1
|
Magdy RM, Dolins KR, Nagdy H, Ali TM, Elabd HS, Hassan MA. Assessment of quality of life in families affected by maple syrup urine disease: a cross sectional study. J Pediatr Endocrinol Metab 2025; 38:65-72. [PMID: 39608786 DOI: 10.1515/jpem-2024-0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVES Maple syrup urine disease (MSUD) is considered one of the intoxication-type inborn errors of metabolism (IT-IEM). Patients with MSUD are afflicted with a chronic illness, and the disease and its management have both physical and psychological consequences for the patients and their families. The aim of this study was to assess the quality of life (QoL) and its main determining factors for patients with MSUD and their families under follow-up in Sohag University Hospital. METHODS Parents of 36 patients with MSUD participated in a questionnaire translated into Arabic to assess their QoL. Subsequently, a file review was conducted to identify any key factors that could potentially influence the parents' QoL. RESULTS The results of the study indicated that 27 (75 %) of the MSUD patients exhibited poor QoL, while only 9 (25 %) patients reported good QoL across all studied aspects. Significant differences were observed between the two groups in terms of the disease onset, whether acute or asymptomatic (diagnosed before acute metabolic decompensation) (p=0.001) and the type of screening employed (p=0.007). CONCLUSIONS There is a paucity of data on the QoL of pediatric patients with IT-IEM, including MSUD. The methodological approaches and assessment instruments utilized in existing studies are inconsistent. Identifying the factors that affect QoL would be beneficial for improving patient care, evaluating outcomes and treatments, and planning effective social and psychological interventions to enhance the patients' QoL.
Collapse
Affiliation(s)
- Rofaida M Magdy
- Metabolic and Genetic Unit, Department of Pediatrics, Faculty of Medicine, 68890 Sohag University , Sohag, Egypt
| | - Karen Reznik Dolins
- Teachers College, Columbia University, Research Lead, MSUD Family Support Group, New York, USA
| | - Hanan Nagdy
- Department of Pediatrics, Sohag General Hospital, Sohag, Egypt
| | - Tasneem Mohammed Ali
- Department of Public Health and Community Medicine, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Heba S Elabd
- Department of Medical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
2
|
Turki A, Stockler‐Ipsiroglu S, Sirrs S, Branov J, Bosdet T, Elango R. Protein requirements in adults with phenylketonuria and bioavailability of glycomacropeptide compared to an l-amino acid-based product. J Inherit Metab Dis 2025; 48:e12806. [PMID: 39410795 PMCID: PMC11670041 DOI: 10.1002/jimd.12806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Phenylketonuria (PKU) is caused by phenylalanine hydroxylase deficiency. Treatment is primarily a low-Phe diet combined with l-amino acid-based products (l-AA). Protein requirements in adults with PKU have not been directly determined. A formula with glycomacropeptide (GMP) and low phenylalanine is available, yet untested for optimal protein synthesis. OBJECTIVES To determine the protein requirements in adults with PKU and the bioavailability of GMP-AA in the same patients using the indicator amino acid oxidation (IAAO) technique. METHODS Each participant was allocated to 7 separate l-AA intakes (range: 0.1-1.8 g/kg/day) in Experiment 1. In Experiment 2, the same patients participated in 4 GMP-AA intakes (range: 0.1-0.9 g/kg/day). The IAAO method with l-[1-13C]-lysine as the indicator amino acid and its oxidation to 13CO2 was used as the primary indicator of protein synthesis. Protein requirements were identified with a breakpoint, and bioavailability was determined by comparing 13CO2 slope from GMP-AA versus l-AA. RESULTS Six adults with PKU (4 M: 2F) completed a total of 54 study days over the 2 experiments. The estimated average requirement (EAR) for protein was determined to be 1.11 g/kg/day (R2 = 0.20). The bioavailability of protein from GMP-AA was determined to be 99.98%, which was high and near to 100% comparable to l-AA; although, the results apply only to the tested GMP-AA blend. CONCLUSIONS To our knowledge, this is the first study to directly define a quantitative protein requirement and indicates that current PKU protein recommendations for adults with PKU may be underestimated. The bioavailability of protein in the GMP-AA blend was high and optimal for protein synthesis in adults with PKU.
Collapse
Affiliation(s)
- Abrar Turki
- Clinical Nutrition Department, College of Applied Medical SciencesUniversity of Hafr Al BatinHafr Al BatinEastern ProvinceSaudi Arabia
- BC Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
| | - Sylvia Stockler‐Ipsiroglu
- BC Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
- Department of PediatricsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Division of Biochemical GeneticsBC Children's HospitalVancouverBritish ColumbiaCanada
| | - Sandra Sirrs
- Department of Medicine, Division of EndocrinologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Vancouver Costal HealthAdult Metabolic Diseases ClinicVancouverBritish ColumbiaCanada
| | - Jennifer Branov
- Vancouver Costal HealthAdult Metabolic Diseases ClinicVancouverBritish ColumbiaCanada
| | - Taryn Bosdet
- Vancouver Costal HealthAdult Metabolic Diseases ClinicVancouverBritish ColumbiaCanada
| | - Rajavel Elango
- BC Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
- Department of PediatricsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- School of Population and Public HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
3
|
Ajami N, Soleimani A, Jafarzadeh‐Esfehani R, Hasanpour M, Rashid Shomali R, Abbaszadegan MR. Mutational landscape of phenylketonuria in Iran. J Cell Mol Med 2023; 27:2457-2466. [PMID: 37525467 PMCID: PMC10468661 DOI: 10.1111/jcmm.17865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 06/11/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
To date more than 1000 different variants in the PAH gene have been identified in patients with phenylketonuria (PKU). In Iran, several studies have been performed to investigate the genetics bases of the PKU in different parts of the country. In this study, we have analysed and present an update of the mutational landscape of the PAH gene as well as the population genetics and frequencies of detected variants for each cohort. Published articles on PKU mutations in Iran were identified through a comprehensive PubMed, Google Scholar, Web of Science (ISI), SCOPUS, Elsevier, Wiley Online Library and SID literature search using the terms: "phenylketonuria", "hyperphenylalaninemia", and "PKU" in combination with "Iran", "Iranian population", "mutation analysis", and "Molecular genetics". Among the literature-related to genetics of PKU, 18 studies were on the PKU mutations. According to these studies, in different populations of Iran 1497 patients were included for mutation detection that resulted in detection of 129 different mutations. Results of genetic analysis of the different cohorts of Iranian PKU patients show that the most prevalent mutation in Iran is the pathogenic splice variant c.1066-11G > A, occurring in 19.54% of alleles in the cohort. Four other common mutations were p.Arg261Gln, p.Pro281Leu, c.168 + 5G > C and p.Arg243Ter (8.18%, 6.45%, 5.88% and 3.7%, respectively). One notable feature of the studied populations is its high rate of consanguineous marriages. Considering this feature, determining the prevalent PKU mutations could be advantageous for designing screening and diagnostic panels in Iran.
Collapse
Affiliation(s)
- Naser Ajami
- Department of Medical Genetics and Molecular Medicine, School of MedicineMashhad University of Medical SciencesMashhadIran
- Medical Genetics Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Anvar Soleimani
- Department of Medical Microbiology, College of Health SciencesCihan University‐ SulaimaniyaSulaimaniyaIraq
| | - Reza Jafarzadeh‐Esfehani
- Blood Borne Infections Research Center, Academic Center for EducationCulture and Research (ACECR)‐ Khorasan RazaviMashhadIran
| | - Mojtaba Hasanpour
- Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran
| | - Romina Rashid Shomali
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, Alzahra HospitalGuilan University of Medical SciencesRashtIran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, School of MedicineMashhad University of Medical SciencesMashhadIran
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
4
|
Marchetti M, Faggiano S, Mozzarelli A. Enzyme Replacement Therapy for Genetic Disorders Associated with Enzyme Deficiency. Curr Med Chem 2021; 29:489-525. [PMID: 34042028 DOI: 10.2174/0929867328666210526144654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Mutations in human genes might lead to loss of functional proteins, causing diseases. Among these genetic disorders, a large class is associated with the deficiency in metabolic enzymes, resulting in both an increase in the concentration of substrates and a loss in the metabolites produced by the catalyzed reactions. The identification of therapeutic actions based on small molecules represents a challenge to medicinal chemists because the target is missing. Alternative approaches are biology-based, ranging from gene and stem cell therapy, CRISPR/Cas9 technology, distinct types of RNAs, and enzyme replacement therapy (ERT). This review will focus on the latter approach that since the 1990s has been successfully applied to cure many rare diseases, most of them being lysosomal storage diseases or metabolic diseases. So far, a dozen enzymes have been approved by FDA/EMA for lysosome storage disorders and only a few for metabolic diseases. Enzymes for replacement therapy are mainly produced in mammalian cells and some in plant cells and yeasts and are further processed to obtain active, highly bioavailable, less degradable products. Issues still under investigation for the increase in ERT efficacy are the optimization of enzymes interaction with cell membrane and internalization, the reduction in immunogenicity, and the overcoming of blood-brain barrier limitations when neuronal cells need to be targeted. Overall, ERT has demonstrated its efficacy and safety in the treatment of many genetic rare diseases, both saving newborn lives and improving patients' life quality, and represents a very successful example of targeted biologics.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Biopharmanet-TEC Interdepartmental Center, University of Parma, Parco Area delle Scienze, Bldg 33., 43124, Parma, Italy
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
5
|
Kaiser RA, Carlson DF, Allen KL, Webster DA, VanLith CJ, Nicolas CT, Hillin LG, Yu Y, Kaiser CW, Wahoff WR, Hickey RD, Watson AL, Winn SR, Thöny B, Kern DR, Harding CO, Lillegard JB. Development of a porcine model of phenylketonuria with a humanized R408W mutation for gene editing. PLoS One 2021; 16:e0245831. [PMID: 33493163 PMCID: PMC7833140 DOI: 10.1371/journal.pone.0245831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Phenylketonuria (PKU) is a metabolic disorder whereby phenylalanine metabolism is deficient due to allelic variations in the gene for phenylalanine hydroxylase (PAH). There is no cure for PKU other than orthotopic liver transplantation, and the standard of care for patients is limited to dietary restrictions and key amino acid supplementation. Therefore, Pah was edited in pig fibroblasts for the generation of PKU clone piglets that harbor a common and severe human mutation, R408W. Additionally, the proximal region to the mutation was further humanized by introducing 5 single nucleotide polymorphisms (SNPs) to allow for development of gene editing machinery that could be translated directly from the pig model to human PKU patients that harbor at least one classic R408W allele. Resulting piglets were hypopigmented (a single Ossabaw piglet) and had low birthweight (all piglets). The piglets had similar levels of PAH expression, but no detectable enzymatic activity, consistent with the human phenotype. The piglets were fragile and required extensive neonatal care to prevent failure to thrive and early demise. Phenylalanine levels rose sharply when dietary Phe was unrestricted but could be rapidly reduced with a low Phe diet. Fibroblasts isolated from R408W piglets show susceptibility to correction using CRISPR or TALEN, with subsequent homology-directed recombination to correct Pah. This pig model of PKU provides a powerful new tool for development of all classes of therapeutic candidates to treat or cure PKU, as well as unique value for proof-of-concept studies for in vivo human gene editing platforms in the context of this humanized PKU allele.
