeutic interventions. This study introduces AMPActiPred, a three-stage computational framework designed to identify ABPs, characterize their activity against diverse bacterial species, and predict their activity levels. AMPActiPred employed multiple effective peptide descriptors to effectively capture the compositional features and physicochemical properties of peptides. AMPActiPred utilized deep forest architecture, a cascading architecture similar to deep neural networks, capable of effectively processing and exploring original features to enhance predictive performance. In the first stage, AMPActiPred focuses on ABP identification, achieving an Accuracy of 87.6% and an MCC of 0.742 on an elaborate dataset, demonstrating state-of-the-art performance. In the second stage, AMPActiPred achieved an average GMean at 82.8% in identifying ABPs targeting 10 bacterial species, indicating AMPActiPred can achieve balanced predictions regarding the functional activity of ABP across this set of species. In the third stage, AMPActiPred demonstrates robust predictive capabilities for ABP activity levels with an average PCC of 0.722. Furthermore, AMPActiPred exhibits excellent interpretability, elucidating crucial features associated with antibacterial activity. AMPActiPred is the first computational framework capable of predicting targets and activity levels of ABPs. Finally, to facilitate the utilization of AMPActiPred, we have established a user-friendly web interface deployed at https://awi.cuhk.edu.cn/∼AMPActiPred/.
Collapse
Affiliation(s)
- Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenChina
| | - Jiahui Guan
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Chia‐Ru Chung
- Department of Computer Science and Information EngineeringNational Central UniversityTaoyuanTaiwan
| | - Junyang Deng
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Yixian Huang
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Ying‐Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Tzong‐Yi Lee
- Institute of Bioinformatics and Systems BiologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDS2B)National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| |
Collapse
|
8
|
Eckhart L, Lenhof K, Rolli LM, Lenhof HP. A comprehensive benchmarking of machine learning algorithms and dimensionality reduction methods for drug sensitivity prediction. Brief Bioinform 2024; 25:bbae242. [PMID: 38797968 PMCID: PMC11128483 DOI: 10.1093/bib/bbae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
A major challenge of precision oncology is the identification and prioritization of suitable treatment options based on molecular biomarkers of the considered tumor. In pursuit of this goal, large cancer cell line panels have successfully been studied to elucidate the relationship between cellular features and treatment response. Due to the high dimensionality of these datasets, machine learning (ML) is commonly used for their analysis. However, choosing a suitable algorithm and set of input features can be challenging. We performed a comprehensive benchmarking of ML methods and dimension reduction (DR) techniques for predicting drug response metrics. Using the Genomics of Drug Sensitivity in Cancer cell line panel, we trained random forests, neural networks, boosting trees and elastic nets for 179 anti-cancer compounds with feature sets derived from nine DR approaches. We compare the results regarding statistical performance, runtime and interpretability. Additionally, we provide strategies for assessing model performance compared with a simple baseline model and measuring the trade-off between models of different complexity. Lastly, we show that complex ML models benefit from using an optimized DR strategy, and that standard models-even when using considerably fewer features-can still be superior in performance.
Collapse
Affiliation(s)
- Lea Eckhart
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarland, Germany
| | - Kerstin Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarland, Germany
| | - Lisa-Marie Rolli
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarland, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarland, Germany
| |
Collapse
|
9
|
Hajim WI, Zainudin S, Mohd Daud K, Alheeti K. Optimized models and deep learning methods for drug response prediction in cancer treatments: a review. PeerJ Comput Sci 2024; 10:e1903. [PMID: 38660174 PMCID: PMC11042005 DOI: 10.7717/peerj-cs.1903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/31/2024] [Indexed: 04/26/2024]
Abstract
Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL's techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models' generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP.
Collapse
Affiliation(s)
- Wesam Ibrahim Hajim
- Department of Applied Geology, College of Sciences, Tirkit University, Tikrit, Salah ad Din, Iraq
- Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Suhaila Zainudin
- Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Kauthar Mohd Daud
- Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Khattab Alheeti
- Department of Computer Networking Systems, College of Computer Sciences and Information Technology, University of Anbar, Al Anbar, Ramadi, Iraq
| |
Collapse
|
10
|
Deng Z, Xu J, Feng Y, Dong L, Zhang Y. MAVGAE: a multimodal framework for predicting asymmetric drug-drug interactions based on variational graph autoencoder. Comput Methods Biomech Biomed Engin 2024:1-13. [PMID: 38314513 DOI: 10.1080/10255842.2024.2311315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees as a result of their concurrent or sequential usage. The accurate identification of potential drug interactions plays a pivotal role in mitigating the risks associated with drug administration in patients, it also helps in minimizing the likelihood of hazardous situations arising during a patient's course of treatment. However, researchers have found that there is a problem of asymmetric drug interactions, where one drug may affect another but not vice versa. This adds to the difficulty of prediction, so in polypharmacy, the order of drug administration is critical to efficacy and safety, and few current studies predict asymmetric DDIs. Aiming at the above problems, we propose a framework based on multimodal data and a variational graph autoencoder named MAVGAE for predicting asymmetric drug interactions. The framework initially encodes multimodal data into low-dimensional representations and then utilizes a variational graph autoencoder for encoding and decoding. During the model training process, supervised learning is employed for the classification task with the incorporation of heterogeneity information, ensuring accurate prediction of drug interactions. Experimental validation on a large-scale drug dataset demonstrates the framework's high accuracy and reliability in predicting non-symmetrical drug interactions, offering effective support and guidance for drug research.
Collapse
Affiliation(s)
- Zengqian Deng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
| | - Jie Xu
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Yinfei Feng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
| | - Liangcheng Dong
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
11
|
Xie K, Hou Y, Zhou X. Deep centroid: a general deep cascade classifier for biomedical omics data classification. Bioinformatics 2024; 40:btae039. [PMID: 38305432 PMCID: PMC10868341 DOI: 10.1093/bioinformatics/btae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
MOTIVATION Classification of samples using biomedical omics data is a widely used method in biomedical research. However, these datasets often possess challenging characteristics, including high dimensionality, limited sample sizes, and inherent biases across diverse sources. These factors limit the performance of traditional machine learning models, particularly when applied to independent datasets. RESULTS To address these challenges, we propose a novel classifier, Deep Centroid, which combines the stability of the nearest centroid classifier and the strong fitting ability of the deep cascade strategy. Deep Centroid is an ensemble learning method with a multi-layer cascade structure, consisting of feature scanning and cascade learning stages that can dynamically adjust the training scale. We apply Deep Centroid to three precision medicine applications-cancer early diagnosis, cancer prognosis, and drug sensitivity prediction-using cell-free DNA fragmentations, gene expression profiles, and DNA methylation data. Experimental results demonstrate that Deep Centroid outperforms six traditional machine learning models in all three applications, showcasing its potential in biological omics data classification. Furthermore, functional annotations reveal that the features scanned by the model exhibit biological significance, indicating its interpretability from a biological perspective. Our findings underscore the promising application of Deep Centroid in the classification of biomedical omics data, particularly in the field of precision medicine. AVAILABILITY AND IMPLEMENTATION Deep Centroid is available at both github (github.com/xiexiexiekuan/DeepCentroid) and Figshare (https://figshare.com/articles/software/Deep_Centroid_A_General_Deep_Cascade_Classifier_for_Biomedical_Omics_Data_Classification/24993516).
Collapse
Affiliation(s)
- Kuan Xie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Yuying Hou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Xionghui Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| |
Collapse
|
12
|
Liu H, Peng W, Dai W, Lin J, Fu X, Liu L, Liu L, Yu N. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks. Methods 2024; 222:41-50. [PMID: 38157919 DOI: 10.1016/j.ymeth.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Predicting the therapeutic effect of anti-cancer drugs on tumors based on the characteristics of tumors and patients is one of the important contents of precision oncology. Existing computational methods regard the drug response prediction problem as a classification or regression task. However, few of them consider leveraging the relationship between the two tasks. In this work, we propose a Multi-task Interaction Graph Convolutional Network (MTIGCN) for anti-cancer drug response prediction. MTIGCN first utilizes an graph convolutional network-based model to produce embeddings for both cell lines and drugs. After that, the model employs multi-task learning to predict anti-cancer drug response, which involves training the model on three different tasks simultaneously: the main task of the drug sensitive or resistant classification task and the two auxiliary tasks of regression prediction and similarity network reconstruction. By sharing parameters and optimizing the losses of different tasks simultaneously, MTIGCN enhances the feature representation and reduces overfitting. The results of the experiments on two in vitro datasets demonstrated that MTIGCN outperformed seven state-of-the-art baseline methods. Moreover, the well-trained model on the in vitro dataset GDSC exhibited good performance when applied to predict drug responses in in vivo datasets PDX and TCGA. The case study confirmed the model's ability to discover unknown drug responses in cell lines.
