1
|
Ling S, Wu S, Shuai R, Yu Y, Qiu W, Wei H, Yang C, Xu P, Zou H, Feng J, Niu T, Hu H, Zhang H, Liang L, Wang Y, Chen T, Xu F, Gu X, Han L. Clinical outcomes of patients with mut-type methylmalonic acidemia identified through expanded newborn screening in China. Hum Genomics 2024; 18:84. [PMID: 39075538 PMCID: PMC11288086 DOI: 10.1186/s40246-024-00646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Isolated methylmalonic acidemia, an autosomal recessive disorder of propionate metabolism, is usually caused by mutations in the methylmalonyl-CoA mutase gene (mut-type). Because no universal consensus was made on whether mut-type methylmalonic acidemia should be included in newborn screening (NBS), we aimed to compare the outcome of this disorder detected by NBS with that detected clinically and investigate the influence of NBS on the disease course. DESIGN & METHODS In this study, 168 patients with mut-type methylmalonic acidemia diagnosed by NBS were compared to 210 patients diagnosed after disease onset while NBS was not performed. Clinical data of these patients from 7 metabolic centers in China were analyzed retrospectively, including initial manifestations, biochemical metabolites, the responsiveness of vitamin B12 therapy, and gene variation, to explore different factors on the long-term outcome. RESULTS By comparison of the clinically-diagnosed patients, NBS-detected patients showed younger age at diagnosis, less incidence of disease onset, better responsiveness of vitamin B12, younger age at start of treatment, lower levels of biochemical features before and after treatment, and better long-term prognosis (P < 0.01). Onset of disease, blood C3/C2 ratio and unresponsiveness of vitamin B12 were more positively associated with poor outcomes of patients whether identified by NBS. Moreover, the factors above as well as older age at start of treatment were positively associated with mortality. CONCLUSIONS This research highly demonstrated NBS could prevent major disease-related events and allow an earlier treatment initiation. As a key prognostic factor, NBS is beneficial for improving the overall survival of infants with mut-type methylmalonic acidemia.
Collapse
Affiliation(s)
- Shiying Ling
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Wu
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Ruixue Shuai
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Yu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Wei
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Chiju Yang
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Peng Xu
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Hui Zou
- Center of Neonatal Disease Screening, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Jizhen Feng
- Center of Neonatal Disease Screening, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Tingting Niu
- Center of Neonatal Disease Screening, Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Haili Hu
- Center of Neonatal Disease Screening, Hefei Maternal and Child Health Care Hospital, Hefei, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Chen
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Maines E, Franceschi R, Rivieri F, Piccoli G, Schulte B, Hoffmann J, Bordugo A, Rodella G, Teofoli F, Vincenzi M, Soffiati M, Camilot M. Biochemical Pattern of Methylmalonyl-CoA Epimerase Deficiency Identified in Newborn Screening: A Case Report. Int J Neonatal Screen 2024; 10:53. [PMID: 39051409 PMCID: PMC11270317 DOI: 10.3390/ijns10030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Methylmalonyl-CoA epimerase enzyme (MCEE) is responsible for catalyzing the isomeric conversion between D- and L-methylmalonyl-CoA, an intermediate along the conversion of propionyl-CoA to succinyl-CoA. A dedicated test for MCEE deficiency is not included in the newborn screening (NBS) panels but it can be incidentally identified when investigating methylmalonic acidemia and propionic acidemia. Here, we report for the first time the biochemical description of a case detected by NBS. The NBS results showed increased levels of propionylcarnitine (C3) and 2-methylcitric acid (MCA), while methylmalonic acid (MMA) and homocysteine (Hcy) were within the reference limits. Confirmatory analyses revealed altered levels of metabolites, including MCA and MMA, suggesting a block in the propionate degradation pathway. The analysis of methylmalonic pathway genes by next-generation sequencing (NGS) allowed the identification of the known homozygous nonsense variation c.139C>T (p.R47X) in exon 2 of the MCE gene. Conclusions: Elevated concentrations of C3 with a slight increase in MCA and normal MMA and Hcy during NBS should prompt the consideration of MCEE deficiency in differential diagnosis. Increased MMA levels may be negligible at NBS as they may reach relevant values beyond the first days of life and thus could be identified only in confirmatory analyses.
Collapse
Affiliation(s)
- Evelina Maines
- Division of Pediatrics, Santa Chiara General Hospital, APSS Trento, 38122 Trento, Italy; (R.F.); (M.S.)
| | - Roberto Franceschi
- Division of Pediatrics, Santa Chiara General Hospital, APSS Trento, 38122 Trento, Italy; (R.F.); (M.S.)
| | - Francesca Rivieri
- Genetic Unit, Laboratory of Clinical Pathology, Department of Laboratories, APSS Trento, 38122 Trento, Italy;
| | - Giovanni Piccoli
- CIBIO—Department of Cellular, Computational and Integrative Biology, Università degli Studi di Trento, 38122 Trento, Italy;
| | - Björn Schulte
- CeGaT GmbH Tuebingen, 72076 Tuebingen, Germany; (B.S.); (J.H.)
| | | | - Andrea Bordugo
- Inherited Metabolic Disease Unit, Pediatric Department, AOUI Verona, 37134 Verona, Italy; (A.B.); (G.R.)
| | - Giulia Rodella
- Inherited Metabolic Disease Unit, Pediatric Department, AOUI Verona, 37134 Verona, Italy; (A.B.); (G.R.)
| | - Francesca Teofoli
- Department of Mother and Child, The Regional Center for Neonatal Screening, Diagnosis and Treatment of Inherited Congenital Metabolic and Endocrinological Diseases, AOUI Verona, 37134 Verona, Italy; (F.T.); (M.V.); (M.C.)
| | - Monica Vincenzi
- Department of Mother and Child, The Regional Center for Neonatal Screening, Diagnosis and Treatment of Inherited Congenital Metabolic and Endocrinological Diseases, AOUI Verona, 37134 Verona, Italy; (F.T.); (M.V.); (M.C.)
| | - Massimo Soffiati
- Division of Pediatrics, Santa Chiara General Hospital, APSS Trento, 38122 Trento, Italy; (R.F.); (M.S.)
| | - Marta Camilot
- Department of Mother and Child, The Regional Center for Neonatal Screening, Diagnosis and Treatment of Inherited Congenital Metabolic and Endocrinological Diseases, AOUI Verona, 37134 Verona, Italy; (F.T.); (M.V.); (M.C.)
| |
Collapse
|
3
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
4
|
Couce ML, Bóveda MD, Castiñeiras DE, Vázquez-Mosquera ME, Barbosa-Gouveia S, De Castro MJ, Iglesias-Rodríguez AJ, Colón C, Cocho JA, Sánchez P. A newborn Screening Programme for Inborn errors of metabolism in Galicia: 22 years of evaluation and follow-up. Orphanet J Rare Dis 2024; 19:202. [PMID: 38760795 PMCID: PMC11102203 DOI: 10.1186/s13023-024-03204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/05/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND There is a notable lack of harmonisation in newborn screening (NBS) programmes worldwide. The Galician programme for early detection of inborn errors of metabolism (IEM) was one of the first NBS programmes in Europe to incorporate mass spectrometry (July 2000). This programme currently screens for 26 IEMs in dried blood and urine samples collected 24-72 h after birth. RESULTS In its 22-year history, this programme has analysed samples from 440,723 neonates and identified 326 cases of IEM with a prevalence of 1:1351. The most prevalent IEMs were hyperphenylalaninaemia (n = 118), followed by medium chain acyl-CoA dehydrogenase deficiency (MCADD, n = 26), galactosaemia (n = 20), and cystinurias (n = 43). Sixty-one false positives and 18 conditions related to maternal pathologies were detected. Urine samples have been identified as a useful secondary sample to reduce the rate of false positives and identify new defects. There were 5 false negatives. The overall positive value was 84.23%. The fatality rate over a median of 12.1 years of follow-up was 2.76%. The intelligence quotient of patients was normal in 95.7% of cases, and school performance was largely optimal, with pedagogic special needs assistance required in < 10% of cases. Clinical onset of disease preceded diagnosis in 4% of cases. The age at which first NBS report is performed was reduced by 4 days since 2021. CONCLUSIONS This study highlights the benefits of collecting urine samples, reduce NBS reporting time and expanding the number of IEMs included in NBS programmes.