Collapse
Affiliation(s)
- Robert A. Kaiser
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Midwest Fetal Care Center, Children’s Hospitals and Clinics of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Kari L. Allen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Caitlin J. VanLith
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Clara T. Nicolas
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Lori G. Hillin
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yue Yu
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Catherine W. Kaiser
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - William R. Wahoff
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Raymond D. Hickey
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Shelley R. Winn
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Beat Thöny
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
| | - Douglas R. Kern
- Recombinetics, Inc., St. Paul, Minnesota, United States of America
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Joseph B. Lillegard
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Midwest Fetal Care Center, Children’s Hospitals and Clinics of Minnesota, Minneapolis, Minnesota, United States of America
- Pediatric Surgical Associates, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
6
|
Bösch F, Landolt MA, Baumgartner MR, Zeltner N, Kölker S, Gleich F, Burlina A, Cazzorla C, Packman W, V D Schwartz I, Vieira Neto E, Ribeiro MG, Martinelli D, Olivieri G, Huemer M. Health-related quality of life in paediatric patients with intoxication-type inborn errors of metabolism: Analysis of an international data set. J Inherit Metab Dis 2021; 44:215-225. [PMID: 32785952 DOI: 10.1002/jimd.12301] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 01/13/2023]
Abstract
Acute intoxication-type inborn errors of metabolism (IT-IEM) such as urea cycle disorders and non-acute IT-IEM such as phenylketonuria have a major impact on paediatric patients' life. Patients have to adhere to a strict diet but may face neurocognitive impairment and - in acute diseases - metabolic decompensations nevertheless. Research on the subjective burden of IT-IEM remains sparse. Studies with appropriate sample sizes are needed to make valid statements about health-related quality of life (HrQoL) in children and adolescents with IT-IEM. Six international metabolic centres contributed self-reports and proxy reports of HrQoL (assessed with the Paediatric Quality of Life Inventory) to the final data set (n = 251 patients; age range 2.3-18.8 years). To compare HrQoL of the patient sample with norm data and between acute and non-acute IT-IEM, t tests were conducted. To examine the influence of child age, sex, diagnosis and current dietary treatment on HrQoL, multiple linear regression analyses were conducted. Self-reports and proxy reporst showed significantly lower HrQoL total scores for children with IT-IEM compared to healthy children. Current dietary treatment significantly predicted lower proxy reported total HrQoL. Children with non-acute IT-IEM reported significantly lower psychosocial health and emotional functioning than children with acute IT-IEM. The patient sample showed significantly impaired HrQoL and a diet regimen remains a risk factor for lower HrQoL. Differences in HrQoL between acute and non-acute IT-IEM subgroups indicate that factors beyond symptom severity determine the perception of disease burden. Identifying these factors is of crucial importance to develop and implement appropriate interventions for those in need.
Collapse
Affiliation(s)
- Florin Bösch
- Division of Metabolism, Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Department of Psychosomatics and Psychiatry, Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Division of Child and Adolescent Health Psychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Markus A Landolt
- Department of Psychosomatics and Psychiatry, Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Division of Child and Adolescent Health Psychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism, Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Nina Zeltner
- Division of Metabolism, Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Department of Psychosomatics and Psychiatry, Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Division of Child and Adolescent Health Psychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gleich
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Alberto Burlina
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padova, Italy
| | - Chiara Cazzorla
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padova, Italy
| | - Wendy Packman
- Pacific Graduate School of Psychology, Palo Alto University, Palo Alto, California, USA
| | - Ida V D Schwartz
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Vieira Neto
- Institute of Childcare and Pediatrics Martagão Gesteira, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcia G Ribeiro
- Institute of Childcare and Pediatrics Martagão Gesteira, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giorgia Olivieri
- Division of Metabolism, Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Martina Huemer
- Division of Metabolism, Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Department of Paediatrics, Bregenz, Austria
| |
Collapse
|
7
|
Thompson WS, Mondal G, Vanlith CJ, Kaiser RA, Lillegard JB. The future of gene-targeted therapy for hereditary tyrosinemia type 1 as a lead indication among the inborn errors of metabolism. Expert Opin Orphan Drugs 2020; 8:245-256. [PMID: 33224636 PMCID: PMC7676758 DOI: 10.1080/21678707.2020.1791082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction Inborn errors of metabolism (IEMs) often result from single-gene mutations and collectively cause liver dysfunction in neonates leading to chronic liver and systemic disease. Current treatments for many IEMs are limited to maintenance therapies that may still require orthotropic liver transplantation. Gene therapies offer a potentially superior approach by correcting or replacing defective genes with functional isoforms; however, they face unique challenges from complexities presented by individual diseases and their diverse etiology, presentation, and pathophysiology. Furthermore, immune responses, off-target gene disruption, and tumorigenesis are major concerns that need to be addressed before clinical application of gene therapy. Areas covered The current treatments for IEMs are reviewed as well as the advances in, and barriers to, gene therapy for IEMs. Attention is then given to ex vivo and in vivo gene therapy approaches for hereditary tyrosinemia type 1 (HT1). Of all IEMs, HT1 is particularly amenable to gene therapy because of a selective growth advantage conferred to corrected cells, thereby lowering the initial transduction threshold for phenotypic relevance. Expert opinion It is proposed that not only is HT1 a safe indication for gene therapy, its unique characteristics position it to be an ideal IEM to develop for clinical investigation.
Collapse
Affiliation(s)
| | - Gourish Mondal
- Department of Surgery, Research Scientist, Mayo Clinic, Rochester, MN, USA
| | | | - Robert A Kaiser
- Department of Surgery, Research Scientist, Mayo Clinic, Rochester, MN, USA.,Midwest Fetal Care Center, Childrens Hospital of Minnesota, MN, USA
| | - Joseph B Lillegard
- Midwest Fetal Care Center, Childrens Hospital of Minnesota, MN, USA.,Assistant Professor of Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Study of the Potential of the Capsule Shell Based on Natural Polysaccharides in Targeted Delivery of the L-Phenylalanine Ammonia-Lyase Enzyme Preparation. Pharmaceuticals (Basel) 2020; 13:ph13040063. [PMID: 32283743 PMCID: PMC7243110 DOI: 10.3390/ph13040063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment of classical phenylketonuria is currently represented by many new methods of disease management. A promising method is the use of the enzyme L-phenylalanine ammonia-lyase (PAL) in various forms. The widespread use of enzyme preparations in therapy is limited by a lack of understanding of the mechanisms and systems of the targeted transport of PAL into certain organs and tissues as a result of the incorporation of a drug into the carrier. To ensure the stability of enzymes during the delivery process, encapsulation is preferable, which, as a rule, ensures the preservation of the qualitative characteristics of the enzymes orally applied to the environmental effects of the gastrointestinal tract (acidity, temperature, oxidation, etc.). Capsule preparations showed sufficient stability in the model gastric fluids and sustained release of the drug in the simulated intestinal fluid. Currently, there is a wide range of polymers used for encapsulation. The use of natural sources in the production technology of capsule systems improves bioavailability, controls the release, and prolongs the half-life of active substances. The advantage of this method is that the used enzyme is completely protected by the cell membranes of the capsules, which preserve its stability in the aggressive environment of the gastrointestinal tract. Capsules were obtained on the basis of compositions of hydrocolloids of plant origin. The potential of the developed capsules for targeted delivery of the enzyme preparation was studied. The degradation of the encapsulated form of the PAL enzyme preparation was studied in vitro in model bio-relevant media simulating the gastric and intestinal environment. The dynamics of the breakdown of the capsule shell allow us to expect that the release of L-phenylalanine ammonia-lyase from capsules based on plant hydrocolloids will occur no earlier than reaching the upper intestines, where the interaction with the protein components of the consumed food products to neutralize phenylalanine should occur.
Collapse
|
9
|
Mora JR, White JT, DeWall SL. Immunogenicity Risk Assessment for PEGylated Therapeutics. AAPS JOURNAL 2020; 22:35. [PMID: 31993858 DOI: 10.1208/s12248-020-0420-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
Abstract
The objective of this manuscript is to provide the reader with two examples on how to present an immunogenicity risk assessment for a PEGylated therapeutic as part of Investigational New Drug (IND) application or during other stages of the drug development process. In order to provide context to the bioanalytical strategies used to support the PEGylated therapeutics presented here, a brief summary of information available for marketed PEGylated biologics is provided. Two case studies are presented, a PEGylated enzyme and a PEGylated growth factor. For the former, the risk assessment covers how to deal with a narrow therapeutic window and suggestions to utilize a PD marker as surrogate for neutralizing antibody assessments in Phase I. The latter has recommendations on additional analytes that should be monitored to mitigate risk of immunogenicity to endogenous counterparts.
Collapse
Affiliation(s)
- Johanna R Mora
- BioAnalytical Sciences, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA.
| | - Joleen T White
- Drug Metabolism and Pharmacokinetics, EMD Serono, Billerica, Massachusetts, USA
| | - Stephen L DeWall
- Immunogenicity, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| |
Collapse
|
10
|
Eissa HA, Abdallah ZY, Khalil WKB, Ibrahim WA, Booles HF, Hassanane MM. Effect of natural PAL-enzyme on the quality of egg white and mushroom flour and study its impact on the expression of PKU related genes and phenylalanine reduction in mice fed on. J Genet Eng Biotechnol 2019; 15:443-451. [PMID: 30647685 PMCID: PMC6296627 DOI: 10.1016/j.jgeb.2017.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/16/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022]
Abstract
PKU patients react to therapy with a low phenylalanine diet, but adherence to this diet is troublesome, subsequently the expansion of alternative ways is demand. Phenylalanine ammonia lyase (PAL) is one of this ways, which converts phenylalanine to harmless metabolites; trans-cinnamic acid and ammonia. In the current study, the extraction of PAL enzyme was used to investigate the efficiency for production of functional PKU egg white and mushroom flour with good quality by evaluation of colour characteristics, determination of phenylalanine concentrations and genetic materials expression of PKU related genes and DNA damage. Results indicated that the PAL enzyme treated of egg white and mushroom flour was stable colour and the calculated reduction per cent in phenylalanine concentration from female mice fed on untreated and PAL–treated samples was 22.77% in egg white and 31.37% in mushroom flour. Also, the results revealed that female mice fed on diet contained treated egg white exhibited low expression levels of PKU exons (3, 6, 7, 11, and 12) and low DNA damage which were similar to those in control mice.
Collapse
Affiliation(s)
- Hesham A Eissa
- Food Technology Department, 33 El boohoos, National Research Centre, 12622 Cairo, Egypt
| | - Zeinab Y Abdallah
- Biochemical Genetics Department, 33 El boohoos, National Research Centre, 12622 Cairo, Egypt
| | - Wagdy K B Khalil
- Cell Biology Department, 33 El boohoos, National Research Centre, 12622 Cairo, Egypt
| | - Wafaa A Ibrahim
- Food Technology Department, 33 El boohoos, National Research Centre, 12622 Cairo, Egypt
| | - Hoda F Booles
- Cell Biology Department, 33 El boohoos, National Research Centre, 12622 Cairo, Egypt
| | - Mahrousa M Hassanane
- Cell Biology Department, 33 El boohoos, National Research Centre, 12622 Cairo, Egypt
| |
Collapse
|
11
|
Lapuhs P, Fuhrmann G. Engineering Strategies for Oral Therapeutic Enzymes to Enhance Their Stability and Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:151-172. [PMID: 31482499 DOI: 10.1007/978-981-13-7709-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oral application of therapeutic enzymes is a promising and non-invasive administration that improves patient compliance. However, the gastrointestinal tract poses several challenges to the oral delivery of proteins, including harsh pH conditions and digestive proteases. A promising way to stabilise enzymes during their gastrointestinal route is by modification with polymers that can provide both steric shielding and selective interaction in different digestive compartments. We give an overview of modification technologies for oral enzymes ranging from functionalisation of native proteins, to site-specific mutation and protein-polymer engineering. We specifically focus on enzymes that are active directly in the gastrointestinal lumen and not systemically absorbed. In addition, we discuss examples of microparticle and nanoparticle encapsulated enzymes for improved oral delivery. The modification of orally administered enzymes offers a broad chemical variability and may be a promising tool for enhancing their gastrointestinal stability.