Collapse
Affiliation(s)
- Hancheng Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China
| | - Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Jiangzhen Lin
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China
| | - Ning Yu
- State University of New York, The College at Brockport, Department of Computing Sciences, 350 New Campus Drive, Brockport NY 14422.
| |
Collapse
|
13
|
Yao L, Guan J, Li W, Chung CR, Deng J, Chiang YC, Lee TY. Identifying Antitubercular Peptides via Deep Forest Architecture with Effective Feature Representation. Anal Chem 2024; 96:1538-1546. [PMID: 38226973 DOI: 10.1021/acs.analchem.3c04196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Tuberculosis (TB) is a severe disease caused by Mycobacterium tuberculosis that poses a significant threat to human health. The emergence of drug-resistant strains has made the global fight against TB even more challenging. Antituberculosis peptides (ATPs) have shown promising results as a potential treatment for TB. However, conventional wet lab-based approaches to ATP discovery are time-consuming and costly and often fail to discover peptides with desired properties. To address these challenges, we propose a novel machine learning-based framework called ATPfinder that can significantly accelerate the discovery of ATP. Our approach integrates various efficient peptide descriptors and utilizes the deep forest algorithm to construct the model. This neural network-like cascading structure can effectively process and mine features without complex hyperparameter tuning. Our experimental results show that ATPfinder outperforms existing ATP prediction tools, achieving state-of-the-art performance with an accuracy of 89.3% and an MCC of 0.70. Moreover, our framework exhibits better robustness than baseline algorithms commonly used for other sequence analysis tasks. Additionally, the excellent interpretability of our model can assist researchers in understanding the critical features of ATP. Finally, we developed a downloadable desktop application to simplify the use of our framework for researchers. Therefore, ATPfinder can facilitate the discovery of peptide drugs and provide potential solutions for TB treatment. Our framework is freely available at https://github.com/lantianyao/ATPfinder/ (data sets and code) and https://awi.cuhk.edu.cn/dbAMP/ATPfinder.html (software).
Collapse
Affiliation(s)
- Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Jiahui Guan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Wenshuo Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, 320317 Taoyuan, Taiwan
| | - Junyang Deng
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| |
Collapse
|
14
|
Vasanthakumari P, Zhu Y, Brettin T, Partin A, Shukla M, Xia F, Narykov O, Weil MR, Stevens RL. A Comprehensive Investigation of Active Learning Strategies for Conducting Anti-Cancer Drug Screening. Cancers (Basel) 2024; 16:530. [PMID: 38339281 PMCID: PMC10854925 DOI: 10.3390/cancers16030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
It is well-known that cancers of the same histology type can respond differently to a treatment. Thus, computational drug response prediction is of paramount importance for both preclinical drug screening studies and clinical treatment design. To build drug response prediction models, treatment response data need to be generated through screening experiments and used as input to train the prediction models. In this study, we investigate various active learning strategies of selecting experiments to generate response data for the purposes of (1) improving the performance of drug response prediction models built on the data and (2) identifying effective treatments. Here, we focus on constructing drug-specific response prediction models for cancer cell lines. Various approaches have been designed and applied to select cell lines for screening, including a random, greedy, uncertainty, diversity, combination of greedy and uncertainty, sampling-based hybrid, and iteration-based hybrid approach. All of these approaches are evaluated and compared using two criteria: (1) the number of identified hits that are selected experiments validated to be responsive, and (2) the performance of the response prediction model trained on the data of selected experiments. The analysis was conducted for 57 drugs and the results show a significant improvement on identifying hits using active learning approaches compared with the random and greedy sampling method. Active learning approaches also show an improvement on response prediction performance for some of the drugs and analysis runs compared with the greedy sampling method.
Collapse
Affiliation(s)
- Priyanka Vasanthakumari
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (A.P.); (M.S.); (F.X.); (O.N.)
| | - Yitan Zhu
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (A.P.); (M.S.); (F.X.); (O.N.)
| | - Thomas Brettin
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (T.B.); (R.L.S.)
| | - Alexander Partin
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (A.P.); (M.S.); (F.X.); (O.N.)
| | - Maulik Shukla
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (A.P.); (M.S.); (F.X.); (O.N.)
| | - Fangfang Xia
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (A.P.); (M.S.); (F.X.); (O.N.)
| | - Oleksandr Narykov
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439, USA; (Y.Z.); (A.P.); (M.S.); (F.X.); (O.N.)
| | - Michael Ryan Weil
- Cancer Research Technology Program, Cancer Data Science Initiatives, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA;
| | - Rick L. Stevens
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA; (T.B.); (R.L.S.)
- Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Li Y, Guo Z, Gao X, Wang G. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning. Bioinformatics 2023; 39:btad734. [PMID: 38070154 PMCID: PMC10756335 DOI: 10.1093/bioinformatics/btad734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Indexed: 12/30/2023] Open
Abstract
MOTIVATION Cancer is a complex disease that results in a significant number of global fatalities. Treatment strategies can vary among patients, even if they have the same type of cancer. The application of precision medicine in cancer shows promise for treating different types of cancer, reducing healthcare expenses, and improving recovery rates. To achieve personalized cancer treatment, machine learning models have been developed to predict drug responses based on tumor and drug characteristics. However, current studies either focus on constructing homogeneous networks from single data source or heterogeneous networks from multiomics data. While multiomics data have shown potential in predicting drug responses in cancer cell lines, there is still a lack of research that effectively utilizes insights from different modalities. Furthermore, effectively utilizing the multimodal knowledge of cancer cell lines poses a challenge due to the heterogeneity inherent in these modalities. RESULTS To address these challenges, we introduce MMCL-CDR (Multimodal Contrastive Learning for Cancer Drug Responses), a multimodal approach for cancer drug response prediction that integrates copy number variation, gene expression, morphology images of cell lines, and chemical structure of drugs. The objective of MMCL-CDR is to align cancer cell lines across different data modalities by learning cell line representations from omic and image data, and combined with structural drug representations to enhance the prediction of cancer drug responses (CDR). We have carried out comprehensive experiments and show that our model significantly outperforms other state-of-the-art methods in CDR prediction. The experimental results also prove that the model can learn more accurate cell line representation by integrating multiomics and morphological data from cell lines, thereby improving the accuracy of CDR prediction. In addition, the ablation study and qualitative analysis also confirm the effectiveness of each part of our proposed model. Last but not least, MMCL-CDR opens up a new dimension for cancer drug response prediction through multimodal contrastive learning, pioneering a novel approach that integrates multiomics and multimodal drug and cell line modeling. AVAILABILITY AND IMPLEMENTATION MMCL-CDR is available at https://github.com/catly/MMCL-CDR.