Collapse
Affiliation(s)
- María L Couce
- Diagnosis and Treatment of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, A Coruña, Spain.
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela University, CIBERER, RICORS, MetabERN, A Coruña, Spain.
| | - María-Dolores Bóveda
- Diagnosis and Treatment of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, A Coruña, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela University, CIBERER, RICORS, MetabERN, A Coruña, Spain
| | - Daisy E Castiñeiras
- Diagnosis and Treatment of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, A Coruña, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela University, CIBERER, RICORS, MetabERN, A Coruña, Spain
| | - María-Eugenia Vázquez-Mosquera
- Diagnosis and Treatment of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, A Coruña, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela University, CIBERER, RICORS, MetabERN, A Coruña, Spain
| | - Sofía Barbosa-Gouveia
- Diagnosis and Treatment of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, A Coruña, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela University, CIBERER, RICORS, MetabERN, A Coruña, Spain
| | - María-José De Castro
- Diagnosis and Treatment of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, A Coruña, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela University, CIBERER, RICORS, MetabERN, A Coruña, Spain
| | - Agustin J Iglesias-Rodríguez
- Diagnosis and Treatment of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, A Coruña, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela University, CIBERER, RICORS, MetabERN, A Coruña, Spain
| | - Cristóbal Colón
- Diagnosis and Treatment of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, A Coruña, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela University, CIBERER, RICORS, MetabERN, A Coruña, Spain
| | - José A Cocho
- Diagnosis and Treatment of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, A Coruña, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela University, CIBERER, RICORS, MetabERN, A Coruña, Spain
| | - Paula Sánchez
- Diagnosis and Treatment of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, A Coruña, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela University, CIBERER, RICORS, MetabERN, A Coruña, Spain
| |
Collapse
|
5
|
Zhang X, Ji W, Wang Y, Zhou Z, Guo J, Tian G. Comparative analysis of inherited metabolic diseases in normal newborns and high-risk children: Insights from a 10-year study in Shanghai. Clin Chim Acta 2024; 558:117893. [PMID: 38582244 DOI: 10.1016/j.cca.2024.117893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Compare the differences between normal newborns and high-risk children with inherited metabolic diseases. The disease profile includes amino acidemias, fatty acid oxidation disorders, and organic acidemias. METHODS Data was collected on newborns and children from high-risk populations in Shanghai from December 2010 to December 2020. RESULTS 232,561 newborns were screened for disorders of organic, amino acid, and fatty acid metabolism. The initial positive rate was 0.66 % (1,526/232,561) and the positive recall rate was 77.85 %. The positive predictive value is 4.71 %. Among them, 56 cases were diagnosed as metabolic abnormalities. The total incidence rate is 1:4153. Hyperphenylalaninemia and short-chain acyl-CoA dehydrogenase are the most common diseases in newborns. In addition, in 56 children, 39 (69.42 %) were diagnosed by genetic sequencing. Some hotspot mutations in 14 IEMs have been observed, including PAH gene c.728G > A, c.611A > G, and ACADS gene c. 1031A > G, c.164C > T. A total of 49,860 symptomatic patients were screened, of which 185 were diagnosed with IEM, with a detection rate of 0.37 %. The most commonly diagnosed diseases in high-risk infants aremethylmalonic acidemia and hyperphenylalaninemia. CONCLUSION There are more clinical cases of congenital metabolic errors diagnosed by tandem mass spectrometry than newborn screening. The spectrum of diseases, prevalence, and genetic characteristics of normal newborns and high-risk children are quite different.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Wei Ji
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Yanmin Wang
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Zhuo Zhou
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Jing Guo
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Guoli Tian
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| |
Collapse
|
6
|
Holmgaard S, Kiilerich P, Borbye-Lorenzen N, Skogstrand K. Maternal pre-pregnancy and prenatal penicillin, neonatal inflammation and growth factors are associated to ADHD in the offspring. Brain Behav Immun Health 2024; 36:100739. [PMID: 38425710 PMCID: PMC10901857 DOI: 10.1016/j.bbih.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background The etiology for Attention Deficit Hyperactivity Disorder (ADHD) is generally unknown, but both genetics, biology and environment have been shown to increase the risk. The purpose of this study was to explore the prenatal risk factors, especially maternal antibiotics consumed before and during pregnancy, for the offspring for later being diagnosed with ADHD, and to find associations with neonatal biomarkers. Methods We included new-borns from the CODIBINE study, 465 children were ADHD cases and 10 954 children were controls. Ten biomarkers reflecting inflammation, neonatal stress, and/or neurologic development or damage were measured in dried blood spot samples drawn 2-3 days after birth. Maternal and child prescriptions of medication, birth data, and disorder codes were included in the statistical analyses. Results We found that maternal penicillin prescriptions until 2 years before birth increased the risk for offspring ADHD. The risk was higher with multiple prescriptions, both before and during pregnancy. Cases with maternal penicillin prescriptions had lower neonatal levels of epidermal growth factor (EGF) and soluble Tumor Necrosis Factor Receptor I (sTNF RI). Maternal prescriptions for psychotropic medication have, as expected, the highest correlation to offspring ADHD, but we found no differences in biomarkers in this group. Conclusion The fact that the offspring risk for ADHD was increased also with pre-pregnancy prescriptions of penicillin, indicates that it is not the penicillin that is the direct cause of the adverse effects. The significant differences in biomarkers strengthens the findings, as these could not be associated to other factors than maternal penicillin and offspring ADHD.
Collapse
Affiliation(s)
- Solveig Holmgaard
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Pia Kiilerich
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Nis Borbye-Lorenzen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Kristin Skogstrand
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
7
|
Onuki T, Hiroshima S, Sawano K, Shibata N, Ogawa Y, Nagasaki K, Nyuzuki H. A Study of Maternal Patients Diagnosed with Inborn Errors of Metabolism Due to Positive Newborn Mass Screening in Their Newborns. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1341. [PMID: 37628339 PMCID: PMC10452974 DOI: 10.3390/children10081341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND There are reports of mothers being diagnosed with inborn errors of metabolism (IEM) via positive newborn screening (NBS) of their newborns. Mothers with IEM are often considered to have mild cases of little pathological significance. Based in Niigata Prefecture, this study aimed to investigate mothers newly diagnosed with IEM via positive NBS in their newborns using tandem mass spectrometry, and to clarify the disease frequency and severity. METHODS This was a single-institution, population-based, retrospective study. The subjects were mothers whose newborns had false-positive NBS, among 80,410 newborns who underwent NBS between April 2016 and May 2021. RESULT there were 3 new mothers were diagnosed with IEM (2 with primary systemic carnitine deficiency (PCD) and 1 with 3-methylcrotonyl-CoA carboxylase deficiency) out of 5 who underwent examination among 18 false positives. The opportunity for diagnosis was low C0 and high C5-OH acylcarnitine levels in their newborn. Two novel SLC22A5 variants (c.1063T > C/c.1266A > G) were identified in patients with PCD. None of the patients had any complications at the time of diagnosis, but two patients showed improvement in fatigue and headache after taking oral carnitine. CONCLUSION New mothers with IEM cannot be considered as mild cases and need to be treated when necessary. The two novel SLC22A5 variants further expand the variant spectrum of PCD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hiromi Nyuzuki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medicine and Dental Sciences, Niigata 951-8510, Japan; (T.O.); (S.H.); (K.S.); (N.S.); (Y.O.); (K.N.)
| |
Collapse
|
8
|
Lefèvre CR, Labarthe F, Dufour D, Moreau C, Faoucher M, Rollier P, Arnoux JB, Tardieu M, Damaj L, Bendavid C, Dessein AF, Acquaviva-Bourdain C, Cheillan D. Newborn Screening of Primary Carnitine Deficiency: An Overview of Worldwide Practices and Pitfalls to Define an Algorithm before Expansion of Newborn Screening in France. Int J Neonatal Screen 2023; 9:6. [PMID: 36810318 PMCID: PMC9944086 DOI: 10.3390/ijns9010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Primary Carnitine Deficiency (PCD) is a fatty acid oxidation disorder that will be included in the expansion of the French newborn screening (NBS) program at the beginning of 2023. This disease is of high complexity to screen, due to its pathophysiology and wide clinical spectrum. To date, few countries screen newborns for PCD and struggle with high false positive rates. Some have even removed PCD from their screening programs. To understand the risks and pitfalls of implementing PCD to the newborn screening program, we reviewed and analyzed the literature to identify hurdles and benefits from the experiences of countries already screening this inborn error of metabolism. In this study, we therefore, present the main pitfalls encountered and a worldwide overview of current practices in PCD newborn screening. In addition, we address the optimized screening algorithm that has been determined in France for the implementation of this new condition.