Collapse
Affiliation(s)
- Philipp Lapuhs
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Saarbrücken, Germany. .,Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
12
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Hofman DL, Champ CL, Lawton CL, Henderson M, Dye L. A systematic review of cognitive functioning in early treated adults with phenylketonuria. Orphanet J Rare Dis 2018; 13:150. [PMID: 30165883 PMCID: PMC6117942 DOI: 10.1186/s13023-018-0893-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/16/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Even though early dietary management of phenylketonuria (PKU) successfully prevents severe neurological impairments, deficits in cognitive functioning are still observed. These deficits are believed to be the result of elevated levels of phenylalanine throughout life. Research on cognitive functioning in adults with PKU (AwPKU) often focuses on domains shown to be compromised in children with PKU, such as attention and executive functions, whereas other cognitive domains have received less attention. This systematic review aimed to provide an overview of cognitive functioning across domains examined in early treated (ET) AwPKU. METHODS A systematic search was performed in Ovid MEDLINE(R), PsycINFO, Web of Science, Cochrane, Scopus, Embase, ScienceDirect, and PubMed for observational studies on cognitive performance in ET AwPKU. RESULTS Twenty-two peer-reviewed publications, reporting on outcomes from 16 studies were reviewed. Collectively, the results most consistently showed deficits in vigilance, working memory and motor skills. Deficits in other cognitive domains were less consistently observed or were understudied. Furthermore, despite reports of several associations between cognitive performance and phenylalanine (Phe) levels throughout life the relationship remains unclear. Inconsistencies in findings across studies could be explained by the highly heterogeneous nature of study samples, resulting in large inter- and intra-variability in Phe levels, as well as the use of a variety of tests across cognitive domains, which differ in sensitivity. The long-term cognitive outcomes of early and continuous management of PKU remain unclear. CONCLUSIONS To better understand the development of cognitive deficits in ET AwPKU, future research would benefit from 1) (inter)national multicentre-studies; 2) more homogeneous study samples; 3) the inclusion of other nutritional measures that might influence cognitive functioning (e.g. Phe fluctuations, Phe:Tyrosine ratio and micronutrients such as vitamin B12); and 4) careful selection of appropriate cognitive tests.
Collapse
Affiliation(s)
| | | | | | - Mick Henderson
- Biochemical Genetics, Specialist Laboratory Medicine, St James’s University Hospital, Block 46, Leeds, LS9 7TF UK
| | - Louise Dye
- School of Psychology, University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
14
|
Montoya Parra GA, Singh RH, Cetinyurek-Yavuz A, Kuhn M, MacDonald A. Status of nutrients important in brain function in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis 2018; 13:101. [PMID: 29941009 PMCID: PMC6020171 DOI: 10.1186/s13023-018-0839-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023] Open
Abstract
Background Despite early and ongoing dietary management with a phe-restricted diet, suboptimal neuropsychological function has been observed in PKU. The restrictive nature of the PKU diet may expose patients to sub-optimal nutritional intake and deficiencies which may impact normal brain function. A systematic review of the published literature was carried out, where possible with meta-analysis, to compare the status of nutrients (Nutrients: DHA, EPA phospholipids, selenium, vitamins B6, B12, E, C, A, D, folic acid, choline, uridine, calcium, magnesium, zinc, iron, iodine and cholesterol) known to be important for brain development and functioning between individuals with PKU and healthy controls. Results Of 1534 publications identified, 65 studies met the entry criteria. Significantly lower levels of DHA, EPA and cholesterol were found for PKU patients compared to healthy controls. No significant differences in zinc, vitamins B12, E and D, calcium, iron and magnesium were found between PKU patients and controls. Because of considerable heterogeneity, the meta-analyses findings for folate and selenium were not reported. Due to an insufficient number of publications (< 4) no meta-analysis was undertaken for vitamins A, C and B6, choline, uridine, iodine and phospholipids. Conclusions The current data show that PKU patients have lower availability of DHA, EPA and cholesterol. Compliance with the phe-restricted diet including the micronutrient fortified protein substitute (PS) is essential to ensure adequate micronutrient status. Given the complexity of the diet, patients’ micronutrient and fatty acid status should be continuously monitored, with a particular focus on patients who are non-compliant or poorly compliant with their PS. Given their key role in brain function, assessment of the status of nutrients where limited data was found (e.g. choline, iodine) should be undertaken. Standardised reporting of studies in PKU would strengthen the output of meta-analysis and so better inform best practice for this rare condition. Electronic supplementary material The online version of this article (10.1186/s13023-018-0839-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gina A Montoya Parra
- Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands.
| | - Rani H Singh
- Metabolic Genetics and Nutrition Program, Emory University, Atlanta, GA, USA
| | | | - Mirjam Kuhn
- Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Anita MacDonald
- Department of Metabolic Diseases, Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
15
|
Kör D, Yılmaz BŞ, Bulut FD, Ceylaner S, Mungan NÖ. Improved metabolic control in tetrahydrobiopterin (BH4), responsive phenylketonuria with sapropterin administered in two divided doses vs. a single daily dose. J Pediatr Endocrinol Metab 2017; 30:713-718. [PMID: 28593914 DOI: 10.1515/jpem-2016-0461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/06/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Phenylketonuria (PKU) often requires a lifelong phenylalanine (Phe)-restricted diet. Introduction of 6R-tetrahydrobiopterin (BH4) has made a huge difference in the diets of patients with PKU. BH4 is the co-factor of the enzyme phenylalanine hydroxylase (PAH) and improves PAH activity and, thus, Phe tolerance in the diet. A limited number of published studies suggest a pharmacodynamic profile of BH4 more suitable to be administered in divided daily doses. METHODS After a 72-h BH4 loading test, sapropterin was initiated in 50 responsive patients. This case-control study was conducted by administering the same daily dose of sapropterin in group 1 (n=24) as a customary single dose or in two divided doses in group 2 (n=26) over 1 year. RESULTS Mean daily consumption of Phe increased significantly after the first year of BH4 treatment in group 2 compared to group 1 (p<0.05). At the end of the first year of treatment with BH4, another dramatic difference observed between the two groups was the ability to transition to a Phe-free diet. Eight patients from group 2 and two from group 1 could quit dietary restriction. CONCLUSIONS When given in two divided daily doses, BH4 was more efficacious than a single daily dose in increasing daily Phe consumption, Phe tolerance and the ability to transition to a Phe-unrestricted diet at the end of the first year of treatment.
Collapse
|
16
|
Feldmann R, Wolfgart E, Weglage J, Rutsch F. Sapropterin treatment does not enhance the health-related quality of life of patients with phenylketonuria and their parents. Acta Paediatr 2017; 106:953-959. [PMID: 28235150 DOI: 10.1111/apa.13799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/23/2016] [Accepted: 02/21/2017] [Indexed: 01/17/2023]
Abstract
AIM Sapropterin causes reductions in blood phenylalanine concentrations in sensitive patients with phenylketonuria (PKU). We examined whether the subsequent relaxation of dietary restrictions influenced the quality of life (QoL) of patients and parents. METHODS The study cohort comprised 112 patients with PKU followed at the metabolic centre at Münster University Children's Hospital, Germany, from 2012 to 2015. A sapropterin response was defined as a ≥30% reduction in blood phenylalanine levels. The QoL of 38 children and adolescents from the study cohort, with a mean age of 12.4 (range 6.6-18.7) years, was assessed in an outpatient setting and 49 parents of children with PKU also commented on their child's QoL and their own. The participants' QoL was assessed before the start of therapy, and again after six months, using self-report questionnaires. RESULTS After six months of continuous therapy or diet, QoL was largely unchanged in the patients, according to their self-reports and the parental reports. QoL also remained unchanged in the parents. CONCLUSION Sapropterin did not seem to improve QoL in PKU patients and their parents. Patients with PKU had already reached high levels of QoL following classic diets, and these levels were not easily improved by sapropterin.
Collapse
Affiliation(s)
- Reinhold Feldmann
- Department of General Pediatrics, Münster University Children's Hospital, Münster, Germany
| | - Eva Wolfgart
- Department of General Pediatrics, Münster University Children's Hospital, Münster, Germany
| | - Josef Weglage
- Department of General Pediatrics, Münster University Children's Hospital, Münster, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children's Hospital, Münster, Germany
| |
Collapse
|
17
|
Parmeggiani F, Weise NJ, Ahmed ST, Turner NJ. Synthetic and Therapeutic Applications of Ammonia-lyases and Aminomutases. Chem Rev 2017; 118:73-118. [DOI: 10.1021/acs.chemrev.6b00824] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fabio Parmeggiani
- School of Chemistry, Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, M1 7DN, Manchester, United Kingdom
| | - Nicholas J. Weise
- School of Chemistry, Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, M1 7DN, Manchester, United Kingdom
| | - Syed T. Ahmed
- School of Chemistry, Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, M1 7DN, Manchester, United Kingdom
| | - Nicholas J. Turner
- School of Chemistry, Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, M1 7DN, Manchester, United Kingdom
| |
Collapse
|
18
|
Demirdas S, van Spronsen FJ, Hollak CEM, van der Lee JH, Bisschop PH, Vaz FM, Ter Horst NM, Rubio-Gozalbo ME, Bosch AM. Micronutrients, Essential Fatty Acids and Bone Health in Phenylketonuria. ANNALS OF NUTRITION AND METABOLISM 2017; 70:111-121. [PMID: 28334709 DOI: 10.1159/000465529] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/24/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION In phenylketonuria (PKU), a natural protein-restricted dietary treatment prevents severe cognitive impairment. Nutrient deficiencies may occur due to strict diet. This study is aimed at evaluating the dietary intake and blood concentrations of micronutrients and essential fatty acids (FA), bone mineral density (BMD) and fracture history in patients on long-term dietary treatment. METHODS Sixty early diagnosed Dutch patients (aged 1-39 years) were included in a multi-center cross-sectional study. Their dietary intake, blood concentrations of micronutrients, FA, fracture history and BMD were assessed. RESULTS Selenium dietary intake and serum concentrations were low in 14 and 46% of patients, respectively. The serum 25-OH vitamin D2 + D3 concentration was low in 14% of patients while 20% of patients had a low vitamin D intake. Zinc serum concentrations were below normal in 14% of patients, despite adequate intake. Folic acid serum concentrations and intake were elevated. Despite safe total protein and fat intake, arginine plasma concentrations and erythrocyte eicosapentaenoic acid were below reference values in 19 and 6% of patients, respectively. Low BMD (Z-score <-2) was slightly more prevalent in patients, but the lifetime fracture prevalence was comparable to the general population. CONCLUSIONS Dutch patients with PKU on long-term dietary treatment have a near normal nutrient status. Supplementation of micronutrients of which deficiency may be deleterious (e.g., vitamin D and selenium) should be considered. BMD warrants further investigation.
Collapse
Affiliation(s)
- Serwet Demirdas
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bell SM, Wendt DJ, Zhang Y, Taylor TW, Long S, Tsuruda L, Zhao B, Laipis P, Fitzpatrick PA. Formulation and PEGylation optimization of the therapeutic PEGylated phenylalanine ammonia lyase for the treatment of phenylketonuria. PLoS One 2017; 12:e0173269. [PMID: 28282402 PMCID: PMC5345807 DOI: 10.1371/journal.pone.0173269] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/11/2017] [Indexed: 01/03/2023] Open
Abstract
Phenylketonuria (PKU) is a genetic metabolic disease in which the decrease or loss of phenylalanine hydroxylase (PAH) activity results in elevated, neurotoxic levels of phenylalanine (Phe). Due to many obstacles, PAH enzyme replacement therapy is not currently an option. Treatment of PKU with an alternative enzyme, phenylalanine ammonia lyase (PAL), was first proposed in the 1970s. However, issues regarding immunogenicity, enzyme production and mode of delivery needed to be overcome. Through the evaluation of PAL enzymes from multiple species, three potential PAL enzymes from yeast and cyanobacteria were chosen for evaluation of their therapeutic potential. The addition of polyethylene glycol (PEG, MW = 20,000), at a particular ratio to modify the protein surface, attenuated immunogenicity in an animal model of PKU. All three PEGylated PAL candidates showed efficacy in a mouse model of PKU (BTBR Pahenu2) upon subcutaneous injection. However, only PEGylated Anabaena variabilis (Av) PAL-treated mice demonstrated sustained low Phe levels with weekly injection and was the only PAL evaluated that maintained full enzymatic activity upon PEGylation. A PEGylated recombinant double mutant version of AvPAL (Cys503Ser/Cys565Ser), rAvPAL-PEG, was selected for drug development based on its positive pharmacodynamic profile and favorable expression titers. PEGylation was shown to be critical for rAvPAL-PEG efficacy as under PEGylated rAvPAL had a lower pharmacodynamic effect. rAvPAL and rAvPAL-PEG had poor stability at 4°C. L-Phe and trans-cinnamate were identified as activity stabilizing excipients. rAvPAL-PEG is currently in Phase 3 clinical trials to assess efficacy in PKU patients.
