1
|
Saha S, Chatterjee P, Nasipuri M, Basu S, Chakraborti T. Computational drug repurposing for viral infectious diseases: a case study on monkeypox. Brief Funct Genomics 2024; 23:570-578. [PMID: 38183212 DOI: 10.1093/bfgp/elad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
The traditional method of drug reuse or repurposing has significantly contributed to the identification of new antiviral compounds and therapeutic targets, enabling rapid response to developing infectious illnesses. This article presents an overview of how modern computational methods are used in drug repurposing for the treatment of viral infectious diseases. These methods utilize data sets that include reviewed information on the host's response to pathogens and drugs, as well as various connections such as gene expression patterns and protein-protein interaction networks. We assess the potential benefits and limitations of these methods by examining monkeypox as a specific example, but the knowledge acquired can be applied to other comparable disease scenarios.
Collapse
Affiliation(s)
- Sovan Saha
- Department of Computer Science and Engineering (Artificial Intelligence and Machine Learning), Techno Main Salt Lake, EM-4/1, Sector V, Bidhannagar, Kolkata, West Bengal 700091, India
| | - Piyali Chatterjee
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Garia, Kolkata-700152, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, Kolkata - 700032, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, Kolkata - 700032, India
| | - Tapabrata Chakraborti
- Department of Medical Physics and Biomedical Engineering, University College London, UK
- Health Science Programme, The Alan Turing Institute, London, UK
- Linacre College, University of Oxford, UK
| |
Collapse
|
2
|
Tang K, Sun Q, Zeng J, Tang J, Cheng P, Qiu Z, Long H, Chen Y, Zhang C, Wei J, Qiu X, Jiang G, Fang Q, Sun L, Sun C, Du X. Network-based approach for drug repurposing against mpox. Int J Biol Macromol 2024; 270:132468. [PMID: 38761900 DOI: 10.1016/j.ijbiomac.2024.132468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
The current outbreak of mpox presents a significant threat to the global community. However, the lack of mpox-specific drugs necessitates the identification of additional candidates for clinical trials. In this study, a network medicine framework was used to investigate poxviruses-human interactions to identify potential drugs effective against the mpox virus (MPXV). The results indicated that poxviruses preferentially target hubs on the human interactome, and that these virally-targeted proteins (VTPs) tend to aggregate together within specific modules. Comorbidity analysis revealed that mpox is closely related to immune system diseases. Based on predicted drug-target interactions, 268 drugs were identified using the network proximity approach, among which 23 drugs displaying the least side-effects and significant proximity to MPXV were selected as the final candidates. Lastly, specific drugs were explored based on VTPs, differentially expressed proteins, and intermediate nodes, corresponding to different categories. These findings provide novel insights that can contribute to a deeper understanding of the pathogenesis of MPXV and development of ready-to-use treatment strategies based on drug repurposing.
Collapse
Affiliation(s)
- Kang Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Qianru Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Preventive health division, Xijing Hospital, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, PR China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jing Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Peiwen Cheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Zekai Qiu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Medical Faculty Heidelberg, Heidelberg University, Heidelberg 69047, Germany
| | - Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yilin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jie Wei
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiaoping Qiu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Qianglin Fang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510030, PR China.