Collapse
Affiliation(s)
| | - François Labarthe
- Reference Center of Inherited Metabolic Disorders, Clocheville Hospital, 37000 Tours, France
| | - Diane Dufour
- Reference Center of Inherited Metabolic Disorders, Clocheville Hospital, 37000 Tours, France
| | | | | | - Paul Rollier
- Rennes University Hospital Center, 35033 Rennes, France
| | - Jean-Baptiste Arnoux
- Reference Center for Inborn Error of Metabolism, Department of Pediatrics, Necker-Enfants Malades Hospital, APHP, 75015 Paris, France
| | - Marine Tardieu
- Reference Center of Inherited Metabolic Disorders, Clocheville Hospital, 37000 Tours, France
| | - Léna Damaj
- Rennes University Hospital Center, 35033 Rennes, France
| | | | - Anne-Frédérique Dessein
- Metabolism and Rare Disease Unit, Department of Biochemistry and Molecular Biology, Center of Biology and Pathology, Lille University Hospital Center, 59000 Lille, France
| | - Cécile Acquaviva-Bourdain
- Center for Inherited Metabolic Disorders and Neonatal Screening, East Biology and Pathology Department, Groupement Hospitalier Est (GHE), Hospices Civils de Lyon, 69500 Bron, France
| | - David Cheillan
- Center for Inherited Metabolic Disorders and Neonatal Screening, East Biology and Pathology Department, Groupement Hospitalier Est (GHE), Hospices Civils de Lyon, 69500 Bron, France
| |
Collapse
|
9
|
The Importance of Neonatal Screening for Galactosemia. Nutrients 2022; 15:nu15010010. [PMID: 36615667 PMCID: PMC9823668 DOI: 10.3390/nu15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Galactosemia is an inborn metabolic disorder caused by a deficient activity in one of the enzymes involved in the metabolism of galactose. The first description of galactosemia in newborns dates from 1908, ever since complex research has been performed on cell and animal models to gain more insights into the molecular and clinical bases of this challenging disease. In galactosemia, the newborn appears to be born in proper health, having a window of opportunity before developing major morbidities that may even be fatal following ingestion of milk that contains galactose. Galactosemia cannot be cured, but its negative consequences on health can be avoided by establishing precocious diagnosis and treatment. All the foods that contain galactose should be eliminated from the diet when there is a suspicion of galactosemia. The neonatal screening for galactosemia can urge early diagnosis and intervention, preventing complications. All galactosemia types may be detected during the screening of newborns for this disorder. The major target is, however, galactose-1-phosphate uridyltransferase (GALT) deficiency galactosemia, which is diagnosed by applying a combination of total galactose and GALT enzyme analysis as well as, in certain programs, mutation screening. Most critically, infants who exhibit symptoms suggestive of galactosemia should undergo in-depth testing for this condition even when the newborn screening shows normal results. The decision to enroll global screening for galactosemia among the specific population still faces many challenges. In this context, the present narrative review provides an updated overview of the incidence, clinical manifestations, diagnosis, therapy, and prognosis of galactosemia, questioning under the dome of these aspects related to the disease the value of its neonatal monitoring.
Collapse
|
10
|
Martín-Rivada Á, Cambra Conejero A, Martín-Hernández E, Moráis López A, Bélanger-Quintana A, Cañedo Villarroya E, Quijada-Fraile P, Bellusci M, Chumillas Calzada S, Bergua Martínez A, Stanescu S, Martínez-Pardo Casanova M, Ruíz-Sala P, Ugarte M, Pérez González B, Pedrón-Giner C. Newborn screening for propionic, methylmalonic acidemia and vitamin B12 deficiency. Analysis of 588,793 newborns. J Pediatr Endocrinol Metab 2022; 35:1223-1231. [PMID: 36112821 DOI: 10.1515/jpem-2022-0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/13/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES We present the results of our experience in the diagnosis and follow up of the positive cases for propionic, methylmalonic acidemias and cobalamin deficiencies (PA/MMA/MMAHC) since the Expanded Newborn Screening was implemented in Madrid Region. METHODS Dried blood samples were collected 48 h after birth. Amino acids and acylcarnitines were quantitated by MS/MS. Newborns with alterations were referred to the clinical centers for follow-up. Biochemical and molecular genetic studies for confirmation of a disease were performed. RESULTS In the period 2011-2020, 588,793 children were screened, being 953 of them were referred to clinical units for abnormal result (192 for elevated C3 levels). Among them, 88 were false positive cases, 85 maternal vitamin B12 deficiencies and 19 were confirmed to suffer an IEM (8 PA, 4 MMA, 7 MMAHC). Ten out 19 cases displayed symptoms before the NBS results (6 PA, 1 MMA, 3 MMAHC). C3, C16:1OH+C17 levels and C3/C2 and C3/Met ratios were higher in newborns with PA/MMA/MMAHC. Cases diagnosed with B12 deficiency had mean B12 levels of 187.6 ± 76.9 pg/mL and their mothers 213.7 ± 95.0; 5% of the mothers were vegetarian or had poor eating while 15% were diagnosed of pernicious anemia. Newborns and their mothers received treatment with B12 with different posology, normalizing their levels and the secondary alterations disappeared. CONCLUSIONS Elevated C3 are a frequent cause for abnormal result in newborn screening with a high rate of false positive cases. Presymptomatic diagnosis of most of PA and some MMA/MMAHC is difficult. Vitamin B12 deficiency secondary to maternal deprivation is frequent with an heterogenous clinical and biochemical spectrum.