Collapse
Affiliation(s)
- Sean M. Bell
- BioMarin Pharmaceutical, Novato, California, United States of America
- * E-mail:
| | - Dan J. Wendt
- BioMarin Pharmaceutical, Novato, California, United States of America
| | - Yanhong Zhang
- BioMarin Pharmaceutical, Novato, California, United States of America
| | - Timothy W. Taylor
- BioMarin Pharmaceutical, Novato, California, United States of America
| | - Shinong Long
- BioMarin Pharmaceutical, Novato, California, United States of America
| | - Laurie Tsuruda
- BioMarin Pharmaceutical, Novato, California, United States of America
| | - Bin Zhao
- BioMarin Pharmaceutical, Novato, California, United States of America
| | - Phillip Laipis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | | |
Collapse
|
20
|
Jurecki E, Cunningham A, Birardi V, Gagol G, Acquadro C. Development of the US English version of the phenylketonuria - quality of life (PKU-QOL) questionnaire. Health Qual Life Outcomes 2017; 15:46. [PMID: 28274259 PMCID: PMC5343404 DOI: 10.1186/s12955-017-0620-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
Background Phenylketonuria (PKU) is a rare genetic disorder caused by a defect in the metabolism of phenylalanine (PHE) resulting in elevated blood and brain PHE levels, and leading to cognitive, emotional, and psychosocial problems. The phenylketonuria – quality of life (PKU-QOL) questionnaire was the first self-administered disease-specific instrument developed to assess the impact of PKU and its treatment on the health-related quality of life (HRQL) of patients and their caregivers. Available in four versions (child, adolescent, adult and parent), the PKU-QOL was simultaneously developed and validated in seven countries [i.e., France, Germany, Italy, The Netherlands, Spain, Turkey and the United Kingdom (UK)]. The objectives of our study were to develop and linguistically validate the PKU-QOL questionnaire for use in the United States (US). Methods The UK versions served as a basis for the development of the US English PKU-QOL questionnaire. The linguistic validation process consisted of 4 steps: 1) adaptation of the UK versions into US English by a translator native of US English and living in the US; 2) a clinician review; 3) cognitive interviews with patients and caregivers to test the appropriateness, understandability and clarity of the US translations; and 4) two proof-readings. Results The adaptation from UK to US English revealed the usual syntactic and idiomatic differences between the two languages, such as differences in: 1) Spelling, e.g., “dietician” (UK) vs. “dietitian” (US), or “mum” (UK) vs. “mom” (US); 2) Syntax or punctuation; and 3) Words/expressions use, e.g., “holidays” (UK) vs. “vacation” (US), or “biscuits” (UK) vs. “crackers” (US). The major issue was cultural, and consisted of using a different terminology to describe PKU treatment throughout the questionnaires. The clinician, with the patients and the caregivers, during the interviews suggested to replace “supplement and amino-acid mixture” or “supplements” with “medical formula.” This wording was later changed to “medical food” to be consistent with the terminology used in current US published guidelines. Conclusions The translation of the UK English PKU-QOL questionnaire into US English did not raise critical semantic and cultural issues. The PKU-QOL will be valuable for US healthcare providers in individualizing treatment and managing patients with PKU.
Collapse
Affiliation(s)
- Elaina Jurecki
- BioMarin Pharmaceutical Inc., 770 Lindaro Street, San Rafael, 94901, CA, USA
| | - Amy Cunningham
- Hayward Genetics Center SL-31, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, 70112, LA, USA
| | - Vanessa Birardi
- BioMarin Pharmaceutical Inc., 770 Lindaro Street, San Rafael, 94901, CA, USA
| | - Grégory Gagol
- Mapi Language Services, 27 rue de la Villette, Lyon, 69003, France
| | | |
Collapse
|
21
|
Sumaily KM, Mujamammi AH. Phenylketonuria: A new look at an old topic, advances in laboratory diagnosis, and therapeutic strategies. Int J Health Sci (Qassim) 2017; 11:63-70. [PMID: 29114196 PMCID: PMC5669513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disorders of protein metabolism are the most common diseases among discovered inherited metabolic disorders. Phenylketonuria (PKU), a relatively common disorder that is responsive to treatment, is an inherited autosomal recessive disorder caused by a deficiency in phenylalanine hydroxylase (PAH) or one of several enzymes mediating biosynthesis or regeneration of the PAH cofactor tetrahydrobiopterin. The objective of this review is to discuss therapeutic strategies that have recently emerged for curing patients with PKU, which have demonstrated promising improvements in managing these patients. Data sourcing included a systematic literature review of PubMed with a focus on emerging knowledge pertaining to this well-studied disease. Recent advances in laboratory diagnosis and therapeutic strategies were described. Collectively, promising and rapid enhancements in neonatal diagnostic technologies and recently emerged therapeutic strategies are paving the way for early diagnosis and treating many inborn errors of metabolism, such as PKU.
Collapse
Affiliation(s)
- Khalid M. Sumaily
- Department of Pathology, Clinical Biochemistry Unit, King Saud University Medical City, King Saud University, Riyadh Saudi Arabia,Address for correspondence: Khalid M. Sumaily, Consultant in Medical Biochemistry and Biochemical Genetics, Department of Pathology, Clinical Biochemistry Unit, College of Medicine, King Saud University Medical City, King Saud University, P.O. Box 2925 (30), Riyadh 11461, Saudi Arabia. Phone: +00966114698502. Mobile: 00966540904761. E-mail:
| | - Ahmed H. Mujamammi
- Department of Pathology, Clinical Biochemistry Unit, King Saud University Medical City, King Saud University, Riyadh Saudi Arabia
| |
Collapse
|
22
|
Rocha JC, MacDonald A. Dietary intervention in the management of phenylketonuria: current perspectives. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2016; 7:155-163. [PMID: 29388626 PMCID: PMC5683291 DOI: 10.2147/phmt.s49329] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenylketonuria (PKU) is a well-described inborn error of amino acid metabolism that has been treated for >60 years. Enzyme deficiency causes accumulation of phenylalanine (Phe) and if left untreated will lead to profound and irreversible intellectual disability in most children. Traditionally, it has been managed with a low-Phe diet supplemented with a Phe-free protein substitute although newer treatment options mainly in combination with diet are available for some subgroups of patients with PKU, for example, sapropterin, large neutral amino acids, and glycomacropeptide. The diet consists of three parts: 1) severe restriction of dietary Phe; 2) replacement of non-Phe l-amino acids with a protein substitute commonly supplemented with essential fatty acids and other micronutrients; and 3) low-protein foods from fruits, some vegetables, sugars, fats and oil, and special low-protein foods (SLPF). The prescription of diet is challenging for health professionals. The high-carbohydrate diet supplied by a limited range of foods may program food preferences and contribute to obesity in later life. Abnormal tasting and satiety-promoting protein substitutes are administered to coincide with peak appetite times to ensure their consumption, but this practice may impede appetite for other important foods. Intermittent dosing of micronutrients when combined with l-amino acid supplements may lead to their poor bioavailability. Much work is required on the ideal nutritional profiling for special SLPF and Phe-free l-amino acid supplements. Although non-diet treatments are being studied, it is important to continue to fully understand all the consequences of diet therapy as it is likely to remain the foundation of therapy for many years.
Collapse
Affiliation(s)
- Júlio César Rocha
- Centro de Genética Médica, Centro Hospitalar do Porto - CHP.,Faculdade de Ciências da Saúde, Universidade Fernando Pessoa.,Center for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | | |
Collapse
|
23
|
Cliff MA, Law JR, Lücker J, Scaman CH, Kermode AR. Descriptive and hedonic analyses of low-Phe food formulations containing corn (Zea mays) seedling roots: toward development of a dietary supplement for individuals with phenylketonuria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:140-149. [PMID: 25564785 DOI: 10.1002/jsfa.7074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Seedling roots of anthocyanin-rich corn (Zea mays) cultivars contain high levels of phenylalanine ammonia lyase (PAL) activity. The development of a natural dietary supplement containing corn roots could provide the means to improve the restrictive diet of phenylketonuria (PKU) patients by increasing their tolerance to dietary phenylalanine (Phe). Therefore this research was undertaken to explore the sensory characteristics of roots of four corn cultivars as well as to develop and evaluate food products (cereal bar, beverage, jam-like spread) to which roots had been added. RESULTS Sensory profiles of corn roots were investigated using ten trained judges. Roots of Japanese Striped corn seedlings were more bitter, pungent and astringent than those of white and yellow cultivars, while roots from the Blue Jade cultivar had a more pronounced earthy/mushroom aroma. Consumer research using 24 untrained panelists provided hedonic (degree-of-liking) assessments for products with and without roots (controls). The former had lower mean scores than the controls; however, the cereal bar had scores above 5 on the nine-point scale for all hedonic assessments compared with the other treated products. CONCLUSION By evaluating low-Phe food products containing corn roots, this research ascertained that the root-containing low-Phe cereal bar was an acceptable 'natural' dietary supplement for PKU-affected individuals.
Collapse
Affiliation(s)
- Margaret A Cliff
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, 4200 Highway 97 South, Summerland, BC, V0H 1Z0, Canada
| | - Jessica R Law
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, 4200 Highway 97 South, Summerland, BC, V0H 1Z0, Canada
- Food Science, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Joost Lücker
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christine H Scaman
- Food Science, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
24
|
Ehrenworth AM, Sarria S, Peralta-Yahya P. Pterin-Dependent Mono-oxidation for the Microbial Synthesis of a Modified Monoterpene Indole Alkaloid. ACS Synth Biol 2015. [PMID: 26214239 DOI: 10.1021/acssynbio.5b00025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monoterpene indole alkaloids (MIAs) have important therapeutic value, including as anticancer and antimalarial agents. Because of their chemical complexity, therapeutic MIAs, or advanced intermediates thereof, are often isolated from the native plants. The microbial synthesis of MIAs would allow for the rapid and scalable production of complex MIAs and MIA analogues for therapeutic use. Here, we produce the modified MIA hydroxystrictosidine from glucose and the monoterpene secologanin via a pterin-dependent mono-oxidation strategy. Specifically, we engineered the yeast Saccharomyces cerevisiae for the high-level synthesis of tetrahydrobiopterin to mono-oxidize tryptophan to 5-hydroxytryptophan, which, after decarboxylation to serotonin, is coupled to exogenously fed secologanin to produce 10-hydroxystrictosidine in an eight-enzyme pathway. We selected hydroxystrictosidine as our synthetic target because hydroxylation at the 10' position of the alkaloid core strictosidine provides a chemical handle for the future chemical semisynthesis of therapeutics. We show the generality of the pterin-dependent mono-oxidation strategy for alkaloid synthesis by hydroxylating tyrosine to L-DOPA-a key intermediate in benzylisoquinoline alkaloid (BIA) biosynthesis-and, thereafter, further converting it to dopamine. Together, these results present the first microbial synthesis of a modified alkaloid, the first production of tetrahydrobiopterin in yeast, and the first use of a pterin-dependent mono-oxidation strategy for the synthesis of L-DOPA. This work opens the door to the scalable production of MIAs as well as the production of modified MIAs to serve as late intermediates in the semisynthesis of known and novel therapeutics. Further, the microbial strains in this work can be used as plant pathway discovery tools to elucidate known MIA biosynthetic pathways or to identify pathways leading to novel MIAs.