| |
Collapse
|
3
|
Saha S, Chatterjee P, Basu S, Nasipuri M. EPI-SF: essential protein identification in protein interaction networks using sequence features. PeerJ 2024; 12:e17010. [PMID: 38495766 PMCID: PMC10944162 DOI: 10.7717/peerj.17010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/05/2024] [Indexed: 03/19/2024] Open
Abstract
Proteins are considered indispensable for facilitating an organism's viability, reproductive capabilities, and other fundamental physiological functions. Conventional biological assays are characterized by prolonged duration, extensive labor requirements, and financial expenses in order to identify essential proteins. Therefore, it is widely accepted that employing computational methods is the most expeditious and effective approach to successfully discerning essential proteins. Despite being a popular choice in machine learning (ML) applications, the deep learning (DL) method is not suggested for this specific research work based on sequence features due to the restricted availability of high-quality training sets of positive and negative samples. However, some DL works on limited availability of data are also executed at recent times which will be our future scope of work. Conventional ML techniques are thus utilized in this work due to their superior performance compared to DL methodologies. In consideration of the aforementioned, a technique called EPI-SF is proposed here, which employs ML to identify essential proteins within the protein-protein interaction network (PPIN). The protein sequence is the primary determinant of protein structure and function. So, initially, relevant protein sequence features are extracted from the proteins within the PPIN. These features are subsequently utilized as input for various machine learning models, including XGB Boost Classifier, AdaBoost Classifier, logistic regression (LR), support vector classification (SVM), Decision Tree model (DT), Random Forest model (RF), and Naïve Bayes model (NB). The objective is to detect the essential proteins within the PPIN. The primary investigation conducted on yeast examined the performance of various ML models for yeast PPIN. Among these models, the RF model technique had the highest level of effectiveness, as indicated by its precision, recall, F1-score, and AUC values of 0.703, 0.720, 0.711, and 0.745, respectively. It is also found to be better in performance when compared to the other state-of-arts based on traditional centrality like betweenness centrality (BC), closeness centrality (CC), etc. and deep learning methods as well like DeepEP, as emphasized in the result section. As a result of its favorable performance, EPI-SF is later employed for the prediction of novel essential proteins inside the human PPIN. Due to the tendency of viruses to selectively target essential proteins involved in the transmission of diseases within human PPIN, investigations are conducted to assess the probable involvement of these proteins in COVID-19 and other related severe diseases.
Collapse
Affiliation(s)
- Sovan Saha
- Department of Computer Science & Engineering (Artificial Intelligence & Machine Learning), Techno Main Salt Lake, Kolkata, West Bengal, India
| | - Piyali Chatterjee
- Department of Computer Science & Engineering, Netaji Subhash Engineering College, Kolkata, West Bengal, India
| | - Subhadip Basu
- Department of Computer Science & Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Mita Nasipuri
- Department of Computer Science & Engineering, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Osmanoglu Ö, Gupta SK, Almasi A, Yagci S, Srivastava M, Araujo GHM, Nagy Z, Balkenhol J, Dandekar T. Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection. Front Immunol 2023; 14:1285345. [PMID: 38187394 PMCID: PMC10768010 DOI: 10.3389/fimmu.2023.1285345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.
Collapse
Affiliation(s)
- Özge Osmanoglu
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Shishir K. Gupta
- Evolutionary Genomics Group, Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Anna Almasi
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Seray Yagci
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Mugdha Srivastava
- Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany
- Algorithmic Bioinformatics, Department of Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Gabriel H. M. Araujo
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Zoltan Nagy
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Johannes Balkenhol
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Chair of Molecular Microscopy, Rudolf Virchow Center for Integrative and Translation Bioimaging, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- European Molecular Biology Laboratory (EMBL) Heidelberg, BioComputing Unit, Heidelberg, Germany
| |
Collapse
|
5
|
Shadab M, Slavin SA, Mahamed Z, Millar MW, Najar RA, Leonard A, Pietropaoli A, Dean DA, Fazal F, Rahman A. Spleen Tyrosine Kinase phosphorylates VE-cadherin to cause endothelial barrier disruption in acute lung injury. J Biol Chem 2023; 299:105408. [PMID: 38229397 PMCID: PMC10731244 DOI: 10.1016/j.jbc.2023.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 01/18/2024] Open
Abstract
Increased endothelial cell (EC) permeability is a cardinal feature of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Tyrosine phosphorylation of VE-cadherin is a key determinant of EC barrier disruption. However, the identity and role of tyrosine kinases in this context are incompletely understood. Here we report that Spleen Tyrosine Kinase (Syk) is a key mediator of EC barrier disruption and lung vascular leak in sepsis. Inhibition of Syk by pharmacological or genetic approaches, each reduced thrombin-induced EC permeability. Mechanistically, Syk associates with and phosphorylates VE-cadherin to cause EC permeability. To study the causal role of endothelial Syk in sepsis-induced ALI, we used a remarkably efficient and cost-effective approach based on gene transfer to generate EC-ablated Syk mice. These mice were protected against sepsis-induced loss of VE-cadherin and inflammatory lung injury. Notably, the administration of Syk inhibitor R788 (fostamatinib); currently in phase II clinical trial for the treatment of COVID-19, mitigated lung injury and mortality in mice with sepsis. These data identify Syk as a novel kinase for VE-cadherin and a druggable target against ALI in sepsis.