Collapse
Affiliation(s)
- Álvaro Martín-Rivada
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Ana Cambra Conejero
- Laboratorio de Cribado Neonatal de la Comunidad de Madrid, Servicio de Bioquímica Clínica, Hospital General Universitario GregorioMarañón, Madrid, Spain
| | - Elena Martín-Hernández
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Madrid, Spain
| | - Ana Moráis López
- Unidad de Nutrición Infantil y Enfermedades Metabólicas, Hospital Universitario La Paz, Madrid, Spain
| | - Amaya Bélanger-Quintana
- Centro de Referencia Nacional (CSUR) en Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Elvira Cañedo Villarroya
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Pilar Quijada-Fraile
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Madrid, Spain
| | - Marcelo Bellusci
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Madrid, Spain
| | - Silvia Chumillas Calzada
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Madrid, Spain
| | - Ana Bergua Martínez
- Unidad de Nutrición Infantil y Enfermedades Metabólicas, Hospital Universitario La Paz, Madrid, Spain
| | - Sinziana Stanescu
- Centro de Referencia Nacional (CSUR) en Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Pedro Ruíz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IdiPAZ, CIBERER, Madrid, Spain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IdiPAZ, CIBERER, Madrid, Spain
| | - Belén Pérez González
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IdiPAZ, CIBERER, Madrid, Spain
| | - Consuelo Pedrón-Giner
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| |
Collapse
|
11
|
Zhang H, Wang Y, Qiu Y, Zhang C. Expanded newborn screening for inherited metabolic disorders by tandem mass spectrometry in a northern Chinese population. Front Genet 2022; 13:801447. [PMID: 36246604 PMCID: PMC9562093 DOI: 10.3389/fgene.2022.801447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Tandem mass spectrometry (MS/MS) has been developed as one of the most important diagnostic platforms for the early detection and screening of inherited metabolic disorders (IMDs). To determine the disease spectrum and genetic characteristics of IMDs in Suqian city of Jiangsu province in the northern Chinese population, dried blood spots from 2,04,604 newborns, were assessed for IMDs by MS/MS from January 2016 to November 2020. Suspected positive patients were diagnosed through next-generation sequencing (NGS) and validated by Sanger sequencing. One hundred patients with IMDs were diagnosed, resulting in an overall incidence of 1/2,046, of which 56 (1/3,653), 22 (1/9,300), and 22 (1/9,300) were confirmed amino acids disorders (AAs), organic acids disorders (OAs), fatty acid oxidation disorders (FAODs) positive cases, respectively. The highest incidence of IMDs is phenylalanine hydroxylase deficiency (PAHD) (45 cases), with a total incidence of 1:4,546. Hot spot mutations in phenylalanine hydroxylase (PAH)-related genes are c.158G > A (24.44%), c.728G > A (16.67%), c.611A > G (7.78%), and c.331C>T (7.78%). The related hot spot mutation of the MMACHC gene is c.609G > A (45.45%). Short-chain acyl-CoA dehydrogenase deficiency (SCAD)-related ACADS gene hotspot mutations are c.164C > T (33.33%) and c.1031A > G (33.33%). Our work indicated that the overall incidence of IMDs is high, and the mutations in PAH, ACADS, and MMACHC genes are the leading causes of IMDs in Suqian city. The incidence of AAs in Suqian city is higher than in other Chinese areas. The disease spectrum and genetic backgrounds were elucidated, contributing to the treatment and prenatal genetic counseling of these disorders in this region.
Collapse
Affiliation(s)
- Hong Zhang
- Suqian Maternal and Child Health Care Hospital, Suqian, China
| | - Yanyun Wang
- Nanjing Maternal and Child Health Care Hospital, Nanjing, China
| | - Yali Qiu
- Suqian Maternal and Child Health Care Hospital, Suqian, China
| | - Chao Zhang
- Suqian Maternal and Child Health Care Hospital, Suqian, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
12
|
Jin L, Han X, He F, Zhang C. Prevalence of methylmalonic acidemia among newborns and the clinical-suspected population: a meta-analyse. J Matern Fetal Neonatal Med 2021; 35:8952-8967. [PMID: 34847798 DOI: 10.1080/14767058.2021.2008351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
IMPORTANCE Knowing the scale of rare inborn errors is important for screening and resource allocation. Evidence on the prevalence of methylmalonic acidemia (MMA) among newborns and the clinical-suspected population from large-scale screening programs needs to be systematically synthesized. OBJECTIVE To estimate the worldwide prevalence of MMA for newborns and the clinical-suspected population and explore the differences in different regions, periods, and diagnostic technologies. DATA SOURCES MEDLINE, Embase, CRD, Cochrane Library, Scopus, CINAHL, and PROSPERO. Study Selection: All studies reporting the epidemiology characteristics of MMA were selected. DATA EXTRACTION AND SYNTHESIS Characteristics of study, subjects, and epidemiology were extracted, random-effect models were used for meta-analyses. MAIN OUTCOME AND MEASURE Pooled prevalence of MMA. RESULTS This study included 111 studies. The pooled prevalence of MMA worldwide was 1.14 per 100,000 newborns (1516/190,229,777 newborns, 95% CI: 0.99-1.29) and 652.11 per 100,000 clinical-suspected patients (1360/4,805,665 clinical-suspected individuals, CI: 544.14-760.07). Asia and Africa got a higher pooled prevalence of MMA. The prevalence of MMA in newborns increased through the years, while that in the clinical-suspected population decreased. Collecting blood ≥ 72 h after birth had a higher pooled prevalence of MMA than collecting during 24 h-72 h after birth. The combining-use of MS/MS and GC/MS had a higher pooled prevalence than the single-use of MS/MS or GC/MS. Prevalence of cbl C, mut, cbl B, cbl A, isolated MMA, combined MMA and homocystinuria, vitamin B12-responsive MMA was synthesized. CONCLUSIONS AND RELEVANCE Prevalence of MMA among newborns was extremely low, but considerably high in the clinical-suspected population, indicating the need for more efficient newborn screening strategies and closer monitoring of the high-risk population for the early signs of MMA. Asia and Africa should attach importance to the high prevalence of MMA. Further diagnostic tests were recommended for the combining-use vs single-use of MS/MS and GC/MS and for collecting blood after 72 h vs during 24-72 h after birth.
Collapse
Affiliation(s)
- Lizi Jin
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xueyan Han
- Department of Medical Statistics, Peking University First Hospital, Beijing, P. R. China
| | - Falin He
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
13
|
Bækvad-Hansen M, Adamsen D, Bybjerg-Grauholm J, Hougaard DM. Implementation of SCID Screening in Denmark. Int J Neonatal Screen 2021; 7:ijns7030054. [PMID: 34449527 PMCID: PMC8395828 DOI: 10.3390/ijns7030054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Screening for SCID was added to the Danish Neonatal Screening Program in February 2020. The screening uses a RealtimePCR kit and we here present the results and experiences with the validation of the kit and the first 10 months of screening.
Collapse
|
14
|
Lund AM, Wibrand F, Skogstrand K, Bækvad-Hansen M, Gregersen N, Andresen BS, Hougaard DM, Dunø M, Olsen RKJ. Use of Molecular Genetic Analyses in Danish Routine Newborn Screening. Int J Neonatal Screen 2021; 7:ijns7030050. [PMID: 34449524 PMCID: PMC8395600 DOI: 10.3390/ijns7030050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
Historically, the analyses used for newborn screening (NBS) were biochemical, but increasingly, molecular genetic analyses are being introduced in the workflow. We describe the application of molecular genetic analyses in the Danish NBS programme and show that second-tier molecular genetic testing is useful to reduce the false positive rate while simultaneously providing information about the precise molecular genetic variant and thus informing therapeutic strategy and easing providing information to parents. When molecular genetic analyses are applied as second-tier testing, valuable functional data from biochemical methods are available and in our view, such targeted NGS technology should be implemented when possible in the NBS workflow. First-tier NGS technology may be a promising future possibility for disorders without a reliable biomarker and as a general approach to increase the adaptability of NBS for a broader range of genetic diseases, which is important in the current landscape of quickly evolving new therapeutic possibilities. However, studies on feasibility, sensitivity, and specificity are needed as well as more insight into what views the general population has towards using genetic analyses in NBS. This may be sensitive to some and could have potentially negative consequences for the NBS programme.
Collapse
Affiliation(s)
- Allan Meldgaard Lund
- Center for Inherited Metabolic Disorders, Departments of Clinical Genetics and Pediatrics, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence: ; Fax: +45-35454072
| | - Flemming Wibrand
- Metabolic Laboratory, Department of Clinical Genetics, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
| | - Kristin Skogstrand
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark; (K.S.); (M.B.-H.); (D.M.H.)
| | - Marie Bækvad-Hansen
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark; (K.S.); (M.B.-H.); (D.M.H.)
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (N.G.); (R.K.J.O.)