Collapse
Affiliation(s)
- A. M. Ehrenworth
- School of Chemistry and Biochemistry, and ‡School of Chemical
and Biomolecular
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - S. Sarria
- School of Chemistry and Biochemistry, and ‡School of Chemical
and Biomolecular
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - P. Peralta-Yahya
- School of Chemistry and Biochemistry, and ‡School of Chemical
and Biomolecular
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
25
|
Weiser D, Bencze LC, Bánóczi G, Ender F, Kiss R, Kókai E, Szilágyi A, Vértessy BG, Farkas Ö, Paizs C, Poppe L. Phenylalanine Ammonia-Lyase-Catalyzed Deamination of an Acyclic Amino Acid: Enzyme Mechanistic Studies Aided by a Novel Microreactor Filled with Magnetic Nanoparticles. Chembiochem 2015; 16:2283-8. [DOI: 10.1002/cbic.201500444] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Diána Weiser
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
| | - László Csaba Bencze
- Babeş-Bolyai University of Cluj-Napoca; Arany János str. 11 400028 Cluj-Napoca Romania
| | - Gergely Bánóczi
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
| | - Ferenc Ender
- Department of Electron Devices; Budapest University of Technology and Economics; Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Róbert Kiss
- Gedeon Richter Plc. Gyömrői út 19-21; 1103 Budapest Hungary
| | - Eszter Kókai
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science; Budapest University of Technology and Economics; Budafoki út 8 1111 Budapest Hungary
| | - Beáta G. Vértessy
- Institute of Enzymology; Research Centre for Natural Sciences of Hungarian Academy of Sciences; Magyar tudósok körútja 2 1117 Budapest Hungary
- Department of Biotechnology and Food Sciences; Budapest University of Technology and Economics; Szt. Gellért tér 4 1111 Budapest Hungary
| | - Ödön Farkas
- Department of Organic Chemistry; Eötvös Lóránd University; Pázmány Péter sétány 1A 1117 Budapest Hungary
| | - Csaba Paizs
- Babeş-Bolyai University of Cluj-Napoca; Arany János str. 11 400028 Cluj-Napoca Romania
| | - László Poppe
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
- SynBiocat Ltd.; Lázár deák u 4/1 1173 Budapest Hungary
| |
Collapse
|
26
|
Pimentel FB, Alves RC, Oliva-Teles MT, Costa ASG, Fernandes TJR, Almeida MF, Torres D, Delerue-Matos C, Oliveira MBPP. Targeting specific nutrient deficiencies in protein-restricted diets: some practical facts in PKU dietary management. Food Funct 2015; 5:3151-9. [PMID: 25277724 DOI: 10.1039/c4fo00555d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among aminoacidopathies, phenylketonuria (PKU) is the most prevalent one. Early diagnosis in the neonatal period with a prompt nutritional therapy (low natural-protein and phenylalanine diet, supplemented with phenylalanine-free amino acid mixtures and special low-protein foods) remains the mainstay of the treatment. Data considering nutrient contents of cooked dishes is lacking. In this study, fourteen dishes specifically prepared for PKU individuals were analysed, regarding the lipid profile and iron and zinc contents. These dishes are poor sources of essential nutrients like Fe, Zn or n-3 fatty acids, reinforcing the need for adequate supplementation to cover individual patients' needs. This study can contribute to a more accurate adjustment of PKU diets and supplementation in order to prevent eventual nutritional deficiencies. This study contributes to a better understanding of nutrient intake from PKU patients' meals, showing the need for dietary supplementation.
Collapse
Affiliation(s)
- Filipa B Pimentel
- REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bosch AM, Burlina A, Cunningham A, Bettiol E, Moreau-Stucker F, Koledova E, Benmedjahed K, Regnault A. Assessment of the impact of phenylketonuria and its treatment on quality of life of patients and parents from seven European countries. Orphanet J Rare Dis 2015; 10:80. [PMID: 26084935 PMCID: PMC4542123 DOI: 10.1186/s13023-015-0294-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/09/2015] [Indexed: 01/26/2023] Open
Abstract
Background The strict and demanding dietary treatment and mild cognitive abnormalities seen in PKU treated from a young age can be expected to affect the health-related quality of life (HRQoL) of patients and their families. Our aim was to describe the HRQoL of patients with PKU from a large international study, using generic HRQoL measures and an innovative PKU-specific HRQoL questionnaire (PKU-QOL). Analyses were exploratory, performed post-hoc on data collected primarily to validate the PKU-QOL. Methods A multicentre, prospective, non-interventional, observational study conducted in France, Germany, Italy, The Netherlands, Spain, Turkey and the UK. Patients diagnosed with PKU aged ≥9 years old and treated with a Phe-restricted diet and/or Phe-free amino acid protein supplements and/or pharmacological therapy were included in the study; parents of at least one patient with PKU aged <18 years were also included. HRQoL was assessed by generic measures (Pediatric Quality-of-Life Inventory; Medical Outcome Survey 36 item Short Form; Child Health Questionnaire 28 item Parent Form) and the newly developed PKU-QOL. Mean generic domain scores were interpreted using published reference values from the general population. PKU-QOL domain scores were described overall and in different subgroups of patients defined according to severity of PKU, overall assessment of patient’s health status by the investigator and treatment with tetrahydrobiopterin (BH4). Results Data from 559 subjects were analysed: 306 patients (92 children, 110 adolescents, 104 adults) and 253 parents. Mean domain scores of generic measures in the study were comparable to the general population. The highest PKU-QOL impact scores (indicating greater impact) were for emotional impact of PKU, anxiety about blood Phe levels, guilt regarding poor adherence to dietary restrictions or Phe-free amino acid supplement intake and anxiety regarding blood Phe levels during pregnancy. Patients with mild/moderate PKU and those receiving BH4 reported lower practical and emotional impacts of the diet and Phe-free amino acid supplement intake. Conclusion Patients with PKU showed good HRQoL in the study, both with the generic and PKU-specific measures. Negative impacts of PKU on a patient’s life, including the emotional impact of PKU and its management, was delineated by the PKU-QOLs across all age groups. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0294-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annet M Bosch
- Department of Paediatrics, Division of Metabolic Disorders, Academic Medical Centre, University Hospital of Amsterdam, Amsterdam, The Netherlands.
| | - Alberto Burlina
- Division of Metabolic Disorders, Department of Paediatrics, University Hospital of Padova, Padova, Italy.
| | - Amy Cunningham
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Esther Bettiol
- Infection Control Program, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | | | - Ekaterina Koledova
- Mapi, Health Economics & Outcomes Research and Strategic Market Access, Lyon, France
| | | | | |
Collapse
|
28
|
Turki A, Murthy G, Ueda K, Cheng B, Giezen A, Stockler-Ipsiroglu S, Elango R. Minimally invasive (13)C-breath test to examine phenylalanine metabolism in children with phenylketonuria. Mol Genet Metab 2015; 115:78-83. [PMID: 25943030 DOI: 10.1016/j.ymgme.2015.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/25/2015] [Accepted: 04/25/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Phenylketonuria (PKU) is an autosomal recessive disorder caused by deficiency of hepatic phenylalanine hydroxylase (PAH) leading to increased levels of phenylalanine in the plasma. Phenylalanine levels and phenylalanine hydroxylase (PAH) activity monitoring are currently limited to conventional blood dot testing. 1-(13)C-phenylalanine, a stable isotope can be used to examine phenylalanine metabolism, as the conversion of phenylalanine to tyrosine occurs in vivo via PAH and subsequently releases the carboxyl labeled (13)C as (13)CO2 in breath. OBJECTIVE Our objective was to examine phenylalanine metabolism in children with PKU using a minimally-invasive 1-(13)C-phenylalanine breath test ((13)C-PBT). DESIGN Nine children (7 M: 2 F, mean age 12.5 ± 2.87 y) with PKU participated in the study twice: once before and once after sapropterin supplementation. Children were provided 6 mg/kg oral dose of 1-(13)C-phenylalanine and breath samples were collected at 20 min intervals for a period of 2h. Rate of CO2 production was measured at 60 min post-oral dose using indirect calorimetry. The percentage of 1-(13)C-phenylalanine exhaled as (13)CO2 was measured over a 2h period. Prior to studying children with PKU, we tested the study protocol in healthy children (n = 6; 4M: 2F, mean age 10.2 ± 2.48 y) as proof of principle. RESULTS Production of a peak enrichment (Cmax) of (13)CO2 (% of dose) in all healthy children occurred at 20 min ranging from 17-29% of dose, with a subsequent return to ~5% by the end of 2h. Production of (13)CO2 from 1-(13)C-phenylalanine in all children with PKU prior to sapropterin treatment remained low. Following sapropterin supplementation for a week, production of (13)CO2 significantly increased in five children with a subsequent decline in blood phenylalanine levels, suggesting improved PAH activity. Sapropterin treatment was not effective in three children whose (13)CO2 production remained unchanged, and did not show a reduction in blood phenylalanine levels and improvement in dietary phenylalanine tolerance. CONCLUSIONS Our study shows that the (13)C-PBT can be a minimally invasive, safe and reliable measure to examine phenylalanine metabolism in children with phenylketonuria. The breath data are corroborated by blood phenylalanine levels in children who had increased responses in (13)CO2 production, as reviewed post-hoc from clinical charts.
Collapse
Affiliation(s)
- Abrar Turki
- Child & Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, British Columbia, Canada
| | - Gayathri Murthy
- Child & Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, British Columbia, Canada
| | - Keiko Ueda
- Department of Pediatrics, University of British Columbia, British Columbia, Canada; Division of Biochemical Diseases, BC Children's Hospital, British Columbia, Canada
| | - Barbara Cheng
- Department of Pediatrics, University of British Columbia, British Columbia, Canada; Division of Biochemical Diseases, BC Children's Hospital, British Columbia, Canada
| | - Alette Giezen
- Department of Pediatrics, University of British Columbia, British Columbia, Canada; Division of Biochemical Diseases, BC Children's Hospital, British Columbia, Canada
| | - Sylvia Stockler-Ipsiroglu
- Child & Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, British Columbia, Canada; Division of Biochemical Diseases, BC Children's Hospital, British Columbia, Canada
| | - Rajavel Elango
- Child & Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, British Columbia, Canada; School of Population and Public Health, University of British Columbia, British Columbia, Canada.
| |
Collapse
|
29
|
Regnault A, Burlina A, Cunningham A, Bettiol E, Moreau-Stucker F, Benmedjahed K, Bosch AM. Development and psychometric validation of measures to assess the impact of phenylketonuria and its dietary treatment on patients' and parents' quality of life: the phenylketonuria - quality of life (PKU-QOL) questionnaires. Orphanet J Rare Dis 2015; 10:59. [PMID: 25958326 PMCID: PMC4449597 DOI: 10.1186/s13023-015-0261-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/30/2015] [Indexed: 11/25/2022] Open
Abstract
Background The aim of our study was to develop and validate the first set of PKU-specific Health-related Quality of Life (HRQoL) questionnaires that: 1) were developed for patients with PKU and their parents, 2) cover the physical, emotional, and social impacts of PKU and its treatment on patients’ lives, 3) are age specific (Child PKU-QOL, Adolescent PKU-QOL, Adult PKU-QOL), 4) enable the evaluation of the HRQoL of children by their parents (Parent PKU-QOL), and 5) have been cross-culturally adapted for use in seven countries (i.e. France, Germany, Italy, The Netherlands, Spain, Turkey and the UK). Methods The PKU-QOL questionnaires were developed according to reference methods including patients’, parents’ and healthcare professionals’ interviews; testing in a pilot study (qualitative step in six countries), and linguistic validation of the finalised pilot versions in Turkish. For finalisation and psychometric validation, the pilot versions were included in a multicentre, prospective, non-interventional, observational study conducted in 34 sites in France, Germany, Italy, The Netherlands, Spain, Turkey and the UK. Iterative multi-trait analyses were conducted. Psychometric properties were assessed (concurrent and clinical validity, internal consistency reliability and test-retest reliability). Results Data from 559 subjects (306 patients, 253 parents) were analysed. After finalisation, the PKU-QOL questionnaires included 40 items (Child PKU-QOL), 58 items (Adolescent PKU-QOL), 65 items (Adult PKU-QOL) and 54 items (Parent PKU-QOL), distributed in four modules: PKU symptoms, PKU in general, administration of Phe-free protein supplements and dietary protein restriction. The measurement properties of the Adolescent, Adult and Parent PKU-QOL questionnaires were overall fairly satisfactory, but weaker for the Child questionnaire. Conclusions The four PKU-QOL questionnaires developed for different ages (Child PKU-QOL, Adolescent PKU-QOL, Adult PKU-QOL), and for parents of children with PKU (Parent PKU-QOL) are valid and reliable instruments for assessing the multifaceted impact of PKU on patients of different age groups (children, adolescents and adults) and their parents, and are available for use in seven countries. They are very promising tools to explore how patients’ perceptions evolve with age, to increase knowledge of the impact of PKU on patients and parents in different countries, and to help monitor the effect of therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0261-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antoine Regnault
- Mapi, Health Economics & Outcomes Research and Strategic Market Access, 27 rue de la Villette, Lyon, France.