Collapse
Affiliation(s)
- Yang Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| | - Zihou Guo
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| |
Collapse
|
16
|
Lin S, Mao X, Hong L, Lin S, Wei DQ, Xiong Y. MATT-DDI: Predicting multi-type drug-drug interactions via heterogeneous attention mechanisms. Methods 2023; 220:1-10. [PMID: 37858611 DOI: 10.1016/j.ymeth.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
The joint use of multiple drugs can result in adverse drug-drug interactions (DDIs) and side effects that harm the body. Accurate identification of DDIs is crucial for avoiding accidental drug side effects and understanding potential mechanisms underlying DDIs. Several computational methods have been proposed for multi-type DDI prediction, but most rely on the similarity profiles of drugs as the drug feature vectors, which may result in information leakage and overoptimistic performance when predicting interactions between new drugs. To address this issue, we propose a novel method, MATT-DDI, for predicting multi-type DDIs based on the original feature vectors of drugs and multiple attention mechanisms. MATT-DDI consists of three main modules: the top k most similar drug pair selection module, heterogeneous attention mechanism module and multi‑type DDI prediction module. Firstly, based on the feature vector of the input drug pair (IDP), k drug pairs that are most similar to the input drug pair from the training dataset are selected according to cosine similarity between drug pairs. Then, the vectors of k selected drug pairs are averaged to obtain a new drug pair (NDP). Next, IDP and NDP are fed into heterogeneous attention modules, including scaled dot product attention and bilinear attention, to extract latent feature vectors. Finally, these latent feature vectors are taken as input of the classification module to predict DDI types. We evaluated MATT-DDI on three different tasks. The experimental results show that MATT-DDI provides better or comparable performance compared to several state-of-the-art methods, and its feasibility is supported by case studies. MATT-DDI is a robust model for predicting multi-type DDIs with excellent performance and no information leakage.
Collapse
Affiliation(s)
- Shenggeng Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueying Mao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China; School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Nanyang 473006, China; Peng Cheng National Laboratory, Shenzhen 518055, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China.
| |
Collapse
|
17
|
Zhu W, Yuan SS, Li J, Huang CB, Lin H, Liao B. A First Computational Frame for Recognizing Heparin-Binding Protein. Diagnostics (Basel) 2023; 13:2465. [PMID: 37510209 PMCID: PMC10377868 DOI: 10.3390/diagnostics13142465] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Heparin-binding protein (HBP) is a cationic antibacterial protein derived from multinuclear neutrophils and an important biomarker of infectious diseases. The correct identification of HBP is of great significance to the study of infectious diseases. This work provides the first HBP recognition framework based on machine learning to accurately identify HBP. By using four sequence descriptors, HBP and non-HBP samples were represented by discrete numbers. By inputting these features into a support vector machine (SVM) and random forest (RF) algorithm and comparing the prediction performances of these methods on training data and independent test data, it is found that the SVM-based classifier has the greatest potential to identify HBP. The model could produce an auROC of 0.981 ± 0.028 on training data using 10-fold cross-validation and an overall accuracy of 95.0% on independent test data. As the first model for HBP recognition, it will provide some help for infectious diseases and stimulate further research in related fields.
Collapse
Affiliation(s)
- Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| | - Shi-Shi Yuan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, ABa Teachers University, Chengdu 623002, China
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
18
|
Zhan Y, Guo J, Philip Chen CL, Meng XB. iBT-Net: an incremental broad transformer network for cancer drug response prediction. Brief Bioinform 2023:bbad256. [PMID: 37429577 DOI: 10.1093/bib/bbad256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023] Open
Abstract
In modern precision medicine, it is an important research topic to predict cancer drug response. Due to incomplete chemical structures and complex gene features, however, it is an ongoing work to design efficient data-driven methods for predicting drug response. Moreover, since the clinical data cannot be easily obtained all at once, the data-driven methods may require relearning when new data are available, resulting in increased time consumption and cost. To address these issues, an incremental broad Transformer network (iBT-Net) is proposed for cancer drug response prediction. Different from the gene expression features learning from cancer cell lines, structural features are further extracted from drugs by Transformer. Broad learning system is then designed to integrate the learned gene features and structural features of drugs to predict the response. With the capability of incremental learning, the proposed method can further use new data to improve its prediction performance without retraining totally. Experiments and comparison studies demonstrate the effectiveness and superiority of iBT-Net under different experimental configurations and continuous data learning.
Collapse
Affiliation(s)
- Yongkang Zhan
- School of Computer Science & Engineering,South China University of Technology, 510006, China
| | - Jifeng Guo
- School of Computer Science & Engineering,South China University of Technology, 510006, China
| | - C L Philip Chen
- School of Computer Science & Engineering,South China University of Technology, 510006, China
- Brain and Affective Cognitive Research Center, Pazhou Lab, 510335, China
| | - Xian-Bing Meng
- School of Electromechanical Engineering, Guangdong University of Technology, 510006, China
| |
Collapse
|
19
|
Singh DP, Kaushik B. CTDN (Convolutional Temporal Based Deep- Neural Network): An Improvised Stacked Hybrid Computational Approach for Anticancer Drug Response Prediction. Comput Biol Chem 2023; 105:107868. [PMID: 37257399 DOI: 10.1016/j.compbiolchem.2023.107868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 06/02/2023]
Abstract
The characterization of drug - metabolizing enzymes is a significant problem for customized therapy. It is important to choose the right drugs for cancer victims, and the ability to forecast how those drugs will react is usually based on the available information, genetic sequence, and structural properties. To the finest of our knowledge, this is the first study to evaluate optimization algorithms for selection of features and pharmacogenetics categorization using classification methods based on a successful evolutionary algorithm using datasets from the Cancer Cell Line Encyclopaedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC). The study proposes the uses of Firefly and Grey Wolf Optimization techniques for feature extraction, while comparing the traditional Machine Learning (ML), ensemble ML and Stacking Algorithm with the proposed Convolutional Temporal Deep Neural Network or CTDN. With the potential to increase efficiency from the suggested intelligible classifier model for a suggestive chemotherapeutic drugs response prediction, our study is important in particular for selecting an acceptable feature selection method. The comparison analysis demonstrates that the proposed model not only surpasses the prior state-of-the-art methods, but also uses Grey Wolf and Fire Fly Optimization to lessen multicollinearity and overfitting.
Collapse
Affiliation(s)
- Davinder Paul Singh
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra 182320, Jammu and Kashmir, India.
| | - Baijnath Kaushik
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra 182320, Jammu and Kashmir, India
| |
Collapse
|
20
|
Peng W, Chen T, Liu H, Dai W, Yu N, Lan W. Improving drug response prediction based on two-space graph convolution. Comput Biol Med 2023; 158:106859. [PMID: 37023539 DOI: 10.1016/j.compbiomed.2023.106859] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Patients with the same cancer types may present different genomic features and therefore have different drug sensitivities. Accordingly, correctly predicting patients' responses to the drugs can guide treatment decisions and improve the outcome of cancer patients. Existing computational methods leverage the graph convolution network model to aggregate features of different types of nodes in the heterogeneous network. They most fail to consider the similarity between homogeneous nodes. To this end, we propose an algorithm based on two-space graph convolutional neural networks, TSGCNN, to predict the response of anticancer drugs. TSGCNN first constructs the cell line feature space and the drug feature space and separately performs the graph convolution operation on the feature spaces to diffuse similarity information among homogeneous nodes. After that, we generate a heterogeneous network based on the known cell line and drug relationship and perform graph convolution operations on the heterogeneous network to collect the features of different types of nodes. Subsequently, the algorithm produces the final feature representations for cell lines and drugs by adding their self features, the feature space representations, and the heterogeneous space representations. Finally, we leverage the linear correlation coefficient decoder to reconstruct the cell line-drug correlation matrix for drug response prediction based on the final representations. We tested our model on the Cancer Drug Sensitivity Data (GDSC) and Cancer Cell Line Encyclopedia (CCLE) databases. The results indicate that TSGCNN shows excellent performance drug response prediction compared with other eight state-of-the-art methods.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050, China.