Collapse
Affiliation(s)
- Mohammad Shadab
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Spencer A Slavin
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Zahra Mahamed
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Michelle W Millar
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Rauf A Najar
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Antony Leonard
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Anthony Pietropaoli
- Department of Medicine, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - David A Dean
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Fabeha Fazal
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Arshad Rahman
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
6
|
Halsana AA, Chakroborty T, Halder AK, Basu S. DensePPI: A Novel Image-Based Deep Learning Method for Prediction of Protein-Protein Interactions. IEEE Trans Nanobioscience 2023; 22:904-911. [PMID: 37028059 DOI: 10.1109/tnb.2023.3251192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Protein-protein interactions (PPI) are crucial for understanding the behaviour of living organisms and identifying disease associations. This paper proposes DensePPI, a novel deep convolution strategy applied to the 2D image map generated from the interacting protein pairs for PPI prediction. A colour encoding scheme has been introduced to embed the bigram interaction possibilities of Amino Acids into RGB colour space to enhance the learning and prediction task. The DensePPI model is trained on 5.5 million sub-images of size 128×128 generated from nearly 36,000 interacting and 36,000 non-interacting benchmark protein pairs. The performance is evaluated on independent datasets from five different organisms; Caenorhabditis elegans, Escherichia coli, Helicobacter Pylori, Homo sapiens and Mus Musculus. The proposed model achieves an average prediction accuracy score of 99.95% on these datasets, considering inter-species and intra-species interactions. The performance of DensePPI is compared with the state-of-the-art methods and outperforms those approaches in different evaluation metrics. Improved performance of DensePPI indicates the efficiency of the image-based encoding strategy of sequence information with the deep learning architecture in PPI prediction. The enhanced performance on diverse test sets shows that the DensePPI is significant for intra-species interaction prediction and cross-species interactions. The dataset, supplementary file, and the developed models are available at https://github.com/Aanzil/DensePPI for academic use only.
Collapse
|
7
|
Kataria R, Kaur S, Kaundal R. Deciphering the complete human-monkeypox virus interactome: Identifying immune responses and potential drug targets. Front Immunol 2023; 14:1116988. [PMID: 37051239 PMCID: PMC10083500 DOI: 10.3389/fimmu.2023.1116988] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Monkeypox virus (MPXV) is a dsDNA virus, belonging to Poxviridae family. The outbreak of monkeypox disease in humans is critical in European and Western countries, owing to its origin in African regions. The highest number of cases of the disease were found in the United States, followed by Spain and Brazil. Understanding the complete infection mechanism of diverse MPXV strains and their interaction with humans is important for therapeutic drug development, and to avoid any future epidemics. Using computational systems biology, we deciphered the genome-wide protein-protein interactions (PPIs) between 22 MPXV strains and human proteome. Based on phylogenomics and disease severity, 3 different strains of MPXV: Zaire-96-I-16, MPXV-UK_P2, and MPXV_USA_2022_MA001 were selected for comparative functional analysis of the proteins involved in the interactions. On an average, we predicted around 92,880 non-redundant PPIs between human and MPXV proteomes, involving 8014 host and 116 pathogen proteins from the 3 strains. The gene ontology (GO) enrichment analysis revealed 10,624 common GO terms in which the host proteins of 3 strains were highly enriched. These include significant GO terms such as platelet activation (GO:0030168), GABA-A receptor complex (GO:1902711), and metalloendopeptidase activity (GO:0004222). The host proteins were also significantly enriched in calcium signaling pathway (hsa04020), MAPK signaling pathway (hsa04010), and inflammatory mediator regulation of TRP channels (hsa04750). These significantly enriched GO terms and KEGG pathways are known to be implicated in immunomodulatory and therapeutic role in humans during viral infection. The protein hubs analysis revealed that most of the MPXV proteins form hubs with the protein kinases and AGC kinase C-terminal domains. Furthermore, subcellular localization revealed that most of the human proteins were localized in cytoplasm (29.22%) and nucleus (26.79%). A few drugs including Fostamatinib, Tamoxifen and others were identified as potential drug candidates against the monkeypox virus disease. This study reports the genome-scale PPIs elucidation in human-monkeypox virus pathosystem, thus facilitating the research community with functional insights into the monkeypox disease infection mechanism and augment the drug development.