| | - Alberto Burlina
- Division of Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy.
| | - Amy Cunningham
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| | - Esther Bettiol
- Infection Control Program, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | | | - Khadra Benmedjahed
- Mapi, Health Economics & Outcomes Research and Strategic Market Access, 27 rue de la Villette, Lyon, France.
| | - Annet M Bosch
- Department of Pediatrics, Division of Metabolic Disorders, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Bartha‐Vári JH, Toşa MI, Irimie F, Weiser D, Boros Z, Vértessy BG, Paizs C, Poppe L. Immobilization of Phenylalanine Ammonia-Lyase on Single-Walled Carbon Nanotubes for Stereoselective Biotransformations in Batch and Continuous-Flow Modes. ChemCatChem 2015; 7:1122-1128. [PMID: 26925171 PMCID: PMC4744988 DOI: 10.1002/cctc.201402894] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/17/2014] [Indexed: 12/05/2022]
Abstract
Carboxylated single-walled carbon nanotubes (SwCNTCOOH) were used as a support for the covalent immobilization of phenylalanine ammonia-lyase (PAL) from parsley by two different methods. The nanostructured biocatalysts (SwCNTCOOH-PALI and SwCNTCOOH-PALII) with low diffusional limitation were tested in the batch-mode kinetic resolution of racemic 2-amino-3-(thiophen-2-yl)propanoic acid (1) to yield a mixture of (R)-1 and (E)-3-(thiophen-2-yl)acrylic acid (2) and in ammonia addition to 2 to yield enantiopure (S)-1. SwCNTCOOH-PALII was a stable biocatalyst (>90 % of the original activity remained after six cycles with 1 and after three cycles in 6 m NH3 with 2). The study of ammonia addition to 2 in a continuous-flow microreactor filled with SwCNTCOOH-PALII (2 m NH3, pH 10.0, 15 bar) between 30-80 °C indicated no significant loss of activity over 72 h up to 60 °C. SwCNTCOOH-PALII in the continuous-flow system at 30 °C was more productive (specific reaction rate, rflow=2.39 μmol min-1 g-1) than in the batch reaction (rbatch=1.34 μmol min-1 g-1).
Collapse
Affiliation(s)
- Judith H. Bartha‐Vári
- Biocatalysis and Biotransformation Research Group, Babeş‐Bolyai University of Cluj‐Napoca, Arany János str. 11, 400028 Cluj‐Napoca (Romania)
| | - Monica I. Toşa
- Biocatalysis and Biotransformation Research Group, Babeş‐Bolyai University of Cluj‐Napoca, Arany János str. 11, 400028 Cluj‐Napoca (Romania)
| | - Florin‐Dan Irimie
- Biocatalysis and Biotransformation Research Group, Babeş‐Bolyai University of Cluj‐Napoca, Arany János str. 11, 400028 Cluj‐Napoca (Romania)
| | - Diána Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest (Hungary)
| | - Zoltán Boros
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest (Hungary)
- SynBiocat Ltd, Lázár deák u 4/1, 1173 Budapest (Hungary)
| | - Beáta G. Vértessy
- Department of Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111 Budapest (Hungary)
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117 Budapest (Hungary)
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Group, Babeş‐Bolyai University of Cluj‐Napoca, Arany János str. 11, 400028 Cluj‐Napoca (Romania)
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest (Hungary)
- SynBiocat Ltd, Lázár deák u 4/1, 1173 Budapest (Hungary)
| |
Collapse
|
31
|
Danecka MK, Woidy M, Zschocke J, Feillet F, Muntau AC, Gersting SW. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria. J Med Genet 2015; 52:175-85. [PMID: 25596310 DOI: 10.1136/jmedgenet-2014-102621] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. METHODS A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. RESULTS Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. CONCLUSIONS The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria.
Collapse
Affiliation(s)
- Marta K Danecka
- Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Mathias Woidy
- Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - François Feillet
- Department of Pediatrics, Hôpital d'Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Søren W Gersting
- Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
32
|
Abstract
Detection of individuals with phenylketonuria (PKU), an autosomal recessively inherited disorder in phenylalanine degradation, is straightforward and efficient due to newborn screening programs. A recent introduction of the pharmacological treatment option emerged rapid development of molecular testing. However, variants responsible for PKU do not all suppress enzyme activity to the same extent. A spectrum of over 850 variants, gives rise to a continuum of hyperphenylalaninemia from very mild, requiring no intervention, to severe classical PKU, requiring urgent intervention. Locus-specific and genotypes database are today an invaluable resource of information for more efficient classification and management of patients. The high-tech molecular methods allow patients' genotype to be obtained in a few days, especially if each laboratory develops a panel for the most frequent variants in the corresponding population.
Collapse
Affiliation(s)
- Nenad Blau
- Division of Inborn Metabolic Diseases, University Children's Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
33
|
Camp KM, Parisi MA, Acosta PB, Berry GT, Bilder DA, Blau N, Bodamer OA, Brosco JP, Brown CS, Burlina AB, Burton BK, Chang CS, Coates PM, Cunningham AC, Dobrowolski SF, Ferguson JH, Franklin TD, Frazier DM, Grange DK, Greene CL, Groft SC, Harding CO, Howell RR, Huntington KL, Hyatt-Knorr HD, Jevaji IP, Levy HL, Lichter-Konecki U, Lindegren ML, Lloyd-Puryear MA, Matalon K, MacDonald A, McPheeters ML, Mitchell JJ, Mofidi S, Moseley KD, Mueller CM, Mulberg AE, Nerurkar LS, Ogata BN, Pariser AR, Prasad S, Pridjian G, Rasmussen SA, Reddy UM, Rohr FJ, Singh RH, Sirrs SM, Stremer SE, Tagle DA, Thompson SM, Urv TK, Utz JR, van Spronsen F, Vockley J, Waisbren SE, Weglicki LS, White DA, Whitley CB, Wilfond BS, Yannicelli S, Young JM. Phenylketonuria Scientific Review Conference: state of the science and future research needs. Mol Genet Metab 2014; 112:87-122. [PMID: 24667081 DOI: 10.1016/j.ymgme.2014.02.013] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/17/2023]
Abstract
New developments in the treatment and management of phenylketonuria (PKU) as well as advances in molecular testing have emerged since the National Institutes of Health 2000 PKU Consensus Statement was released. An NIH State-of-the-Science Conference was convened in 2012 to address new findings, particularly the use of the medication sapropterin to treat some individuals with PKU, and to develop a research agenda. Prior to the 2012 conference, five working groups of experts and public members met over a 1-year period. The working groups addressed the following: long-term outcomes and management across the lifespan; PKU and pregnancy; diet control and management; pharmacologic interventions; and molecular testing, new technologies, and epidemiologic considerations. In a parallel and independent activity, an Evidence-based Practice Center supported by the Agency for Healthcare Research and Quality conducted a systematic review of adjuvant treatments for PKU; its conclusions were presented at the conference. The conference included the findings of the working groups, panel discussions from industry and international perspectives, and presentations on topics such as emerging treatments for PKU, transitioning to adult care, and the U.S. Food and Drug Administration regulatory perspective. Over 85 experts participated in the conference through information gathering and/or as presenters during the conference, and they reached several important conclusions. The most serious neurological impairments in PKU are preventable with current dietary treatment approaches. However, a variety of more subtle physical, cognitive, and behavioral consequences of even well-controlled PKU are now recognized. The best outcomes in maternal PKU occur when blood phenylalanine (Phe) concentrations are maintained between 120 and 360 μmol/L before and during pregnancy. The dietary management treatment goal for individuals with PKU is a blood Phe concentration between 120 and 360 μmol/L. The use of genotype information in the newborn period may yield valuable insights about the severity of the condition for infants diagnosed before maximal Phe levels are achieved. While emerging and established genotype-phenotype correlations may transform our understanding of PKU, establishing correlations with intellectual outcomes is more challenging. Regarding the use of sapropterin in PKU, there are significant gaps in predicting response to treatment; at least half of those with PKU will have either minimal or no response. A coordinated approach to PKU treatment improves long-term outcomes for those with PKU and facilitates the conduct of research to improve diagnosis and treatment. New drugs that are safe, efficacious, and impact a larger proportion of individuals with PKU are needed. However, it is imperative that treatment guidelines and the decision processes for determining access to treatments be tied to a solid evidence base with rigorous standards for robust and consistent data collection. The process that preceded the PKU State-of-the-Science Conference, the conference itself, and the identification of a research agenda have facilitated the development of clinical practice guidelines by professional organizations and serve as a model for other inborn errors of metabolism.
Collapse
Affiliation(s)
- Kathryn M Camp
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Melissa A Parisi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Gerard T Berry
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Deborah A Bilder
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA.
| | - Nenad Blau
- University Children's Hospital, Heidelberg, Germany; University Children's Hospital, Zürich, Switzerland.
| | - Olaf A Bodamer
- University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Jeffrey P Brosco
- University of Miami Mailman Center for Child Development, Miami, FL 33101, USA.
| | | | | | - Barbara K Burton
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
| | - Christine S Chang
- Agency for Healthcare Research and Quality, Rockville, MD 20850, USA.
| | - Paul M Coates
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Amy C Cunningham
- Tulane University Medical School, Hayward Genetics Center, New Orleans, LA 70112, USA.
| | | | - John H Ferguson
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | | | | | - Dorothy K Grange
- Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Carol L Greene
- University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Stephen C Groft
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Cary O Harding
- Oregon Health & Science University, Portland, OR 97239, USA.
| | - R Rodney Howell
- University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | - Henrietta D Hyatt-Knorr
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Indira P Jevaji
- Office of Research on Women's Health, National Institutes of Health, Bethesda, MD 20817, USA.
| | - Harvey L Levy
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Uta Lichter-Konecki
- George Washington University, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | | | | | | - Melissa L McPheeters
- Vanderbilt Evidence-based Practice Center, Institute for Medicine and Public Health, Nashville, TN 37203, USA.
| | - John J Mitchell
- McGill University Health Center, Montreal, Quebec H3H 1P3, Canada.
| | - Shideh Mofidi
- Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, NY 10595, USA.
| | - Kathryn D Moseley
- University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | - Christine M Mueller
- Office of Orphan Products Development, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Andrew E Mulberg
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Lata S Nerurkar
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Beth N Ogata
- University of Washington, Seattle, WA 98195, USA.
| | - Anne R Pariser
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Suyash Prasad
- BioMarin Pharmaceutical Inc., San Rafael, CA 94901, USA.
| | - Gabriella Pridjian
- Tulane University Medical School, Hayward Genetics Center, New Orleans, LA 70112, USA.