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark;
| | - David M. Hougaard
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark; (K.S.); (M.B.-H.); (D.M.H.)
| | - Morten Dunø
- Molecular Genetics Laboratory, Department of Clinical Genetics, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (N.G.); (R.K.J.O.)
| |
Collapse
|
15
|
Touati G, Gorce M, Oliver-Petit I, Broué P, Ausseil J. [New Inborn Errors of Metabolism added in the French program of neonatal screening]. Med Sci (Paris) 2021; 37:507-518. [PMID: 34003097 DOI: 10.1051/medsci/2021057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inborn Errors of Metabolism (IEM) are rare and heterogenous disorders. For most IEMs, clinical signs are non-specific or belated. Late diagnosis is frequent, leading to death or severe sequelae. Some IEM induce intermediate metabolites circulating in the blood. They may be detected by tandem mass spectrometry. This method allows the simultaneous detection of many IEM in different metabolic pathways. In France, newborn screening (NBS) program for IEM, limited to phenylketonuria for decades, has been recently extended to medium chain acyl-CoA dehydrogenase deficiency. Rationale, methodology and organization of this new NBS program are described. Seven other IEM (maple syrup urine disease, homocystinuria, tyrosinemia type I, glutaric aciduria type I, isovaleric acidemia, long chain hydroxy-acyl-CoA dehydrogenase deficiency, carnitine uptake disorder) should be screened in the next program extension. Efforts are needed to fully understand the predictive value of each abnormal testing at birth, decrease the false positive rate, and develop the adequate management strategies.
Collapse
Affiliation(s)
- Guy Touati
- Centre de référence en maladies héréditaires du métabolisme, Hôpital des enfants, 330 avenue de Grande-Bretagne, 31059 Toulouse Cedex 9, France
| | - Magali Gorce
- Centre de référence en maladies héréditaires du métabolisme, Hôpital des enfants, 330 avenue de Grande-Bretagne, 31059 Toulouse Cedex 9, France
| | - Isabelle Oliver-Petit
- Centre régional de dépistage néonatal. Groupe hospitalier Purpan, 330 avenue de Grande-Bretagne, 31059 Toulouse Cedex 9, France
| | - Pierre Broué
- Centre de référence en maladies héréditaires du métabolisme, Hôpital des enfants, 330 avenue de Grande-Bretagne, 31059 Toulouse Cedex 9, France
| | - Jérôme Ausseil
- Infinity, Inserm UMR1291, CNRS UMR5051, Université de Toulouse III, 31000 Toulouse, France. - Centre régional de dépistage néonatal, Institut fédératif de biologie, Groupe hospitalier Purpan, 330 avenue de Grande-Bretagne, 31059 Toulouse Cedex 9, France
| |
Collapse
|
16
|
Chen Y, Lin X, Lin Q, Zeng Y, Qiu X, Liu G, Zhu W. Gene diagnosis and pedigree analysis of two Han ethnicity families with propionic acidemia in Fujian. Medicine (Baltimore) 2021; 100:e24161. [PMID: 33725819 PMCID: PMC7969319 DOI: 10.1097/md.0000000000024161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/10/2020] [Indexed: 01/05/2023] Open
Abstract
Propionic acidemia is associated with pathogenic variants in PCCA or PCCB gene. We investigated the potential pathogenic variants in PCCA or PCCB genes in Fujian Han population.Two probands and their families of Han ethnicity containing two generations were subject to newborn screening using tandem mass spectrometry, followed by diagnosis using urine gas chromatography mass spectrometry. Sanger sequencing was used to identify potential mutations in PCCA and PCCB genes.Compound heterozygous variants were identified in PCCB gene in two siblings of the first family, the youngest girl showed a novel missense variant c.1381G>C (p.Ala461Pro) in exon 13 and a heterozygous missense variant c.1301C>T (p.Ala434Val) in exon 13, which were inherited respectively from their parents. The oldest boy is a carrier with a novel missense variant c.1381G>C (p.Ala461Pro) in exon 13 which were inherited from his father. In the second family, c.1535G>A homozygous mutations were identified in the baby girl, which were inherited respectively from their parents. In silico analysis, several different types of bioinformatic software were utilized, which predicted that the novel variant c.1381G>C in PCCB gene was damaged. According to ACMG principle, the missense variant c.1381G>C (p.Ala461Pro) in exon 13 was a Variant of Undetermined Significance (VUS).One novel missense variant and two missense variants in PCCB gene were identified in the study. The novel variant of PCCB gene identified VUS was identified for the first time in the Chinese population, which enriched the mutational spectrum of PCCB gene.
Collapse
Affiliation(s)
- Yao Chen
- Neonatal Screening Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou
| | - Xuehua Lin
- Neonatal Screening Center, Sanming Women and Children's Health Hospital, Sanming
| | - Qingying Lin
- Neonatal Screening Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou
| | - Yinglin Zeng
- Neonatal Screening Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou
| | - Xiaolong Qiu
- Neonatal Screening Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou
| | - Guanghua Liu
- Department of Paediatrics, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wenbin Zhu
- Neonatal Screening Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou
| |
Collapse
|
17
|
Lüders A, Blankenstein O, Brockow I, Ensenauer R, Lindner M, Schulze A, Nennstiel U. Neonatal Screening for Congenital Metabolic and Endocrine Disorders–Results From Germany for the Years 2006–2018. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:101-108. [PMID: 33835005 PMCID: PMC8200684 DOI: 10.3238/arztebl.m2021.0009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 10/31/2019] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The purpose of neonatal screening is the early detection of congenital metabolic and endocrine disorders that, if untreated, could lead to fatal crises or other long-term adverse sequelae. In Germany, neonatal screening is legally regulated. Quality-assurance reports ("DGNS reports") are created and published annually by the German Society for Neonatal Screening (Deutsche Gesellschaft für Neugeborenen-Screening). Data from the DGNS reports for the years 2006-2018 serve as the basis of the present publication. METHODS For the years 2006-2018, prevalences were calculated and data on process quality were evaluated. RESULTS Among 9 218 538 births, 6917 neonates were identified who had one of the target diseases. The overall prevalence was 75 per 100 000 neonates; the disorders most commonly found were congenital hypothyroidism (30 per 100 000) followed by phenylketonuria (PKU) and medium-chain acyl-CoA dehydrogenase deficiency (MCAD) (10 per 100 000 each). Of the 272 205 follow-up screenings requested, 80% were received. The rate of positive screening findings (recall rate) declined over the observation period, from 0.90% in 2006 to 0.37% in 2018. For every five positive screening findings, one case of a target disorder was confirmed. 79% of the children for whom treatment was indicated began to receive treatment within two weeks. CONCLUSION The low recall rate and the early initiation of treatment in 79% of the affected children indicate that neonatal screening for metabolic and endocrine disorders in Germany is effective. The incorporation of tracking structures and the introduction of a registry could further improve the quality of the program.
Collapse
Affiliation(s)
- Anja Lüders
- Bavarian State Office for Health and Food Safety: Health Reporting, Epidemiology, Social Medicine, Child Health, Screening Center, Oberschleißheim
| | - Oliver Blankenstein
- Institute for Experimental Pediatric Endocrinology, Charité–University Medical Center Berlin
| | - Inken Brockow
- Bavarian State Office for Health and Food Safety: Health Reporting, Epidemiology, Social Medicine, Child Health, Screening Center, Oberschleißheim
| | - Regina Ensenauer
- Department of Child Nutrition, Federal Research Institute of Nutrition and Food, Max Rubner Institute, Karlsruhe; Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children’s Hospital, Heinrich Heine University Düsseldorf
| | - Martin Lindner
- Neonatal Metabolic Screening, Hessian Center for Preventive Care in Children, Screening Center Hesse, University Hospital Frankfurt/Main
| | - Andreas Schulze
- The Hospital for Sick Children and University of Toronto, Canada
| | - Uta Nennstiel
- Bavarian State Office for Health and Food Safety: Health Reporting, Epidemiology, Social Medicine, Child Health, Screening Center, Oberschleißheim
| |
Collapse
|
18
|
Queijo C, Lemes A, Queiruga G. 25 Years of Newborn Screening in Uruguay. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - A. Lemes
- Banco de Prevision Social, Uruguay
| | | |
Collapse
|
19
|
Stinton C, Fraser H, Geppert J, Johnson R, Connock M, Johnson S, Clarke A, Taylor-Phillips S. Newborn Screening for Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase and Mitochondrial Trifunctional Protein Deficiencies Using Acylcarnitines Measurement in Dried Blood Spots-A Systematic Review of Test Accuracy. Front Pediatr 2021; 9:606194. [PMID: 33816395 PMCID: PMC8017228 DOI: 10.3389/fped.2021.606194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies are rare autosomal recessive fatty acid β-oxidation disorders. Their clinical presentations are variable, and premature death is common. They are included in newborn blood spot screening programs in many countries around the world. The current process of screening, through the measurement of acylcarnitines (a metabolic by-product) in dried blood spots with tandem mass spectrometry, is subject to uncertainty regarding test accuracy. Methods: We conducted a systematic review of literature published up to 19th June 2018. We included studies that investigated newborn screening for LCHAD or MTP deficiencies by tandem mass spectrometry of acylcarnitines in dried blood spots. The reference standards were urine organic acids, blood acylcarnitine profiles, enzyme analysis in cultured fibroblasts or lymphocytes, mutation analysis, or at least 10-year follow-up. The outcomes of interest were sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Assessment of titles, abstracts, and full-text papers and quality appraisal were carried out independently by two reviewers. One reviewer extracted study data. This was checked by a second reviewer. Results: Ten studies provided data on test accuracy. LCHAD or MTP deficiencies were identified in 23 babies. No cases of LCHAD/MTP deficiencies were identified in four studies. PPV ranged from 0% (zero true positives and 28 false positives from 276,565 babies screened) to 100% (13 true positives and zero false positives from 2,037,824 babies screened). Sensitivity, specificity, and NPV could not be calculated as there was no systematic follow-up of babies who screened negative. Conclusions: Test accuracy estimates of screening for LCHAD and MTP deficiencies with tandem mass spectrometry measurement of acylcarnitines in dried blood were variable in terms of PPVs. Screening methods (including markers and thresholds) varied between studies, and sensitivity, specificity, and NPVs are unknown.