Collapse
Affiliation(s)
- Raghav Kataria
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Logan, United States
| | - Simardeep Kaur
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Logan, United States
- Bioinformatics Facility, Center for Integrated BioSystems, Logan, United States
- Division of Biochemistry, Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Logan, United States
- Bioinformatics Facility, Center for Integrated BioSystems, Logan, United States
- Department of Computer Science, College of Science, Utah State University, Logan, UT, United States
| |
Collapse
|
8
|
Bandyopadhyay SS, Halder AK, Saha S, Chatterjee P, Nasipuri M, Basu S. Assessment of GO-Based Protein Interaction Affinities in the Large-Scale Human-Coronavirus Family Interactome. Vaccines (Basel) 2023; 11:549. [PMID: 36992133 PMCID: PMC10059867 DOI: 10.3390/vaccines11030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that replicates itself via interacting with the host proteins. As a result, identifying virus and host protein-protein interactions could help researchers better understand the virus disease transmission behavior and identify possible COVID-19 drugs. The International Committee on Virus Taxonomy has determined that nCoV is genetically 89% compared to the SARS-CoV epidemic in 2003. This paper focuses on assessing the host-pathogen protein interaction affinity of the coronavirus family, having 44 different variants. In light of these considerations, a GO-semantic scoring function is provided based on Gene Ontology (GO) graphs for determining the binding affinity of any two proteins at the organism level. Based on the availability of the GO annotation of the proteins, 11 viral variants, viz., SARS-CoV-2, SARS, MERS, Bat coronavirus HKU3, Bat coronavirus Rp3/2004, Bat coronavirus HKU5, Murine coronavirus, Bovine coronavirus, Rat coronavirus, Bat coronavirus HKU4, Bat coronavirus 133/2005, are considered from 44 viral variants. The fuzzy scoring function of the entire host-pathogen network has been processed with ~180 million potential interactions generated from 19,281 host proteins and around 242 viral proteins. ~4.5 million potential level one host-pathogen interactions are computed based on the estimated interaction affinity threshold. The resulting host-pathogen interactome is also validated with state-of-the-art experimental networks. The study has also been extended further toward the drug-repurposing study by analyzing the FDA-listed COVID drugs.
Collapse
Affiliation(s)
- Soumyendu Sekhar Bandyopadhyay
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
- Department of Computer Science and Engineering, School of Engineering and Technology, Adamas University, Kolkata 700126, India
| | - Anup Kumar Halder
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Sovan Saha
- Department of Computer Science and Engineering (Artificial Intelligence and Machine Learning), Techno Main Salt Lake, Sector V, Kolkata 700091, India
| | - Piyali Chatterjee
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata 700152, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
9
|
Minadakis G, Tomazou M, Dietis N, Spyrou GM. Vir2Drug: a drug repurposing framework based on protein similarities between pathogens. Brief Bioinform 2022; 24:6895455. [PMID: 36513376 PMCID: PMC9851336 DOI: 10.1093/bib/bbac536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
We draw from the assumption that similarities between pathogens at both pathogen protein and host protein level, may provide the appropriate framework to identify and rank candidate drugs to be used against a specific pathogen. Vir2Drug is a drug repurposing tool that uses network-based approaches to identify and rank candidate drugs for a specific pathogen, combining information obtained from: (a) ranked pathogen-to-pathogen networks based on protein similarities between pathogens, (b) taxonomy distance between pathogens and (c) drugs targeting specific pathogen's and host proteins. The underlying pathogen networks are used to screen drugs by means of specific methodologies that account for either the host or pathogen's protein targets. Vir2Drug is a useful and yet informative tool for drug repurposing against known or unknown pathogens especially in periods where the emergence for repurposed drugs plays significant role in handling viral outbreaks, until reaching a vaccine. The web tool is available at: https://bioinformatics.cing.ac.cy/vir2drug, https://vir2drug.cing-big.hpcf.cyi.ac.cy.