| | | | - Uma M Reddy
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | - Sandra M Sirrs
- Vancouver General Hospital, University of British Columbia, Vancouver V5Z 1M9, Canada.
| | | | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Susan M Thompson
- The Children's Hospital at Westmead, Sydney, NSW 2145, Australia.
| | - Tiina K Urv
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jeanine R Utz
- University of Minnesota, Minneapolis, MN 55455, USA.
| | - Francjan van Spronsen
- University of Groningen, University Medical Center of Groningen, Beatrix Children's Hospital, Netherlands.
| | - Jerry Vockley
- University of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Susan E Waisbren
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Linda S Weglicki
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Desirée A White
- Department of Psychology, Washington University, St. Louis, MO 63130, USA.
| | | | - Benjamin S Wilfond
- Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA.
| | | | - Justin M Young
- The Young Face, Facial Plastic and Reconstructive Surgery, Cumming, GA 30041, USA.
| |
Collapse
|
34
|
Pimentel FB, Alves RC, Costa AS, Fernandes TJ, Torres D, Almeida MF, Oliveira MBP. Nutritional composition of low protein and phenylalanine-restricted dishes prepared for phenylketonuric patients. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Phenylketonuria: Protein content and amino acids profile of dishes for phenylketonuric patients. The relevance of phenylalanine. Food Chem 2014; 149:144-50. [DOI: 10.1016/j.foodchem.2013.10.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 09/21/2013] [Accepted: 10/23/2013] [Indexed: 11/22/2022]
|
36
|
Imperlini E, Orrù S, Corbo C, Daniele A, Salvatore F. Altered brain protein expression profiles are associated with molecular neurological dysfunction in the PKU mouse model. J Neurochem 2014; 129:1002-12. [PMID: 24548049 PMCID: PMC4286000 DOI: 10.1111/jnc.12683] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/07/2014] [Accepted: 02/02/2014] [Indexed: 12/14/2022]
Abstract
Phenylketonuria (PKU), if not detected and treated in newborns, causes severe neurological dysfunction and cognitive and behavioral deficiencies. Despite the biochemical characterization of PKU, the molecular mechanisms underlying PKU-associated brain dysfunction remain poorly understood. The aim of this study was to gain insights into the pathogenesis of this neurological damage by analyzing protein expression profiles in brain tissue of Black and Tan BRachyury-PahEnu2 mice (a mouse model of PKU). We compared the cerebral protein expression of homozygous PKU mice with that of their heterozygous counterparts using two-dimensional difference gel electrophoresis analysis, and identified 21 differentially expressed proteins, four of which were over-expressed and 17 under-expressed. An in silico bioinformatic approach indicated that protein under-expression was related to neuronal differentiation and dendritic growth, and to such neurological disorders as progressive motor neuropathy and movement disorders. Moreover, functional annotation analyses showed that some identified proteins were involved in oxidative metabolism. To further investigate the proteins involved in the neurological damage, we validated two of the proteins that were most strikingly under-expressed, namely, Syn2 and Dpysl2, which are involved in synaptic function and neurotransmission. We found that Glu2/3 and NR1 receptor subunits were over-expressed in PKU mouse brain. Our results indicate that differential expression of these proteins may be associated with the processes underlying PKU brain dysfunction, namely, decreased synaptic plasticity and impaired neurotransmission.
Collapse
|
37
|
Weiser D, Varga A, Kovács K, Nagy F, Szilágyi A, Vértessy BG, Paizs C, Poppe L. Bisepoxide Cross-Linked Enzyme Aggregates-New Immobilized Biocatalysts for Selective Biotransformations. ChemCatChem 2014. [DOI: 10.1002/cctc.201300806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Vogel KR, Kennedy AA, Whitehouse LA, Gibson KM. Therapeutic hepatocyte transplant for inherited metabolic disorders: functional considerations, recent outcomes and future prospects. J Inherit Metab Dis 2014; 37:165-76. [PMID: 24085555 PMCID: PMC3975709 DOI: 10.1007/s10545-013-9656-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/18/2022]
Abstract
The applications, outcomes and future strategies of hepatocyte transplantation (HTx) as a corrective intervention for inherited metabolic disease (IMD) are described. An overview of HTx in IMDs, as well as preclinical evaluations in rodent and other mammalian models, is summarized. Current treatments for IMDs are highlighted, along with short- and long-term outcomes and the potential for HTx to supplement or supplant these treatments. Finally, the advantages and disadvantages of HTx are presented, highlighted by long-term challenges with interorgan engraftment and expansion of transplanted cells, in addition to the future prospects of stem cell transplants. At present, the utility of HTx is represented by the potential to bridge patients with life-threatening liver disease to organ transplantation, especially as an adjuvant intervention where severe organ shortages continue to pose challenges.
Collapse
Affiliation(s)
- Kara R Vogel
- Section of Clinical Pharmacology, College of Pharmacy, Washington State University, SAC 525M, P.O. Box 1495, Spokane, WA, 99210-1495, USA
| | | | | | | |
Collapse
|
39
|
Kovács K, Bánóczi G, Varga A, Szabó I, Holczinger A, Hornyánszky G, Zagyva I, Paizs C, Vértessy BG, Poppe L. Expression and properties of the highly alkalophilic phenylalanine ammonia-lyase of thermophilic Rubrobacter xylanophilus. PLoS One 2014; 9:e85943. [PMID: 24475062 PMCID: PMC3903478 DOI: 10.1371/journal.pone.0085943] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
The sequence of a phenylalanine ammonia-lyase (PAL; EC: 4.3.1.24) of the thermophilic and radiotolerant bacterium Rubrobacter xylanophilus (RxPAL) was identified by screening the genomes of bacteria for members of the phenylalanine ammonia-lyase family. A synthetic gene encoding the RxPAL protein was cloned and overexpressed in Escherichia coli TOP 10 in a soluble form with an N-terminal His6-tag and the recombinant RxPAL protein was purified by Ni-NTA affinity chromatography. The activity assay of RxPAL with l-phenylalanine at various pH values exhibited a local maximum at pH 8.5 and a global maximum at pH 11.5. Circular dichroism (CD) studies showed that RxPAL is associated with an extensive α-helical character (far UV CD) and two distinctive near-UV CD peaks. These structural characteristics were well preserved up to pH 11.0. The extremely high pH optimum of RxPAL can be rationalized by a three-dimensional homology model indicating possible disulfide bridges, extensive salt-bridge formation and an excess of negative electrostatic potential on the surface. Due to these properties, RxPAL may be a candidate as biocatalyst in synthetic biotransformations leading to unnatural l- or d-amino acids or as therapeutic enzyme in treatment of phenylketonuria or leukemia.
Collapse
Affiliation(s)
- Klaudia Kovács
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Bánóczi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Andrea Varga
- Biocatalysis Research Group, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Izabella Szabó
- Biocatalysis Research Group, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
| | - András Holczinger
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Imre Zagyva
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Paizs
- Biocatalysis Research Group, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Beáta G. Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences of Hungarian Academy of Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
40
|
Fuhrmann G, Leroux JC. Improving the stability and activity of oral therapeutic enzymes-recent advances and perspectives. Pharm Res 2013; 31:1099-105. [PMID: 24185592 DOI: 10.1007/s11095-013-1233-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/14/2013] [Indexed: 12/19/2022]
Abstract
Exogenous, orally-administered enzymes are currently in clinical use or under development for the treatment of pathologies, such as celiac disease and phenylketonuria. However, the administration of therapeutic enzymes via the oral route remains challenging due to potential inactivation of these fragile macromolecular entities in the harsh environment of the gastrointestinal tract. Enzymes are particularly sensitive because both proteolysis and unfolding can lead to their inactivation. Current efforts to overcome these shortcomings involve the application of gastro-resistant delivery systems and the modification of enzyme structures by polymer conjugation or protein engineering. This perspective manuscript reviews and critically discusses recent progress in the oral delivery of therapeutic enzymes, whose substrate is localized in the gastrointestinal tract.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Institute of Pharmaceutical Sciences Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, HCI H 301, 8093, Zurich, Switzerland
| | | |
Collapse
|
41
|
Demirdas S, Maurice-Stam H, Boelen CCA, Hofstede FC, Janssen MCH, Langendonk JG, Mulder MF, Rubio-Gozalbo ME, van Spronsen FJ, de Vries M, Grootenhuis MA, Bosch AM. Evaluation of quality of life in PKU before and after introducing tetrahydrobiopterin (BH4); a prospective multi-center cohort study. Mol Genet Metab 2013; 110 Suppl:S49-56. [PMID: 24100246 DOI: 10.1016/j.ymgme.2013.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Phenylketonuria (PKU) is a rare inborn error of metabolism caused by phenylalanine hydroxylase enzyme (PAH) deficiency. Treatment constitutes a strict Phe restricted diet with unpalatable amino acid supplements. Residual PAH activity enhancement with its cofactor tetrahydrobiopterin (BH4) is a novel treatment which increases dietary tolerance in some patients and permits dietary relaxation. Relaxation of diet may improve health related quality of life (HRQoL). This prospective cohort study aims to evaluate HRQoL of patients with PKU and effects of BH4 treatment on HRQoL. METHODS Patients aged 4years and older, diagnosed through newborn screening and early and continuously treated, were recruited from eight metabolic centers. Patients and mothers completed validated generic and chronic health-conditions HRQoL questionnaires (PedsQL, TAAQOL, and DISABKIDS) twice: before and after testing BH4 responsivity. Baseline results were compared to the general population. Data collected after BH4 testing was used to find differences in HRQoL between BH4 unresponsive patients and BH4 responsive patients after one year of treatment with BH4. Also a within patient comparison was performed to find differences in HRQoL before and after treatment with BH4. RESULTS 69/81 (85%) patients completed the questionnaires before BH4 responsivity testing, and 45/69 (65%) participated again after testing. Overall PKU patients demonstrated normal HRQoL. However, some significant differences were found when compared to the general population. A significantly higher (thus better) score on the PedsQL was reported by children 8-12 years on physical functioning and by children 13-17 years on total and psychosocial functioning. Furthermore, adult patients reported significantly lower (thus worse) scores in the TAAQOL cognitive domain. 10 patients proved to be responsive to BH4 treatment; however improvement in their HRQoL after relaxation of diet could not be demonstrated.
Collapse
Affiliation(s)
- Serwet Demirdas
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Knerr I, Blessing H, Seyferth S, Watling RJ, Chaudhri MA. Evaluation of plasma trace element and mineral status in children and adolescents with phenylketonuria using data from inductively-coupled-plasma atomic emission and mass spectrometric analysis. ANNALS OF NUTRITION AND METABOLISM 2013; 63:168-73. [PMID: 24021752 DOI: 10.1159/000354869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Phenylketonuria (PKU) is caused by a severe phenylalanine hydroxylase deficiency; the mainstay of treatment is a low-phenylalanine diet. A diet which is so restrictive is associated with a risk of nutritional deficiencies. We investigated plasma concentrations for 46 elements, including minerals and trace elements. METHODS We enrolled 20 children and adolescents with PKU and 20 matched controls. Multi-elementary quantification was carried out by solution-based inductively coupled plasma atomic emission spectroscopy (ICP-AES) and ICP mass spectrometry (ICP-MS). RESULTS With the exception of manganese and aluminium, no significant differences were found for element levels between PKU patients and controls. As a trend, manganese levels were lower in PKU patients than in control subjects (p < 0.05) but were within the reference range. There was a positive linear relationship between manganese and tyrosine levels in subjects with PKU (r(2) = 0.2295, p < 0.05). If detectable, potentially toxic elements were only identified in ultra-trace quantities in plasma samples of either group; aluminium levels were found to be slightly higher in PKU subjects than in controls (p < 0.01). CONCLUSION The combination of ICP-AES and ICP-MS data is a useful diagnostic tool for element quantification at a high analytical rate and for monitoring bio-element status, e.g. in patients on a restrictive diet.