Collapse
Affiliation(s)
- Chris Stinton
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Hannah Fraser
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Julia Geppert
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rebecca Johnson
- School of Nursing, Midwifery and Health, Coventry University, Coventry, United Kingdom
| | - Martin Connock
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Samantha Johnson
- Warwick Library, University of Warwick, Coventry, United Kingdom
| | - Aileen Clarke
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
20
|
Tangeraas T, Sæves I, Klingenberg C, Jørgensen J, Kristensen E, Gunnarsdottir G, Hansen EV, Strand J, Lundman E, Ferdinandusse S, Salvador CL, Woldseth B, Bliksrud YT, Sagredo C, Olsen ØE, Berge MC, Trømborg AK, Ziegler A, Zhang JH, Sørgjerd LK, Ytre-Arne M, Hogner S, Løvoll SM, Kløvstad Olavsen MR, Navarrete D, Gaup HJ, Lilje R, Zetterström RH, Stray-Pedersen A, Rootwelt T, Rinaldo P, Rowe AD, Pettersen RD. Performance of Expanded Newborn Screening in Norway Supported by Post-Analytical Bioinformatics Tools and Rapid Second-Tier DNA Analyses. Int J Neonatal Screen 2020; 6:51. [PMID: 33123633 PMCID: PMC7570219 DOI: 10.3390/ijns6030051] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
In 2012, the Norwegian newborn screening program (NBS) was expanded (eNBS) from screening for two diseases to that for 23 diseases (20 inborn errors of metabolism, IEMs) and again in 2018, to include a total of 25 conditions (21 IEMs). Between 1 March 2012 and 29 February 2020, 461,369 newborns were screened for 20 IEMs in addition to phenylketonuria (PKU). Excluding PKU, there were 75 true-positive (TP) (1:6151) and 107 (1:4311) false-positive IEM cases. Twenty-one percent of the TP cases were symptomatic at the time of the NBS results, but in two-thirds, the screening result directed the exact diagnosis. Eighty-two percent of the TP cases had good health outcomes, evaluated in 2020. The yearly positive predictive value was increased from 26% to 54% by the use of the Region 4 Stork post-analytical interpretive tool (R4S)/Collaborative Laboratory Integrated Reports 2.0 (CLIR), second-tier biochemical testing and genetic confirmation using DNA extracted from the original dried blood spots. The incidence of IEMs increased by 46% after eNBS was introduced, predominantly due to the finding of attenuated phenotypes. The next step is defining which newborns would truly benefit from screening at the milder end of the disease spectrum. This will require coordinated international collaboration, including proper case definitions and outcome studies.
Collapse
Affiliation(s)
- Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Ingjerd Sæves
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Claus Klingenberg
- Department of Paediatrics, University Hospital of North Norway, 9019 Tromsø, Norway;
- Paediatric Research Group, Department of Clinical Medicine, UiT The Artic University of Norway, 9019 Tromsø, Norway
| | - Jens Jørgensen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Erle Kristensen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
- Paediatric Research Group, Department of Clinical Medicine, UiT The Artic University of Norway, 9019 Tromsø, Norway
| | - Gunnþórunn Gunnarsdottir
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (G.G.); (R.L.); (T.R.)
| | | | - Janne Strand
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Emma Lundman
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, AZ 1105 Amsterdam, The Netherlands;
| | - Cathrin Lytomt Salvador
- Norwegian National Unit for Diagnostics of Congenital Metabolic Disorders, Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway; (C.L.S.); (B.W.); (Y.T.B.)
| | - Berit Woldseth
- Norwegian National Unit for Diagnostics of Congenital Metabolic Disorders, Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway; (C.L.S.); (B.W.); (Y.T.B.)
| | - Yngve T Bliksrud
- Norwegian National Unit for Diagnostics of Congenital Metabolic Disorders, Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway; (C.L.S.); (B.W.); (Y.T.B.)
| | - Carlos Sagredo
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Øyvind E Olsen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Mona C Berge
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Anette Kjoshagen Trømborg
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Anders Ziegler
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Jin Hui Zhang
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Linda Karlsen Sørgjerd
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Mari Ytre-Arne
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Silje Hogner
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Siv M Løvoll
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Mette R Kløvstad Olavsen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Dionne Navarrete
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Hege J Gaup
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Rina Lilje
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (G.G.); (R.L.); (T.R.)
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Solna, Sweden, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden;
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Terje Rootwelt
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (G.G.); (R.L.); (T.R.)
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Piero Rinaldo
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, NY 55902, USA;
| | - Alexander D Rowe
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Rolf D Pettersen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| |
Collapse
|
21
|
Hu Z, Yang J, Lin Y, Wang J, Hu L, Zhang C, Zhang Y, Huang X. Determination of methylmalonic acid, 2-methylcitric acid, and total homocysteine in dried blood spots by liquid chromatography-tandem mass spectrometry: A reliable follow-up method for propionylcarnitine-related disorders in newborn screening. J Med Screen 2020; 28:93-99. [PMID: 32615850 DOI: 10.1177/0969141320937725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Determination of methylmalonic acid, 2-methylcitric acid, and total homocysteine in dried blood spots by liquid chromatography-tandem mass spectrometry has usually been used as a second-tier test to improve performance of newborn screening for propionylcarnitine-related disorders. However, factors that potentially affect its detection results have not been investigated, and we aimed to evaluate these influencing factors and explore their potential utility in newborn screening and initial follow-up for propionylcarnitine-related disorders. METHODS This study comprised a prospective group (1998 healthy infants, to establish cutoff values and investigate the influencing factors) and a retrospective group (804 suspected positive cases screened from 381, 399 newborns for propionylcarnitine-related disorders by tandem mass spectrometry, to evaluate the performance of newborn screening and initial follow-up). RESULTS Cutoff values for methylmalonic acid, 2-methylcitric acid, and total homocysteine were 2.12, 0.70, and 10.05 µmol/l, respectively. Concentration of methylmalonic acid, 2-methylcitric acid, and total homocysteine in dried blood spots is not impacted by sex, age, birth weight, gestational age, or dried blood spot storage time. A total of 75 of 804 cases were screened positive by combined tandem mass spectrometry and liquid chromatography-tandem mass spectrometry, thus eliminating 90% of the false positives without compromising sensitivity. Eighteen propionylcarnitine-related disorders were successfully identified, including one CblX case missed in the initial follow-up by tandem mass spectrometry. CONCLUSIONS Methylmalonic acid, 2-methylcitric acid, and total homocysteine detected in dried blood spots by liquid chromatography-tandem mass spectrometry is a reliable, specific, and sensitive approach for identifying propionylcarnitine-related disorders. We recommend this assay should be performed rather than tandem mass spectrometry in follow-up for propionylcarnitine-related disorders besides second-tier tests in newborn screening.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianbin Yang
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Junjuan Wang
- Department of Epidemiology and Bio-Statistics, 535300Zhejiang University School of Public Health, Hangzhou, China.,Zhejiang BiosanBiochemical Technologies Co. Ltd, Hangzhou, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chao Zhang
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yu Zhang
- Zhejiang BiosanBiochemical Technologies Co. Ltd, Hangzhou, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
22
|
Sörensen L, von Döbeln U, Åhlman H, Ohlsson A, Engvall M, Naess K, Backman-Johansson C, Nordqvist Y, Wedell A, Zetterström RH. Expanded Screening of One Million Swedish Babies with R4S and CLIR for Post-Analytical Evaluation of Data. Int J Neonatal Screen 2020; 6:42. [PMID: 33073033 PMCID: PMC7423009 DOI: 10.3390/ijns6020042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 11/16/2022] Open
Abstract
Sweden has one neonatal screening laboratory, receiving 115 to 120 thousand samples per year. Among the one million babies screened by tandem mass spectrometry from November 2010 until July 2019, a total of 665 babies were recalled and 311 verified as having one of the diseases screened for with this methodology, giving a positive predictive value (PPV) of 47% and an incidence of 1:3200. The PPV was high (41%) already in the first year after start of screening, thanks to the availability of the collaborative project Region 4 Stork database. The PPV is presently 58%. This improvement was achieved by the implementation of second-tier analyses in the screening for methylmalonic aciduria, propionic aciduria, isovaleric aciduria, and homocystinuria, and the employment of various post analytical tools of the Region 4 Stork, and its successor the collaborative laboratory integrated reports.