| | - Tielin Chen
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China
| | - Hancheng Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050, China
| | - Ning Yu
- State University of New York, The College at Brockport, Department of Computing Sciences, 350 New Campus Drive, Brockport, NY 14422, United States of America
| | - Wei Lan
- School of Computer Electronic and Information, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
21
|
Chen L, Yu L, Gao L. Potent antibiotic design via guided search from antibacterial activity evaluations. Bioinformatics 2023; 39:btad059. [PMID: 36707990 PMCID: PMC9897189 DOI: 10.1093/bioinformatics/btad059] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
MOTIVATION The emergence of drug-resistant bacteria makes the discovery of new antibiotics an urgent issue, but finding new molecules with the desired antibacterial activity is an extremely difficult task. To address this challenge, we established a framework, MDAGS (Molecular Design via Attribute-Guided Search), to optimize and generate potent antibiotic molecules. RESULTS By designing the antibacterial activity latent space and guiding the optimization of functional compounds based on this space, the model MDAGS can generate novel compounds with desirable antibacterial activity without the need for extensive expensive and time-consuming evaluations. Compared with existing antibiotics, candidate antibacterial compounds generated by MDAGS always possessed significantly better antibacterial activity and ensured high similarity. Furthermore, although without explicit constraints on similarity to known antibiotics, these candidate antibacterial compounds all exhibited the highest structural similarity to antibiotics of expected function in the DrugBank database query. Overall, our approach provides a viable solution to the problem of bacterial drug resistance. AVAILABILITY AND IMPLEMENTATION Code of the model and datasets can be downloaded from GitHub (https://github.com/LiangYu-Xidian/MDAGS). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lu Chen
- School of Computer Science and Technology, Xidian University, Xi’an 710071, Shaanxi, China
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi’an 710071, Shaanxi, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi’an 710071, Shaanxi, China
| |
Collapse
|
22
|
Shin SY, Centenera MM, Hodgson JT, Nguyen EV, Butler LM, Daly RJ, Nguyen LK. A Boolean-based machine learning framework identifies predictive biomarkers of HSP90-targeted therapy response in prostate cancer. Front Mol Biosci 2023; 10:1094321. [PMID: 36743211 PMCID: PMC9892654 DOI: 10.3389/fmolb.2023.1094321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Precision medicine has emerged as an important paradigm in oncology, driven by the significant heterogeneity of individual patients' tumour. A key prerequisite for effective implementation of precision oncology is the development of companion biomarkers that can predict response to anti-cancer therapies and guide patient selection for clinical trials and/or treatment. However, reliable predictive biomarkers are currently lacking for many anti-cancer therapies, hampering their clinical application. Here, we developed a novel machine learning-based framework to derive predictive multi-gene biomarker panels and associated expression signatures that accurately predict cancer drug sensitivity. We demonstrated the power of the approach by applying it to identify response biomarker panels for an Hsp90-based therapy in prostate cancer, using proteomic data profiled from prostate cancer patient-derived explants. Our approach employs a rational feature section strategy to maximise model performance, and innovatively utilizes Boolean algebra methods to derive specific expression signatures of the marker proteins. Given suitable data for model training, the approach is also applicable to other cancer drug agents in different tumour settings.
Collapse
Affiliation(s)
- Sung-Young Shin
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Margaret M. Centenera
- South Australian Immunogenomics Cancer Institute and Freemasons Foundation Centre for Men’s Health, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Joshua T. Hodgson
- South Australian Immunogenomics Cancer Institute and Freemasons Foundation Centre for Men’s Health, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Elizabeth V. Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Foundation Centre for Men’s Health, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Roger J. Daly
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lan K. Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
23
|
Multiview Deep Forest for Overall Survival Prediction in Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:7931321. [PMID: 36714327 PMCID: PMC9876666 DOI: 10.1155/2023/7931321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023]
Abstract
Overall survival (OS) in cancer is crucial for cancer treatment. Many machine learning methods have been applied to predict OS, but there are still the challenges of dealing with multiview data and overfitting. To overcome these problems, we propose a multiview deep forest (MVDF) in this paper. MVDF can learn the features of each view and fuse them with integrated learning and multiple kernel learning. Then, a gradient boost forest based on the information bottleneck theory is proposed to reduce redundant information and avoid overfitting. In addition, a pruning strategy for a cascaded forest is used to limit the impact of outlier data. Comprehensive experiments have been carried out on a data set from West China Hospital of Sichuan University and two public data sets. Results have demonstrated that our method outperforms the compared methods in predicting overall survival.
Collapse
|
24
|
Zhang L, Li H, Zhang Z, Wang J, Chen G, Chen D, Shi W, Jia G, Liu M. Hybrid gMLP model for interaction prediction of MHC-peptide and TCR. Front Genet 2023; 13:1092822. [PMID: 36685858 PMCID: PMC9845249 DOI: 10.3389/fgene.2022.1092822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Understanding the interaction of T-cell receptor (TCR) with major histocompatibility-peptide (MHC-peptide) complex is extremely important in human immunotherapy and vaccine development. However, due to the limited available data, the performance of existing models for predicting the interaction of T-cell receptors (TCR) with major histocompatibility-peptide complexes is still unsatisfactory. Deep learning models have been applied to prediction tasks in various fields and have achieved better results compared with other traditional models. In this study, we leverage the gMLP model combined with attention mechanism to predict the interaction of MHC-peptide and TCR. Experiments show that our model can predict TCR-peptide interactions accurately and can handle the problems caused by different TCR lengths. Moreover, we demonstrate that the models trained with paired CDR3β-chain and CDR3α-chain data are better than those trained with only CDR3β-chain or with CDR3α-chain data. We also demonstrate that the hybrid model has greater potential than the traditional convolutional neural network.
Collapse
Affiliation(s)
- Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Haojin Li
- School of Software, Shandong University, Jinan, China
| | - Zhenjiu Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Jinjin Wang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | | | | | - Wentao Shi
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Gaozhi Jia
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Mingjun Liu
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| |
Collapse
|
25
|
Ma D, Li S, Chen Z. Drug-target binding affinity prediction method based on a deep graph neural network. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:269-282. [PMID: 36650765 DOI: 10.3934/mbe.2023012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of new drugs is a long and costly process, Computer-aided drug design reduces development costs while computationally shortening the new drug development cycle, in which DTA (Drug-Target binding Affinity) prediction is a key step to screen out potential drugs. With the development of deep learning, various types of deep learning models have achieved notable performance in a wide range of fields. Most current related studies focus on extracting the sequence features of molecules while ignoring the valuable structural information; they employ sequence data that represent only the elemental composition of molecules without considering the molecular structure maps that contain structural information. In this paper, we use graph neural networks to predict DTA based on corresponding graph data of drugs and proteins, and we achieve competitive performance on two benchmark datasets, Davis and KIBA. In particular, an MSE of 0.227 and CI of 0.895 were obtained on Davis, and an MSE of 0.127 and CI of 0.903 were obtained on KIBA.
Collapse
Affiliation(s)
- Dong Ma
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| | - Shuang Li
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Zhihua Chen
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| |
Collapse
|
26
|
Singh DP, Kaushik B. A systematic literature review for the prediction of anticancer drug response using various machine-learning and deep-learning techniques. Chem Biol Drug Des 2023; 101:175-194. [PMID: 36303299 DOI: 10.1111/cbdd.14164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
Computational methods have gained prominence in healthcare research. The accessibility of healthcare data has greatly incited academicians and researchers to develop executions that help in prognosis of cancer drug response. Among various computational methods, machine-learning (ML) and deep-learning (DL) methods provide the most consistent and effectual approaches to handle the serious aftermaths of the deadly disease and drug administered to the patients. Hence, this systematic literature review has reviewed researches that have investigated drug discovery and prognosis of anticancer drug response using ML and DL algorithms. Fot this purpose, PRISMA guidelines have been followed to choose research papers from Google Scholar, PubMed, and Sciencedirect websites. A total count of 105 papers that align with the context of this review were chosen. Further, the review also presents accuracy of the existing ML and DL methods in the prediction of anticancer drug response. It has been found from the review that, amidst the availability of various studies, there are certain challenges associated with each method. Thus, future researchers can consider these limitations and challenges to develop a prominent anticancer drug response prediction method, and it would be greatly beneficial to the medical professionals in administering non-invasive treatment to the patients.