Collapse
Affiliation(s)
- George Minadakis
- Corresponding author: George Minadakis, Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, PO Box 23462, 1683 Nicosia, Cyprus. Tel.: +357-22-392852; Fax: +357-22-358238; E-mail:
| | - Marios Tomazou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus
- PO Box 23462, 1683 Nicosia, Cyprus,The Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371 Ayios Dometios, PO Box 23462, 1683 Nicosia, Cyprus
| | - Nikolas Dietis
- Medical School, University of Cyprus, Nicosia 1678, Cyprus
| | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus
- PO Box 23462, 1683 Nicosia, Cyprus,The Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371 Ayios Dometios, PO Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
10
|
COVID-GWAB: A Web-Based Prediction of COVID-19 Host Genes via Network Boosting of Genome-Wide Association Data. Biomolecules 2022; 12:biom12101446. [PMID: 36291657 PMCID: PMC9599684 DOI: 10.3390/biom12101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022] Open
Abstract
Host genetics affect both the susceptibility and response to viral infection. Searching for host genes that contribute to COVID-19, the Host Genetics Initiative (HGI) was formed to investigate the genetic factors involved in COVID-19 via genome-wide association studies (GWAS). The GWAS suffer from limited statistical power and in general, only a few genes can pass the conventional significance thresholds. This statistical limitation may be overcome by boosting weak association signals through integrating independent functional information such as molecular interactions. Additionally, the boosted results can be evaluated by various independent data for further connections to COVID-19. We present COVID-GWAB, a web-based tool to boost original GWAS signals from COVID-19 patients by taking the signals of the interactome neighbors. COVID-GWAB takes summary statistics from the COVID-19 HGI or user input data and reprioritizes candidate host genes for COVID-19 using HumanNet, a co-functional human gene network. The current version of COVID-GWAB provides the pre-processed data of releases 5, 6, and 7 of the HGI. Additionally, COVID-GWAB provides web interfaces for a summary of augmented GWAS signals, prediction evaluations by appearance frequency in COVID-19 literature, single-cell transcriptome data, and associated pathways. The web server also enables browsing the candidate gene networks.
Collapse
|
11
|
Saha S, Chatterjee P, Halder AK, Nasipuri M, Basu S, Plewczynski D. ML-DTD: Machine Learning-Based Drug Target Discovery for the Potential Treatment of COVID-19. Vaccines (Basel) 2022; 10:1643. [PMID: 36298508 PMCID: PMC9607653 DOI: 10.3390/vaccines10101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
Recent research has highlighted that a large section of druggable protein targets in the Human interactome remains unexplored for various diseases. It might lead to the drug repurposing study and help in the in-silico prediction of new drug-human protein target interactions. The same applies to the current pandemic of COVID-19 disease in global health issues. It is highly desirable to identify potential human drug targets for COVID-19 using a machine learning approach since it saves time and labor compared to traditional experimental methods. Structure-based drug discovery where druggability is determined by molecular docking is only appropriate for the protein whose three-dimensional structures are available. With machine learning algorithms, differentiating relevant features for predicting targets and non-targets can be used for the proteins whose 3-D structures are unavailable. In this research, a Machine Learning-based Drug Target Discovery (ML-DTD) approach is proposed where a machine learning model is initially built up and tested on the curated dataset consisting of COVID-19 human drug targets and non-targets formed by using the Therapeutic Target Database (TTD) and human interactome using several classifiers like XGBBoost Classifier, AdaBoost Classifier, Logistic Regression, Support Vector Classification, Decision Tree Classifier, Random Forest Classifier, Naive Bayes Classifier, and K-Nearest Neighbour Classifier (KNN). In this method, protein features include Gene Set Enrichment Analysis (GSEA) ranking, properties derived from the protein sequence, and encoded protein network centrality-based measures. Among all these, XGBBoost, KNN, and Random Forest models are satisfactory and consistent. This model is further used to predict novel COVID-19 human drug targets, which are further validated by target pathway analysis, the emergence of allied repurposed drugs, and their subsequent docking study.