Collapse
Affiliation(s)
- I Knerr
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
43
|
Prinsen HC, Holwerda-Loof NE, de Sain-van der Velden MG, Visser G, Verhoeven-Duif NM. Reliable analysis of phenylalanine and tyrosine in a minimal volume of blood. Clin Biochem 2013; 46:1272-5. [DOI: 10.1016/j.clinbiochem.2013.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/10/2013] [Accepted: 05/17/2013] [Indexed: 11/27/2022]
|
44
|
Christ SE, Moffitt AJ, Peck D, White DA. The effects of tetrahydrobiopterin (BH4) treatment on brain function in individuals with phenylketonuria. NEUROIMAGE-CLINICAL 2013; 3:539-47. [PMID: 24371792 PMCID: PMC3871382 DOI: 10.1016/j.nicl.2013.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/15/2013] [Accepted: 08/23/2013] [Indexed: 11/11/2022]
Abstract
Phenylketonuria (PKU) is a rare genetic condition characterized by an absence or mutation of the PAH enzyme, which is necessary for the metabolism of the amino acid phenylalanine into tyrosine. Recently, sapropterin dihydrochloride, a synthetic form of tetrahydrobiopterin (BH4), has been introduced as a supplemental treatment to dietary phe control for PKU. Very little is known regarding BH4 treatment and its effect on brain and cognition. The present study represents the first examination of potential changes in neural activation in patients with PKU during BH4 treatment. To this end, we utilized an n-back working memory task in conjunction with functional magnetic resonance imaging (fMRI) to evaluate functional brain integrity in a sample of individuals with PKU at three timepoints: Just prior to BH4 treatment, after 4 weeks of treatment, and after 6 months of treatment. Neural activation patterns observed for the PKU treatment group were compared with those of a demographically-matched sample of healthy non-PKU individuals who were assessed at identical time intervals. Consistent with past research, baseline evaluation revealed impaired working memory and atypical brain activation in the PKU group as compared to the non-PKU group. Most importantly, BH4 treatment was associated with improvements in both working memory and brain activation, with neural changes evident earlier (4-week timepoint) than changes in working memory performance (6-month timepoint). We examine working memory and neural activation in patients with PKU at baseline. We track behavioral and neural changes related to BH4 treatment in the patients. BH4 treatment associated with improvement in neural activity at 4-week timepoint. BH4 treatment associated with improvement in working memory at 6-month timepoint.
Collapse
Affiliation(s)
- Shawn E Christ
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
| | - Amanda J Moffitt
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
| | - Dawn Peck
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, United States
| | - Desirée A White
- Department of Psychology, Washington University, St. Louis, MO, United States
| |
Collapse
|
45
|
Aldámiz-Echevarría L, Bueno MA, Couce ML, Lage S, Dalmau J, Vitoria I, Andrade F, Llarena M, Blasco J, Alcalde C, Gil D, García MC, González-Lamuño D, Ruiz M, Ruiz MA, González D, Sánchez-Valverde F. Tetrahydrobiopterin therapy vs phenylalanine-restricted diet: impact on growth in PKU. Mol Genet Metab 2013; 109:331-8. [PMID: 23810227 DOI: 10.1016/j.ymgme.2013.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 05/24/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Treatment of phenylketonuria based upon strict vegetarian diets, with very low phenylalanine intake and supplemented by phenylalanine-free formula, has proven to be effective in preventing the development of long-term neurological sequelae due to phenylalanine accumulation. On the other hand, such diets have occasionally been reported to hinder normal development, some individuals presenting with growth retardation. Tetrahydrobiopterin therapy has opened up new treatment options for a significant proportion of phenylketonuric patients, enabling them to eat normal diets and be freed from the need to take synthetic supplements. However, little is known about how this therapy affects their physical development. METHODS We conducted a retrospective longitudinal study examining anthropometric characteristics (height, weight, body mass index and growth speed Z-scores) in a cohort of phenylketonuric patients on tetrahydrobiopterin therapy (38 subjects) comparing their characteristics with those of a group of phenylketonuric patients on phenylalanine-restricted diets (76 subjects). Nutritional issues were also considered, to further explore the possibility of higher natural protein intake being associated with better physical development. Data were collected every six months over two different periods of time (two or five years). RESULTS No improvement was observed in the aforementioned anthropometric variables in the cohort on tetrahydrobiopterin therapy, from prior to starting treatment to when they had been taking the drug for two or five years. Rather, in almost all cases there was a fall in the mean Z-score for the variables during these periods, although the changes were not significant in any case. Further, we found no statistically differences between the two groups at any considered time point. Growth impairment was also noted in the phenylketonuric patients on low-phenylalanine diets. Individuals on tetrahydrobiopterin therapy increased their natural protein intake and, in some instances, this treatment enabled individuals to eat normal diets, with protein intake meeting RDAs. No association was found, however, between higher protein intake and growth. CONCLUSION Our study identified growth impairment in patients with phenylketonuria on tetrahydrobiopterin, despite higher intakes of natural proteins. In fact, individuals undergoing long-term tetrahydrobiopterin treatment seemed to achieve similar developmental outcomes to those attained by individuals on more restricted diets.
Collapse
Affiliation(s)
- Luis Aldámiz-Echevarría
- Division of Metabolism, Cruces University Hospital, Plaza de Cruces, s/n, 48903 Barakaldo, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cederbaum S, Levy HL. Is melatonin synthesis a new biomarker for the pathogenesis and treatment of phenylketonuria? J Pediatr 2013; 162:893-4. [PMID: 23312686 PMCID: PMC4327885 DOI: 10.1016/j.jpeds.2012.11.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 11/27/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Stephen Cederbaum
- Departments of Psychiatry, Pediatrics, and Human Genetics, University of California, Los Angeles, California
| | - Harvey L. Levy
- Department of Medicine/Genetics, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
Developmental and psychiatric presentations of inherited metabolic disorders. Pediatr Neurol 2013; 48:179-87. [PMID: 23419468 DOI: 10.1016/j.pediatrneurol.2012.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/15/2012] [Indexed: 11/22/2022]
Abstract
Pediatric neurologists and developmental pediatricians may evaluate patients with primary or associated behavioral and academic concerns. A critical element of the evaluation involves determining that the child's condition is not better explained by underlying inherited metabolic disorders. In this review, psychiatric and behavioral presentations of inherited metabolic disorders are discussed via several case studies. Key features of vignettes will illustrate when to consider these disorders in evaluating children referred for psychiatric and behavioral changes, after more common etiologies have been excluded. We seek to develop a better understanding of key clinical pearls to help identify children with an inherited metabolic disorder to account for behavioral or academic concerns.
Collapse
|
48
|
Cerone R, Andria G, Giovannini M, Leuzzi V, Riva E, Burlina A. Testing for tetrahydrobiopterin responsiveness in patients with hyperphenylalaninemia due to phenylalanine hydroxylase deficiency. Adv Ther 2013; 30:212-28. [PMID: 23436109 DOI: 10.1007/s12325-013-0011-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Pharmacological levels of the phenylalanine hydroxylase enzyme cofactor, tetrahydrobiopterin (BH4), reduce plasma phenylalanine levels in some patients with phenylketonuria (PKU), providing the first pharmacological therapy for PKU. Responsiveness to this therapy must be determined empirically through a BH4 loading test or trial. The authors have analyzed the loading tests currently in use in light of the numerous factors that can influence their results. Sapropterin dihydrochloride is a stable, synthetic form of BH4 approved for treatment of PKU in responsive patients. METHODS An expert panel identified evidence from published reports of clinical experience. Reports of research involving at least 25 patients and published in English were considered. RESULTS In all, 14 studies met both criteria; eight employing the sapropterin dihydrochloride preparation from Schircks Laboratories and six the sapropterin dihydrochloride preparation from Biomarin/Merck Serono. CONCLUSION The arbitrary responsiveness definition of a >30% reduction in blood phenylalanine appears to be a good compromise between sensitivity and specificity for the initial screening test. However, individual patient characteristics should be considered when interpreting results, especially in patients with low baseline phenylalanine levels.
Collapse
Affiliation(s)
- Roberto Cerone
- Reference Center for Neonatal Screening and Diagnosis for Metabolic Diseases of University-Istituto Giannina Gaslini, Via 5 maggio, 3916147 Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Rocha JC, van Spronsen FJ, Almeida MF, Ramos E, Guimarães JT, Borges N. Early dietary treated patients with phenylketonuria can achieve normal growth and body composition. Mol Genet Metab 2013; 110 Suppl:S40-3. [PMID: 24183791 DOI: 10.1016/j.ymgme.2013.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/15/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND In the past, overtreatment may have resulted in growth impairment in patients with phenylketonuria. OBJECTIVE The paper aims to investigate height and body composition in early treated patients with phenylketonuria who were diagnosed between 1981 and 2008. DESIGN A cross-sectional study of 89 patients with phenylketonuria and 78 controls aged (mean ± SD, in years) 14.4 ± 6.6 and 15.9 ± 7.1, respectively, was undertaken, including anthropometric and body composition evaluation using bioelectrical impedance. Median Phe concentrations in the last year before study enrollment were used as a measure of metabolic control. Natural protein and amino acid mixture intakes were recorded in patients. RESULTS No statistically significant differences were found on height z-scores between patients and controls aged less than 19 years (p=0.301), although all patients with classical phenylketonuria revealed negative height z-scores, resulting in a mean ± SD of -0.65 ± 0.41. Among participants aged 19 years or more, median (p25-p75) of height was significantly higher in controls [168.0 cm (159.2-174.8)] than in patients [160.5 cm (151.9-167.5)] (p=0.017). No significant differences were found between patients and controls regarding fat mass, fat free mass, muscular mass, body cell mass index and phase angle. CONCLUSION Our results suggest that early and continuously treated patients with phenylketonuria born after 1992 can achieve normal growth and body composition, although the negative height z-score in patients with classical phenylketonuria strengthens the continuous need to optimize the quality of their protein intake.
Collapse
Affiliation(s)
- Júlio C Rocha
- Center of Medical Genetics Jacinto de Magalhães, CHP, EPE, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
50
|
Bueno MA, Lage S, Delgado C, Andrade F, Couce ML, González-Lamuño D, Pérez M, Aldámiz-Echevarría L. New evidence for assessing tetrahydrobiopterin (BH(4)) responsiveness. Metabolism 2012; 61:1809-16. [PMID: 22921945 DOI: 10.1016/j.metabol.2012.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the protocol we propose for detecting BH(4)-responsive patients and the possibility of delimiting more precisely the population to be tested. METHODS We recruited 102 phenylketonuric patients on a phenylalanine (Phe)-restricted diet. The initial stage of the protocol was a 24-h BH(4) loading test involving Phe loading and subsequent ingestion of the cofactor, a 50% fall in blood Phe levels being considered a positive response. The non-responders at this stage then completed a one-week therapeutic test combining BH(4) administration and daily protein intake meeting recommended dietary allowances, to assess whether the 24-h test had detected all responders. RESULTS The 24-h test detected almost all BH(4) responders (30.3% of the 99 patients included in the analysis), with just two patients (2.0%) subsequently responding positively to the therapeutic test. The 24-h test did not give any false positive results. CONCLUSIONS The 24-h BH(4) loading test is clinically useful for screening phenylketonuric patients. Specifically, 95% of patients with Phe levels <700 μmol/L, and none with Phe levels >1500 μmol/L were BH(4)-responsive. Given these results, we conclude that patients with Phe levels<700 μmol/L or>1500 μmol/L probably do not need to be tested, prioritising the identification of BH(4)-responsiveness among individuals with intermediate Phe concentrations, between the aforementioned values. Additionally, our results suggest that the therapeutic test only needs to be performed in cases where the reduction in blood Phe levels after cofactor administration is within the range 40%-50%.
Collapse
Affiliation(s)
- María A Bueno
- Metabolic Disorders, Dietetics and Nutrition Unit, Virgen del Rocío Teaching Hospital, s/n, 41013, Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|