Collapse
Affiliation(s)
- Davinder Paul Singh
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Baijnath Kaushik
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
27
|
Tanvir Ahmed K, Cheng S, Li Q, Yong J, Zhang W. Incomplete time-series gene expression in integrative study for islet autoimmunity prediction. Brief Bioinform 2022; 24:6895461. [PMID: 36513375 PMCID: PMC9851333 DOI: 10.1093/bib/bbac537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) outcome prediction plays a vital role in identifying novel risk factors, ensuring early patient care and designing cohort studies. TEDDY is a longitudinal cohort study that collects a vast amount of multi-omics and clinical data from its participants to explore the progression and markers of T1D. However, missing data in the omics profiles make the outcome prediction a difficult task. TEDDY collected time series gene expression for less than 6% of enrolled participants. Additionally, for the participants whose gene expressions are collected, 79% time steps are missing. This study introduces an advanced bioinformatics framework for gene expression imputation and islet autoimmunity (IA) prediction. The imputation model generates synthetic data for participants with partially or entirely missing gene expression. The prediction model integrates the synthetic gene expression with other risk factors to achieve better predictive performance. Comprehensive experiments on TEDDY datasets show that: (1) Our pipeline can effectively integrate synthetic gene expression with family history, HLA genotype and SNPs to better predict IA status at 2 years (sensitivity 0.622, AUC 0.715) compared with the individual datasets and state-of-the-art results in the literature (AUC 0.682). (2) The synthetic gene expression contains predictive signals as strong as the true gene expression, reducing reliance on expensive and long-term longitudinal data collection. (3) Time series gene expression is crucial to the proposed improvement and shows significantly better predictive ability than cross-sectional gene expression. (4) Our pipeline is robust to limited data availability. Availability: Code is available at https://github.com/compbiolabucf/TEDDY.
Collapse
Affiliation(s)
| | - Sze Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Qian Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Corresponding author. Wei Zhang, Computer Science Department, University of Central Florida. Tel.: 407-823-2763;
| |
Collapse
|
28
|
Image-Based Approach to Intrusion Detection in Cyber-Physical Objects. INFORMATION 2022. [DOI: 10.3390/info13120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Recently, approaches based on the transformation of tabular data into images have gained a lot of scientific attention. This is explained by the fact that convolutional neural networks (CNNs) have shown good results in computer vision and other image-based classification tasks. Transformation of features without spatial relations to images allows the application of deep neural networks to a wide range of analysis tasks. This paper analyzes existing approaches to feature transformation based on the conversion of the features of network traffic into images and discusses their advantages and disadvantages. The authors also propose an approach to the transformation of raw network packets into images and analyze its efficiency in the task of network attack detection in a cyber-physical object, including its robustness to novel and unseen attacks.
Collapse
|
29
|
Sun X, Zhang Y, Li H, Zhou Y, Shi S, Chen Z, He X, Zhang H, Li F, Yin J, Mou M, Wang Y, Qiu Y, Zhu F. DRESIS: the first comprehensive landscape of drug resistance information. Nucleic Acids Res 2022; 51:D1263-D1275. [PMID: 36243960 PMCID: PMC9825618 DOI: 10.1093/nar/gkac812] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 01/30/2023] Open
Abstract
Widespread drug resistance has become the key issue in global healthcare. Extensive efforts have been made to reveal not only diverse diseases experiencing drug resistance, but also the six distinct types of molecular mechanisms underlying this resistance. A database that describes a comprehensive list of diseases with drug resistance (not just cancers/infections) and all types of resistance mechanisms is now urgently needed. However, no such database has been available to date. In this study, a comprehensive database describing drug resistance information named 'DRESIS' was therefore developed. It was introduced to (i) systematically provide, for the first time, all existing types of molecular mechanisms underlying drug resistance, (ii) extensively cover the widest range of diseases among all existing databases and (iii) explicitly describe the clinically/experimentally verified resistance data for the largest number of drugs. Since drug resistance has become an ever-increasing clinical issue, DRESIS is expected to have great implications for future new drug discovery and clinical treatment optimization. It is now publicly accessible without any login requirement at: https://idrblab.org/dresis/.
Collapse
Affiliation(s)
| | | | | | | | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xin He
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute, Zhejiang University, Haining 314499, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunzhu Wang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- To whom correspondence should be addressed.
| |
Collapse
|
30
|
Peng W, Liu H, Dai W, Yu N, Wang J. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions. Bioinformatics 2022; 38:4546-4553. [PMID: 35997568 DOI: 10.1093/bioinformatics/btac574] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Due to cancer heterogeneity, the therapeutic effect may not be the same when a cohort of patients of the same cancer type receive the same treatment. The anticancer drug response prediction may help develop personalized therapy regimens to increase survival and reduce patients' expenses. Recently, graph neural network-based methods have aroused widespread interest and achieved impressive results on the drug response prediction task. However, most of them apply graph convolution to process cell line-drug bipartite graphs while ignoring the intrinsic differences between cell lines and drug nodes. Moreover, most of these methods aggregate node-wise neighbor features but fail to consider the element-wise interaction between cell lines and drugs. RESULTS This work proposes a neighborhood interaction (NI)-based heterogeneous graph convolution network method, namely NIHGCN, for anticancer drug response prediction in an end-to-end way. Firstly, it constructs a heterogeneous network consisting of drugs, cell lines and the known drug response information. Cell line gene expression and drug molecular fingerprints are linearly transformed and input as node attributes into an interaction model. The interaction module consists of a parallel graph convolution network layer and a NI layer, which aggregates node-level features from their neighbors through graph convolution operation and considers the element-level of interactions with their neighbors in the NI layer. Finally, the drug response predictions are made by calculating the linear correlation coefficients of feature representations of cell lines and drugs. We have conducted extensive experiments to assess the effectiveness of our model on Cancer Drug Sensitivity Data (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets. It has achieved the best performance compared with the state-of-the-art algorithms, especially in predicting drug responses for new cell lines, new drugs and targeted drugs. Furthermore, our model that was well trained on the GDSC dataset can be successfully applied to predict samples of PDX and TCGA, which verified the transferability of our model from cell line in vitro to the datasets in vivo. AVAILABILITY AND IMPLEMENTATION The source code can be obtained from https://github.com/weiba/NIHGCN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Hancheng Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Ning Yu
- Department of Computing Sciences, The College at Brockport, State University of New York, Brockport, NY 14422, USA
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, P.R. China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
31
|
Su R, Yang H, Wei L, Chen S, Zou Q. A multi-label learning model for predicting drug-induced pathology in multi-organ based on toxicogenomics data. PLoS Comput Biol 2022; 18:e1010402. [PMID: 36070305 PMCID: PMC9451100 DOI: 10.1371/journal.pcbi.1010402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Drug-induced toxicity damages the health and is one of the key factors causing drug withdrawal from the market. It is of great significance to identify drug-induced target-organ toxicity, especially the detailed pathological findings, which are crucial for toxicity assessment, in the early stage of drug development process. A large variety of studies have devoted to identify drug toxicity. However, most of them are limited to single organ or only binary toxicity. Here we proposed a novel multi-label learning model named Att-RethinkNet, for predicting drug-induced pathological findings targeted on liver and kidney based on toxicogenomics data. The Att-RethinkNet is equipped with a memory structure and can effectively use the label association information. Besides, attention mechanism is embedded to focus on the important features and obtain better feature presentation. Our Att-RethinkNet is applicable in multiple organs and takes account the compound type, dose, and administration time, so it is more comprehensive and generalized. And more importantly, it predicts multiple pathological findings at the same time, instead of predicting each pathology separately as the previous model did. To demonstrate the effectiveness of the proposed model, we compared the proposed method with a series of state-of-the-arts methods. Our model shows competitive performance and can predict potential hepatotoxicity and nephrotoxicity in a more accurate and reliable way. The implementation of the proposed method is available at https://github.com/RanSuLab/Drug-Toxicity-Prediction-MultiLabel.