Collapse
Affiliation(s)
- Sovan Saha
- Department of Computer Science & Engineering, Institute of Engineering & Management, Salt Lake Electronics Complex, Kolkata 700091, India
| | - Piyali Chatterjee
- Department of Computer Science & Engineering, Netaji Subhash Engineering College, Techno City, Panchpota, Garia, Kolkata 700152, India
| | - Anup Kumar Halder
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland
| | - Mita Nasipuri
- Department of Computer Science & Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Subhadip Basu
- Department of Computer Science & Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland
| |
Collapse
|
12
|
Basu S, Plewczynski D. Computational methods and strategies for combating COVID-19. Methods 2022; 206:99-100. [PMID: 36028161 PMCID: PMC9398558 DOI: 10.1016/j.ymeth.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Subhadip Basu
- Computer Science & Engineering Department, Jadavpur University, Kolkata 700032, India
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
13
|
Dierickx D, Neefs J. Evaluating fostamatinib disodium as a treatment option for immune thrombocytopenia in adult patients. Expert Opin Pharmacother 2022; 23:885-892. [PMID: 35621338 DOI: 10.1080/14656566.2022.2082283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by increased platelet destruction and decreased platelet production, leading to thrombocytopenia with or without bleeding manifestations. The majority of patients experiencing treatment need will eventually need secondary treatment following first line therapy with steroids. In 2018, the oral spleen tyrosine kinase inhibitor fostamatinib received US Food and Drug Administration approval for ITP patients with an insufficient response to a previous treatment. AREAS COVERED This review outlines pharmacological characteristics of fostamatinib and provides an overview of its efficacy and safety results in phase II and III trials, followed by the expert opinion of the authors. EXPERT OPINION Increasing knowledge on the role of different players and mechanisms in the pathophysiology of autoimmune disorders in general and of ITP in particular, has led to the development of several new treatment options, as illustrated by the introduction of fostamatinib in the treatment of ITP. However, lacking direct comparison with other recent treatment options (in particular thrombopoietin receptor agonists), its use should be evaluated critically taking into account the unique toxicity and potential drug-drug interaction profile.
Collapse
Affiliation(s)
- Daan Dierickx
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium.,Department of Oncology, Laboratory for Experimental Hematology, KU Leuven, Leuven, Belgium.,Both authors equally contributed to the article
| | - Jens Neefs
- Department of Oncology, Laboratory for Experimental Hematology, KU Leuven, Leuven, Belgium.,Department of Pharmacy, University Hospitals Leuven, Leuven, Belgium.,Both authors equally contributed to the article
| |
Collapse
|
14
|
Sahoo BM, Bhattamisra SK, Das S, Tiwari A, Tiwari V, Kumar M, Singh S. Computational Approach to Combat COVID-19 Infection: Emerging Tool for Accelerating Drug Research. Curr Drug Discov Technol 2022; 19:e170122200314. [PMID: 35040405 DOI: 10.2174/1570163819666220117161308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Drug discovery and development process is an expensive, complex, time-consuming and risky. There are different techniques involved in the drug development process which include random screening, computational approach, molecular manipulation and serendipitous research. Among these methods, the computational approach is considered as an efficient strategy to accelerate and economize the drug discovery process. OBJECTIVE This approach is mainly applied in various phases of drug discovery process including target identification, target validation, lead identification and lead optimization. Due to increase in the availability of information regarding various biological targets of different disease states, computational approaches such as molecular docking, de novo design, molecular similarity calculation, virtual screening, pharmacophore-based modeling and pharmacophore mapping have been applied extensively. METHODS Various drug molecules can be designed by applying computational tools to explore the drug candidates for treatment of Coronavirus infection. The world health organization has announced the novel corona virus disease as COVID-19 and declared it as pandemic globally on 11 February 2020. So, it is thought of interest to scientific community to apply computational methods to design and optimize the pharmacological properties of various clinically available and FDA approved drugs such as remdesivir, ribavirin, favipiravir, oseltamivir, ritonavir, arbidol, chloroquine, hydroxychloroquine, carfilzomib, baraticinib, prulifloxacin, etc for effective treatment of COVID-19 infection. RESULTS Further, various survey reports suggest that the extensive studies are carried out by various research communities to find out the safety and efficacy profile of these drug candidates. CONCLUSION This review is focused on the study of various aspects of these drugs related to their target sites on virus, binding interactions, physicochemical properties etc.