Collapse
Affiliation(s)
- Lene Sörensen
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Ulrika von Döbeln
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Henrik Åhlman
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
| | - Annika Ohlsson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Martin Engvall
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Carolina Backman-Johansson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
| | - Yvonne Nordqvist
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
23
|
Fraser H, Geppert J, Johnson R, Johnson S, Connock M, Clarke A, Taylor-Phillips S, Stinton C. Evaluation of earlier versus later dietary management in long-chain 3-hydroxyacyl-CoA dehydrogenase or mitochondrial trifunctional protein deficiency: a systematic review. Orphanet J Rare Dis 2019; 14:258. [PMID: 31730477 PMCID: PMC6858661 DOI: 10.1186/s13023-019-1226-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies are rare fatty acid β-oxidation disorders. Without dietary management the conditions are life-threatening. We conducted a systematic review to investigate whether pre-symptomatic dietary management following newborn screening provides better outcomes than treatment following symptomatic detection. Methods We searched Web of Science, Medline, Pre-Medline, Embase and the Cochrane Library up to 23rd April 2018. Two reviewers independently screened titles, abstracts and full texts for eligibility and quality appraised the studies. Data extraction was performed by one reviewer and checked by another. Results We included 13 articles out of 7483 unique records. The 13 articles reported on 11 patient groups, including 174 people with LCHAD deficiency, 18 people with MTP deficiency and 12 people with undifferentiated LCHAD/MTP deficiency. Study quality was moderate to weak in all studies. Included studies suggested fewer heart and liver problems in screen-detected patients, but inconsistent results for mortality. Follow up analyses compared long-term outcomes of (1) pre-symptomatically versus symptomatically treated patients, (2) screened versus unscreened patients, and (3) asymptomatic screen-detected, symptomatic screen-detected, and clinically diagnosed patients in each study. For follow up analyses 1 and 2, we found few statistically significant differences in the long-term outcomes. For follow up analysis 3 we found a significant difference for only one comparison, in the incidence of cardiomyopathy between the three groups. Conclusions There is some evidence that dietary management following screen-detection might be associated with a lower incidence of some LCHAD and MTP deficiency-related complications. However, the evidence base is limited by small study sizes, quality issues and risk of confounding. An internationally collaborative research effort is needed to fully examine the risks and the benefits to pre-emptive dietary management with particular attention paid to disease severity and treatment group.
Collapse
Affiliation(s)
- Hannah Fraser
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| | - Julia Geppert
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Rebecca Johnson
- Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5RW, UK
| | | | - Martin Connock
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Aileen Clarke
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Chris Stinton
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
24
|
Cohen AS, Baurek M, Lund AM, Dunø M, Hougaard DM. Including Classical Galactosaemia in the Expanded Newborn Screening Panel Using Tandem Mass Spectrometry for Galactose-1-Phosphate. Int J Neonatal Screen 2019; 5:19. [PMID: 33072978 PMCID: PMC7510209 DOI: 10.3390/ijns5020019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 12/04/2022] Open
Abstract
Galactosaemia has been included in various newborn screening programs since 1963. Several methods are used for screening; however, the predominant methods used today are based on the determination of either galactose-1-phosphate uridyltransferase (GALT) activity or the concentration of total galactose. These methods cannot be multiplexed and therefore require one full punch per sample. Since the introduction of mass spectrometry in newborn screening, many diseases have been included in newborn screening programs. Here, we present a method for including classical galactosaemia in an expanded newborn screening panel based on the specific determination of galactose-1-phosphate by tandem mass spectrometry. The existing workflow only needs minor adjustments, and it can be run on the tandem mass spectrometers in routine use. Furthermore, compared to the currently used methods, this novel method has a superior screening performance, producing significantly fewer false positive results. We present data from 5500 routine newborn screening samples from the Danish Neonatal Screening Biobank. The cohort was enriched by including 14 confirmed galactosaemia positive samples and 10 samples positive for other metabolic disorders diagnosed through the Danish newborn screening program. All galactosaemia positive samples were identified by the method with no false positives. Furthermore, the screening performance for other metabolic disorders was unaffected.
Collapse
Affiliation(s)
- Arieh S. Cohen
- Danish Center for Newborn Screening, Statens Serum Institut, 2300 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-3568-3520
| | - Marta Baurek
- Danish Center for Newborn Screening, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Allan M. Lund
- Centre for Inherited Metabolic Diseases, Departments of Paediatrics and Clinical Genetics, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Morten Dunø
- Centre for Inherited Metabolic Diseases, Departments of Paediatrics and Clinical Genetics, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - David M. Hougaard
- Danish Center for Newborn Screening, Statens Serum Institut, 2300 Copenhagen, Denmark
| |
Collapse
|
25
|
Almási T, Guey LT, Lukacs C, Csetneki K, Vokó Z, Zelei T. Systematic literature review and meta-analysis on the epidemiology of methylmalonic acidemia (MMA) with a focus on MMA caused by methylmalonyl-CoA mutase (mut) deficiency. Orphanet J Rare Dis 2019; 14:84. [PMID: 31023387 PMCID: PMC6485056 DOI: 10.1186/s13023-019-1063-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Methylmalonic acidemia/aciduria (MMA) is a genetically heterogeneous group of inherited metabolic disorders biochemically characterized by the accumulation of methylmalonic acid. Isolated MMA is primarily caused by the deficiency of methylmalonyl-CoA mutase (MMA mut; EC 5.4.99.2). A systematic literature review and a meta-analysis were undertaken to assess and compile published epidemiological data on MMA with a focus on the MMA mut subtype (OMIM #251000). Of the 1114 identified records, 227 papers were assessed for eligibility in full text, 48 articles reported on disease epidemiology, and 39 articles were included into the quantitative synthesis. Implementation of newborn screening in various countries has allowed for the estimation of birth prevalence of MMA and its isolated form. Meta-analysis pooled point estimates of MMA (all types) detection rates were 0.79, 1.12, 1.22 and 6.04 per 100,000 newborns in Asia-Pacific, Europe, North America and the Middle East and North Africa (MENA) regions, respectively. The detection rate of isolated MMA was < 1 per 100,000 newborns in all regions with the exception of MENA where it approached 6 per 100,000 newborns. Few studies published data on the epidemiology of MMA mut, therefore no meta-analysis could have been performed on this subtype. Most of the identified papers reported birth prevalence estimates below 1 per 100,000 newborns for MMA mut. The systematic literature review clearly demonstrates that MMA and its subtypes are ultra-rare disorders.