Collapse
Affiliation(s)
- Ran Su
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Haitang Yang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan, Shandong, China
| | - Siqi Chen
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| |
Collapse
|
32
|
Reconstruction of Subsurface Salinity Structure in the South China Sea Using Satellite Observations: A LightGBM-Based Deep Forest Method. REMOTE SENSING 2022. [DOI: 10.3390/rs14143494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Accurately estimating the ocean’s interior structures using sea surface data is of vital importance for understanding the complexities of dynamic ocean processes. In this study, we proposed an advanced machine-learning method, the Light Gradient Boosting Machine (LightGBM)-based Deep Forest (LGB-DF) method, to estimate the ocean subsurface salinity structure (OSSS) in the South China Sea (SCS) by using sea surface data from multiple satellite observations. We selected sea surface salinity (SSS), sea surface temperature (SST), sea surface height (SSH), sea surface wind (SSW, decomposed into eastward wind speed (USSW) and northward wind speed (VSSW) components), and the geographical information (including longitude and latitude) as input data to estimate OSSS in the SCS. Argo data were used to train and validate the LGB-DF model. The model performance was evaluated using root mean square error (RMSE), normalized root mean square error (NRMSE), and determination coefficient (R2). The results showed that the LGB-DF model had a good performance and outperformed the traditional LightGBM model in the estimation of OSSS. The proposed LGB-DF model using sea surface data by SSS/SST/SSH and SSS/SST/SSH/SSW performed less satisfactorily than when considering the contribution of the wind speed and geographical information, indicating that these are important parameters for accurately estimating OSSS. The performance of the LGB-DF model was found to vary with season and water depth. Better estimation accuracy was obtained in winter and autumn, which was due to weaker stratification. This method provided important technical support for estimating the OSSS from satellite-derived sea surface data, which offers a novel insight into oceanic observations.
Collapse
|
33
|
PIF - A Java library for finding atomic interactions and extracting geometric features supporting the analysis of protein structures. Methods 2022; 205:63-72. [PMID: 35724844 DOI: 10.1016/j.ymeth.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/13/2022] [Accepted: 04/16/2022] [Indexed: 11/22/2022] Open
Abstract
Proteins play an essential role in the functioning of living organisms. The enormity of the atomic interactions in proteins is essential in controlling their spatial structures and dynamics. It can also provide scientists with valuable information that help to determine the native structures of proteins. This paper presents the PIF (Protein Interaction Finder) library for the Java language, enabling the identification of selected atomic interactions (hydrogen and disulfide bonds, ionic, hydrophobic, aromatic-aromatic, sulfur-aromatic, and amino-aromatic interactions) based on the three-dimensional structure of proteins. The interaction calculation rules applied in PIF rely on documented theoretical foundations gathered from experimental studies of interactions in native protein structures. The library has a universal purpose, supporting drug discovery and development processes and protein structure modeling. Finding the atomic interactions can also deliver numerical features for various Artificial Intelligence (AI) models built for protein analysis. The conducted research comparing the results obtained with the use of the PIF library and competing tools has shown that our solution can effectively determine the interactions occurring in protein structures for entire collections of proteins. Moreover, as a solution that provides a programming interface, the PIF library can be used in any Java project, making it a universal tool.
Collapse
|
34
|
The design of error-correcting output codes based deep forest for the micro-expression recognition. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
35
|
Chen S, Su R. An autonomous agent for negotiation with multiple communication channels using parametrized deep Q-network. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:7933-7951. [PMID: 35801451 DOI: 10.3934/mbe.2022371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Agent-based negotiation aims at automating the negotiation process on behalf of humans to save time and effort. While successful, the current research considers communication between negotiation agents through offer exchange. In addition to the simple manner, many real-world settings tend to involve linguistic channels with which negotiators can express intentions, ask questions, and discuss plans. The information bandwidth of traditional negotiation is therefore restricted and grounded in the action space. Against this background, a negotiation agent called MCAN (multiple channel automated negotiation) is described that models the negotiation with multiple communication channels problem as a Markov decision problem with a hybrid action space. The agent employs a novel deep reinforcement learning technique to generate an efficient strategy, which can interact with different opponents, i.e., other negotiation agents or human players. Specifically, the agent leverages parametrized deep Q-networks (P-DQNs) that provides solutions for a hybrid discrete-continuous action space, thereby learning a comprehensive negotiation strategy that integrates linguistic communication skills and bidding strategies. The extensive experimental results show that the MCAN agent outperforms other agents as well as human players in terms of averaged utility. A high human perception evaluation is also reported based on a user study. Moreover, a comparative experiment shows how the P-DQNs algorithm promotes the performance of the MCAN agent.
Collapse
Affiliation(s)
- Siqi Chen
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
| | - Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
| |
Collapse
|
36
|
Wu X, Zeng W, Lin F, Xu P, Li X. Anticancer Peptide Prediction via Multi-Kernel CNN and Attention Model. Front Genet 2022; 13:887894. [PMID: 35571059 PMCID: PMC9092594 DOI: 10.3389/fgene.2022.887894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Modern lifestyles mean that people are more likely to suffer from some form of cancer. As anticancer peptides can effectively kill cancer cells and play an important role in fighting cancer, they have been a subject of increasing research interest. Methods: This study presents a useful tool to identify the anticancer peptides based on a multi-kernel CNN and attention model, called ACP-MCAM. This model can automatically learn adaptive embedding and the context sequence features of ACP. In addition, to obtain better interpretability and integrity, we visualized the model. Results: Benchmarking comparison shows that ACP-MCAM significantly outperforms several state-of-the-art models. Different encoding schemes have different impacts on the performance of the model. We also studied tmethod parameter optimization. Conclusion: The ACP-MCAM can integrate multi-kernel CNN and self-attention mechanism, which outperforms the previous model in identifying anticancer peptides. It is expected that the work will provide new research ideas for anticancer peptide prediction in the future. In addition, this work will promote the development of the interdisciplinary field of artificial intelligence and biomedicine.
Collapse
Affiliation(s)
- Xiujin Wu
- School of Informatics, Xiamen University, Xiamen, China
| | - Wenhua Zeng
- School of Informatics, Xiamen University, Xiamen, China
| | - Fan Lin
- School of Informatics, Xiamen University, Xiamen, China
- Boston Children’s Hospital, Boston, MA, United States
| | - Peng Xu
- Chongqing Michong Technology Co., Ltd., Chongqing, China
| | | |
Collapse
|
37
|
Effectiveness of Artificial Intelligence for Personalized Medicine in Neoplasms: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7842566. [PMID: 35434134 PMCID: PMC9010213 DOI: 10.1155/2022/7842566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/29/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023]
Abstract
Purpose Artificial intelligence (AI) techniques are used in precision medicine to explore novel genotypes and phenotypes data. The main aims of precision medicine include early diagnosis, screening, and personalized treatment regime for a patient based on genetic-oriented features and characteristics. The main objective of this study was to review AI techniques and their effectiveness in neoplasm precision medicine. Materials and Methods A comprehensive search was performed in Medline (through PubMed), Scopus, ISI Web of Science, IEEE Xplore, Embase, and Cochrane databases from inception to December 29, 2021, in order to identify the studies that used AI methods for cancer precision medicine and evaluate outcomes of the models. Results Sixty-three studies were included in this systematic review. The main AI approaches in 17 papers (26.9%) were linear and nonlinear categories (random forest or decision trees), and in 21 citations, rule-based systems and deep learning models were used. Notably, 62% of the articles were done in the United States and China. R package was the most frequent software, and breast and lung cancer were the most selected neoplasms in the papers. Out of 63 papers, in 34 articles, genomic data like gene expression, somatic mutation data, phenotype data, and proteomics with drug-response which is functional data was used as input in AI methods; in 16 papers' (25.3%) drug response, functional data was utilized in personalization of treatment. The maximum values of the assessment indicators such as accuracy, sensitivity, specificity, precision, recall, and area under the curve (AUC) in included studies were 0.99, 1.00, 0.96, 0.98, 0.99, and 0.9929, respectively. Conclusion The findings showed that in many cases, the use of artificial intelligence methods had effective application in personalized medicine.