Collapse
Affiliation(s)
- Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur-760010, Odisha, India
| | - Subrat Kumar Bhattamisra
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Jagannathpur, Kolkata-700126, West Bengal, India
| | - Sarita Das
- Microbiology Laboratory, Department of Botany, Berhampur University, Bhanja Bihar, Berhampur- 760007, Odisha, India
| | - Abhishek Tiwari
- Devasthali Vidyapeeth College of Pharmacy, Lalpur, Rudrapur-263148, Uttarakhand, India
| | - Varsha Tiwari
- Devasthali Vidyapeeth College of Pharmacy, Lalpur, Rudrapur-263148, Uttarakhand, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana, India
| | - Sunil Singh
- Shri Sai College of Pharmacy, Handia, Prayagraj, Uttar Pradesh, 221503, India
| |
Collapse
|
15
|
Hasankhani A, Bahrami A, Sheybani N, Aria B, Hemati B, Fatehi F, Ghaem Maghami Farahani H, Javanmard G, Rezaee M, Kastelic JP, Barkema HW. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic. Front Immunol 2021; 12:789317. [PMID: 34975885 PMCID: PMC8714803 DOI: 10.3389/fimmu.2021.789317] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background The recent emergence of COVID-19, rapid worldwide spread, and incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection have limited development of therapeutic strategies. Our objective was to systematically investigate molecular regulatory mechanisms of COVID-19, using a combination of high throughput RNA-sequencing-based transcriptomics and systems biology approaches. Methods RNA-Seq data from peripheral blood mononuclear cells (PBMCs) of healthy persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules in healthy samples as a reference set. For differential co-expression network analysis, module preservation and module-trait relationships approaches were used to identify key modules. Then, protein-protein interaction (PPI) networks, based on co-expressed hub genes, were constructed to identify hub genes/TFs with the highest information transfer (hub-high traffic genes) within candidate modules. Results Based on differential co-expression network analysis, connectivity patterns and network density, 72% (15 of 21) of modules identified in healthy samples were altered by SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host biological gene networks. In functional enrichment analysis, among 15 non-preserved modules and two significant highly-correlated modules (identified by MTRs), 9 modules were directly related to the host immune response and COVID-19 immunopathogenesis. Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways and key genes/proteins associated with COVID-19's main hallmarks, e.g., cytokine storm, respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation disorders, thrombosis, and pregnancy complications, as well as comorbidities associated with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs), liver disorders and acute kidney injury (AKI). Topological analysis with betweenness centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and PPI networks. We also identified several transcriptional regulatory factors, including NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A had the highest rates of information transfer in 9 candidate modules and central roles in COVID-19 immunopathogenesis. Conclusion This study provides comprehensive information on molecular mechanisms of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as promising therapeutic targets for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Behzad Aria
- Department of Physical Education and Sports Science, School of Psychology and Educational Sciences, Yazd University, Yazd, Iran
| | - Behzad Hemati
- Biotechnology Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahsa Rezaee
- Department of Medical Mycology, School of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|