Collapse
|
38
|
Zhao S, Pan Q, Zou Q, Ju Y, Shi L, Su X. Identifying and Classifying Enhancers by Dinucleotide-Based Auto-Cross Covariance and Attention-Based Bi-LSTM. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7518779. [PMID: 35422876 PMCID: PMC9005296 DOI: 10.1155/2022/7518779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Enhancers are a class of noncoding DNA elements located near structural genes. In recent years, their identification and classification have been the focus of research in the field of bioinformatics. However, due to their high free scattering and position variability, although the performance of the prediction model has been continuously improved, there is still a lot of room for progress. In this paper, density-based spatial clustering of applications with noise (DBSCAN) was used to screen the physicochemical properties of dinucleotides to extract dinucleotide-based auto-cross covariance (DACC) features; then, the features are reduced by feature selection Python toolkit MRMD 2.0. The reduced features are input into the random forest to identify enhancers. The enhancer classification model was built by word2vec and attention-based Bi-LSTM. Finally, the accuracies of our enhancer identification and classification models were 77.25% and 73.50%, respectively, and the Matthews' correlation coefficients (MCCs) were 0.5470 and 0.4881, respectively, which were better than the performance of most predictors.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Qingfeng Pan
- General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, Guangdong, China
| |
Collapse
|
39
|
Zhang H, Zou Q, Ju Y, Song C, Chen D. Distance-based support vector machine to predict DNA N6-methyladenine modification. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220404145517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
DNA N6-methyladenine plays an important role in the restriction-modification system to isolate invasion from adventive DNA. The shortcomings of the high time-consumption and high costs of experimental methods have been exposed, and some computational methods have emerged. The support vector machine theory has received extensive attention in the bioinformatics field due to its solid theoretical foundation and many good characteristics.
Objective:
General machine learning methods include an important step of extracting features. The research has omitted this step and replaced with easy-to-obtain sequence distances matrix to obtain better results
Method:
First sequence alignment technology was used to achieve the similarity matrix. Then a novel transformation turned the similarity matrix into a distance matrix. Next, the similarity-distance matrix is made positive semi-definite so that it can be used in the kernel matrix. Finally, the LIBSVM software was applied to solve the support vector machine.
Results:
The five-fold cross-validation of this model on rice and mouse data has achieved excellent accuracy rates of 92.04% and 96.51%, respectively. This shows that the DB-SVM method has obvious advantages compared with traditional machine learning methods. Meanwhile this model achieved 0.943,0.982 and 0.818 accuracy,0.944, 0.982, and 0.838 Matthews correlation coefficient and 0.942, 0.982 and 0.840 F1 scores for the rice, M. musculus and cross-species genome datasets, respectively.
Conclusion:
These outcomes show that this model outperforms the iIM-CNN and csDMA in the prediction of DNA 6mA modification, which are the lastest research on DNA 6mA.
Collapse
Affiliation(s)
- Haoyu Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen 361005, China
| | - Chenggang Song
- Beidahuang Industry Group General Hospital, Harbin 150001, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
40
|
Li Q, Ma S, Zhang X, Zhai Z, Zhou L, Tao H, Wang Y, Pan J. DDPD 1.0: a manually curated and standardized database of digital properties of approved drugs for drug-likeness evaluation and drug development. Database (Oxford) 2022; 2022:6525313. [PMID: 35139189 PMCID: PMC9245338 DOI: 10.1093/database/baab083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/23/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
Drug-likeness is a vital consideration when selecting compounds in the early stage of
drug discovery. A series of drug-like properties are needed to predict the drug-likeness
of a given compound and provide useful guidelines to increase the likelihood of converting
lead compounds into drugs. Experimental physicochemical properties,
pharmacokinetic/toxicokinetic properties and maximum dosages of approved small-molecule
drugs from multiple text-based unstructured data resources have been manually assembled,
curated, further digitized and processed into structured data, which are deposited in the
Database of Digital Properties of approved Drugs (DDPD). DDPD 1.0 contains 30 212 drug
property entries, including 2250 approved drugs and 32 properties, in a standardized
value/unit format. Moreover, two analysis tools are provided to examine the drug-likeness
features of given molecules based on the collected property data of approved drugs.
Additionally, three case studies are presented to demonstrate how users can utilize the
database. We believe that this database will be a valuable resource for the drug discovery
and development field. Database URL: http://www.inbirg.com/ddpd
Collapse
Affiliation(s)
- Qiang Li
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District , Chongqing 400016, China
| | - Shiyong Ma
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District , Chongqing 400016, China
| | - Xuelu Zhang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District , Chongqing 400016, China
| | - Zhaoyu Zhai
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District , Chongqing 400016, China
| | - Lu Zhou
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District , Chongqing 400016, China
| | - Haodong Tao
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District , Chongqing 400016, China
| | - Yachen Wang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District , Chongqing 400016, China
| | - Jianbo Pan
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District , Chongqing 400016, China
| |
Collapse
|
41
|
Chen S, Yang Y, Su R. Deep reinforcement learning with emergent communication for coalitional negotiation games. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:4592-4609. [PMID: 35430829 DOI: 10.3934/mbe.2022212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For tasks intractable for a single agent, agents must cooperate to accomplish complex goals. A good example is coalitional games, where a group of individuals forms coalitions to produce jointly and share surpluses. In such coalitional negotiation games, how to strategically negotiate to reach agreements on gain allocation is however a key challenge, when the agents are independent and selfish. This work therefore employs deep reinforcement learning (DRL) to build autonomous agent called DALSL that can deal with arbitrary coalitional games without human input. Furthermore, DALSL agent is equipped with the ability to exchange information between them through emergent communication. We have proved that the agent can successfully form a team, distribute the team's benefits fairly, and can effectively use the language channel to exchange specific information, thereby promoting the establishment of small coalition and shortening the negotiation process. The experimental results shows that the DALSL agent obtains higher payoff when negotiating with handcrafted agents and other RL-based agents; moreover, it outperforms other competitors with a larger margin when the language channel is allowed.
Collapse
Affiliation(s)
- Siqi Chen
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Yang Yang
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
42
|
Chen Z, Jiao S, Zhao D, Zou Q, Xu L, Zhang L, Su X. The Characterization of Structure and Prediction for Aquaporin in Tumour Progression by Machine Learning. Front Cell Dev Biol 2022; 10:845622. [PMID: 35178393 PMCID: PMC8844512 DOI: 10.3389/fcell.2022.845622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Recurrence and new cases of cancer constitute a challenging human health problem. Aquaporins (AQPs) can be expressed in many types of tumours, including the brain, breast, pancreas, colon, skin, ovaries, and lungs, and the histological grade of cancer is positively correlated with AQP expression. Therefore, the identification of aquaporins is an area to explore. Computational tools play an important role in aquaporin identification. In this research, we propose reliable, accurate and automated sequence predictor iAQPs-RF to identify AQPs. In this study, the feature extraction method was 188D (global protein sequence descriptor, GPSD). Six common classifiers, including random forest (RF), NaiveBayes (NB), support vector machine (SVM), XGBoost, logistic regression (LR) and decision tree (DT), were used for AQP classification. The classification results show that the random forest (RF) algorithm is the most suitable machine learning algorithm, and the accuracy was 97.689%. Analysis of Variance (ANOVA) was used to analyse these characteristics. Feature rank based on the ANOVA method and IFS strategy was applied to search for the optimal features. The classification results suggest that the 26th feature (neutral/hydrophobic) and 21st feature (hydrophobic) are the two most powerful and informative features that distinguish AQPs from non-AQPs. Previous studies reported that plasma membrane proteins have hydrophobic characteristics. Aquaporin subcellular localization prediction showed that all aquaporins were plasma membrane proteins with highly conserved transmembrane structures. In addition, the 3D structure of aquaporins was consistent with the localization results. Therefore, these studies confirmed that aquaporins possess hydrophobic properties. Although aquaporins are highly conserved transmembrane structures, the phylogenetic tree shows the diversity of aquaporins during evolution. The PCA showed that positive and negative samples were well separated by 54D features, indicating that the 54D feature can effectively classify aquaporins. The online prediction server is accessible at http://lab.malab.cn/∼acy/iAQP.
Collapse
Affiliation(s)
- Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Da Zhao
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lijun Zhang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, China
| |
Collapse
|
43
|
|
44
|
Shi H, Li S, Su X. Plant6mA: a predictor for predicting N6-methyladenine sites with lightweight structure in plant genomes. Methods 2022; 204:126-131. [DOI: 10.1016/j.ymeth.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022] Open
|
45
|
Han K, Cao P, Wang Y, Xie F, Ma J, Yu M, Wang J, Xu Y, Zhang Y, Wan J. A Review of Approaches for Predicting Drug-Drug Interactions Based on Machine Learning. Front Pharmacol 2022; 12:814858. [PMID: 35153767 PMCID: PMC8835726 DOI: 10.3389/fphar.2021.814858] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
Drug-drug interactions play a vital role in drug research. However, they may also cause adverse reactions in patients, with serious consequences. Manual detection of drug-drug interactions is time-consuming and expensive, so it is urgent to use computer methods to solve the problem. There are two ways for computers to identify drug interactions: one is to identify known drug interactions, and the other is to predict unknown drug interactions. In this paper, we review the research progress of machine learning in predicting unknown drug interactions. Among these methods, the literature-based method is special because it combines the extraction method of DDI and the prediction method of DDI. We first introduce the common databases, then briefly describe each method, and summarize the advantages and disadvantages of some prediction models. Finally, we discuss the challenges and prospects of machine learning methods in predicting drug interactions. This review aims to provide useful guidance for interested researchers to further promote bioinformatics algorithms to predict DDI.
Collapse
Affiliation(s)
- Ke Han
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Peigang Cao
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Yu Wang
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Fang Xie
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Jiaqi Ma
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Mengyao Yu
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Jianchun Wang
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Yaoqun Xu
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Zhang
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Jie Wan
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
46
|
DF classification algorithm for constructing a small sample size of data-oriented DF regression model. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06809-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Lin W, Wu L, Zhang Y, Wen Y, Yan B, Dai C, Liu K, He S, Bo X. An enhanced cascade-based deep forest model for drug combination prediction. Brief Bioinform 2022; 23:6513435. [DOI: 10.1093/bib/bbab562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/20/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Abstract
Combination therapy has shown an obvious curative effect on complex diseases, whereas the search space of drug combinations is too large to be validated experimentally even with high-throughput screens. With the increase of the number of drugs, artificial intelligence techniques, especially machine learning methods, have become applicable for the discovery of synergistic drug combinations to significantly reduce the experimental workload. In this study, in order to predict novel synergistic drug combinations in various cancer cell lines, the cell line-specific drug-induced gene expression profile (GP) is added as a new feature type to capture the cellular response of drugs and reveal the biological mechanism of synergistic effect. Then, an enhanced cascade-based deep forest regressor (EC-DFR) is innovatively presented to apply the new small-scale drug combination dataset involving chemical, physical and biological (GP) properties of drugs and cells. Verified by the dataset, EC-DFR outperforms two state-of-the-art deep neural network-based methods and several advanced classical machine learning algorithms. Biological experimental validation performed subsequently on a set of previously untested drug combinations further confirms the performance of EC-DFR. What is more prominent is that EC-DFR can distinguish the most important features, making it more interpretable. By evaluating the contribution of each feature type, GP feature contributes 82.40%, showing the cellular responses of drugs may play crucial roles in synergism prediction. The analysis based on the top contributing genes in GP further demonstrates some potential relationships between the transcriptomic levels of key genes under drug regulation and the synergism of drug combinations.
Collapse
|
48
|
Gong Y, Dong B, Zhang Z, Zhai Y, Gao B, Zhang T, Zhang J. VTP-Identifier: Vesicular Transport Proteins Identification Based on PSSM Profiles and XGBoost. Front Genet 2022; 12:808856. [PMID: 35047020 PMCID: PMC8762342 DOI: 10.3389/fgene.2021.808856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Vesicular transport proteins are related to many human diseases, and they threaten human health when they undergo pathological changes. Protein function prediction has been one of the most in-depth topics in bioinformatics. In this work, we developed a useful tool to identify vesicular transport proteins. Our strategy is to extract transition probability composition, autocovariance transformation and other information from the position-specific scoring matrix as feature vectors. EditedNearesNeighbours (ENN) is used to address the imbalance of the data set, and the Max-Relevance-Max-Distance (MRMD) algorithm is adopted to reduce the dimension of the feature vector. We used 5-fold cross-validation and independent test sets to evaluate our model. On the test set, VTP-Identifier presented a higher performance compared with GRU. The accuracy, Matthew's correlation coefficient (MCC) and area under the ROC curve (AUC) were 83.6%, 0.531 and 0.873, respectively.
Collapse
Affiliation(s)
- Yue Gong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Benzhi Dong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Jingyu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
49
|
Prasse P, Iversen P, Lienhard M, Thedinga K, Bauer C, Herwig R, Scheffer T. Matching anticancer compounds and tumor cell lines by neural networks with ranking loss. NAR Genom Bioinform 2022; 4:lqab128. [PMID: 35047818 PMCID: PMC8759564 DOI: 10.1093/nargab/lqab128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/03/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022] Open
Abstract
Computational drug sensitivity models have the potential to improve therapeutic outcomes by identifying targeted drug components that are likely to achieve the highest efficacy for a cancer cell line at hand at a therapeutic dose. State of the art drug sensitivity models use regression techniques to predict the inhibitory concentration of a drug for a tumor cell line. This regression objective is not directly aligned with either of these principal goals of drug sensitivity models: We argue that drug sensitivity modeling should be seen as a ranking problem with an optimization criterion that quantifies a drug's inhibitory capacity for the cancer cell line at hand relative to its toxicity for healthy cells. We derive an extension to the well-established drug sensitivity regression model PaccMann that employs a ranking loss and focuses on the ratio of inhibitory concentration and therapeutic dosage range. We find that the ranking extension significantly enhances the model's capability to identify the most effective anticancer drugs for unseen tumor cell profiles based in on in-vitro data.
Collapse
Affiliation(s)
- Paul Prasse
- To whom correspondence should be addressed. Tel: +49 331 977 3829;
| | | | - Matthias Lienhard
- Dep. Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kristina Thedinga
- Dep. Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Ralf Herwig
- Dep. Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tobias Scheffer
- University of Potsdam, Department of Computer Science, Potsdam, Germany
| |
Collapse
|
50
|
Su R, Huang Y, Zhang DG, Xiao G, Wei L. SRDFM: Siamese Response Deep Factorization Machine to improve anti-cancer drug recommendation. Brief Bioinform 2022; 23:6501725. [DOI: 10.1093/bib/bbab534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/31/2021] [Accepted: 11/17/2021] [Indexed: 01/09/2023] Open
Abstract
Abstract
Predicting the response of cancer patients to a particular treatment is a major goal of modern oncology and an important step toward personalized treatment. In the practical clinics, the clinicians prefer to obtain the most-suited drugs for a particular patient instead of knowing the exact values of drug sensitivity. Instead of predicting the exact value of drug response, we proposed a deep learning-based method, named Siamese Response Deep Factorization Machines (SRDFM) Network, for personalized anti-cancer drug recommendation, which directly ranks the drugs and provides the most effective drugs. A Siamese network (SN), a type of deep learning network that is composed of identical subnetworks that share the same architecture, parameters and weights, was used to measure the relative position (RP) between drugs for each cell line. Through minimizing the difference between the real RP and the predicted RP, an optimal SN model was established to provide the rank for all the candidate drugs. Specifically, the subnetwork in each side of the SN consists of a feature generation level and a predictor construction level. On the feature generation level, both drug property and gene expression, were adopted to build a concatenated feature vector, which even enables the recommendation for newly designed drugs with only chemical property known. Particularly, we developed a response unit here to generate weighted genetic feature vector to simulate the biological interaction mechanism between a specific drug and the genes. For the predictor construction level, we built this level integrating a factorization machine (FM) component with a deep neural network component. The FM can well handle the discrete chemical information and both low-order and high-order feature interactions could be sufficiently learned. Impressively, the SRDFM works well on both single-drug recommendation and synergic drug combination. Experiment result on both single-drug and synergetic drug data sets have shown the efficiency of the SRDFM. The Python implementation for the proposed SRDFM is available at at https://github.com/RanSuLab/SRDFM Contact: ran.su@tju.edu.cn, gbx@mju.edu.cn and weileyi@sdu.edu.cn.
Collapse
|