Collapse
Affiliation(s)
- Tímea Almási
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary.
| | | | | | - Kata Csetneki
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary
| | - Zoltán Vokó
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary.,Department of Health Policy & Health Economics, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Zelei
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary
| |
Collapse
|
26
|
Almási T, Guey LT, Lukacs C, Csetneki K, Vokó Z, Zelei T. Systematic literature review and meta-analysis on the epidemiology of propionic acidemia. Orphanet J Rare Dis 2019; 14:40. [PMID: 30760309 PMCID: PMC6375193 DOI: 10.1186/s13023-018-0987-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Propionic acidemia (PA, OMIM #606054) is a serious, life-threatening, inherited, metabolic disorder caused by the deficiency of the mitochondrial enzyme propionyl-coenzyme A (CoA) carboxylase (EC 6.4.1.3). The primary objective of this study was to conduct a systematic literature review and meta-analysis on the epidemiology of PA. The literature search was performed covering Medline, Embase, Cochrane Database of Systematic Reviews, CRD Database, Academic Search Complete, CINAHL and PROSPERO databases. Websites of rare disease organizations were also searched for eligible studies. Of the 2338 identified records, 188 articles were assessed for eligibility in full text, 43 articles reported on disease epidemiology, and 31 studies were included into the quantitative synthesis. Due to the rarity of PA, broadly targeted population-based prevalence studies are not available. Nonetheless, implementation of newborn screening programs has allowed the estimation of the birth prevalence data of PA across multiple geographic regions. The pooled point estimates indicated detection rates of 0.29; 0.33; 0.33 and 4.24 in the Asia-Pacific, Europe, North America and the Middle East and North Africa (MENA) regions, respectively. Our systematic literature review and meta-analysis confirm that PA is an ultra-rare disorder, with similar detection rates across all regions with the exception of the MENA region where the disease, similar to other inherited metabolic disorders, is more frequent.
Collapse
Affiliation(s)
- Tímea Almási
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary.
| | | | | | - Kata Csetneki
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary
| | - Zoltán Vokó
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary.,Department of Health Policy & Health Economics, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Zelei
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary
| |
Collapse
|
27
|
Madsen KL, Preisler N, Rasmussen J, Hedermann G, Olesen JH, Lund AM, Vissing J. L-Carnitine Improves Skeletal Muscle Fat Oxidation in Primary Carnitine Deficiency. J Clin Endocrinol Metab 2018; 103:4580-4588. [PMID: 30219858 DOI: 10.1210/jc.2018-00953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022]
Abstract
CONTEXT Primary carnitine deficiency (PCD) is an inborn error of fatty acid metabolism. Patients with PCD are risk for sudden heart failure upon fasting or illness if they are not treated with daily l-carnitine. OBJECTIVE To investigate energy metabolism during exercise in patients with PCD with and without l-carnitine treatment. DESIGN Interventional study. SETTING Hospital exercise laboratories and department of cardiology. PARTICIPANTS Eight adults with PCD who were homozygous for the c.95A>G (p.N32S) mutation and 10 healthy age- and sex-matched controls. INTERVENTION Four-day pause in l-carnitine treatment. MAIN OUTCOME MEASURES Total fatty acid and palmitate oxidation rates during 1-hour submaximal cycle ergometer exercise assessed with stable isotope method (U13C-palmitate and 2H2-d-glucose) and indirect calorimetry with and without l-carnitine. RESULTS Total fatty acid oxidation rate was higher in patients with l-carnitine treatment during exercise than without treatment [12.3 (SD, 3.7) vs 8.5 (SD, 4.6) µmol × kg-1 × min-1; P = 0.008]. However, the fatty acid oxidation rate was still lower in patients treated with l-carnitine than in the healthy controls [29.5 (SD, 10.1) µmol × kg-1 × min-1; P < 0.001] and in the l-carnitine group without treatment it was less than one third of that in the healthy controls (P < 0.001). In line with this, the palmitate oxidation rates during exercise were lower in the no-treatment period [144 (SD, 66) µmol × kg-1 × min-1] than during treatment [204 (SD, 84) µmol × kg-1 × min-1; P = 0.004) . CONCLUSIONS The results indicate that patients with PCD have limited fat oxidation during exercise. l-Carnitine treatment in asymptomatic patients with PCD may not only prevent cardiac complications but also boost skeletal muscle fat metabolism during exercise.
Collapse
Affiliation(s)
- Karen Lindhardt Madsen
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Nicolai Preisler
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Jan Rasmussen
- Department of Internal Medicine, The National Hospital of the Faroe Islands, Tórshavn, Faroe Islands
| | - Gitte Hedermann
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Jess Have Olesen
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Allan Meldgaard Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
28
|
Improved Lentiviral Gene Delivery to Mouse Liver by Hydrodynamic Vector Injection through Tail Vein. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:672-683. [PMID: 30092403 PMCID: PMC6083003 DOI: 10.1016/j.omtn.2018.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Delivery of genes to mouse liver is routinely accomplished by tail-vein injections of viral vectors or naked plasmid DNA. While viral vectors are typically injected in a low-pressure and -volume fashion, uptake of naked plasmid DNA to hepatocytes is facilitated by high pressure and volumes, also known as hydrodynamic delivery. In this study, we compare the efficacy and specificity of delivery of vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped lentiviral vectors to mouse liver by a number of injection schemes. Exploiting in vivo bioluminescence imaging as a readout after lentiviral gene transfer, we compare delivery by (1) “conventional” tail-vein injections, (2) “primed” injections, (3) “hydrodynamic” injections, or (4) direct “intrahepatic” injections into exposed livers. Reporter gene activity demonstrate potent and targeted delivery to liver by hydrodynamic injections. Enhanced efficacy is confirmed by analysis of liver sections from mice treated with GFP-encoding vectors, demonstrating 10-fold higher transduction rates and gene delivery to ∼80% of hepatocytes after hydrodynamic vector delivery. In summary, lentiviral vector transfer to mouse liver can be strongly augmented by hydrodynamic tail-vein injections, resulting in both reduced off-target delivery and transduction of the majority of hepatocytes. Our findings pave the way for more effective use of lentiviral gene delivery in the mouse.
Collapse
|
29
|
Extreme neonatal hyperbilirubinemia, acute bilirubin encephalopathy, and kernicterus spectrum disorder in children with galactosemia. Pediatr Res 2018; 84:228-232. [PMID: 29892033 DOI: 10.1038/s41390-018-0066-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND Galactosemia has not been recognized as a cause of extreme neonatal hyperbilirubinemia, although growing evidence supports this association. METHODS In a retrospective cohort study, we identified children with galactosemia due to GALT deficiency using the Danish Metabolic Laboratory Database. Among these, we identified children with extreme neonatal hyperbilirubinemia or symptoms of ABE. Extreme neonatal hyperbilirubinemia was defined as maximum total serum bilirubin (TSBmax)) level ≥450 µmol/L and a ratio of conjugated serum bilirubin/TSB <0.30. RESULTS We identified 21 children with galactosemia (incidence:1:48,000). Seven children developed extreme neonatal hyperbilirubinemia (median [range] TSBmax level: 491 [456-756] µmol/L), accounting for 1.7% of all extreme neonatal hyperbilirubinemia cases. During the first 10 days of life, hyperbilirubinemia was predominantly of unconjugated type. Four children developed symptoms of intermediate/advanced ABE. One additional child had symptoms of intermediate/advanced ABE without having extreme neonatal hyperbilirubinemia. On follow-up, one child had KSD. CONCLUSIONS Galactosemia is a potential cause of extreme neonatal hyperbilirubinemia, ABE, and KSD. It is crucial that putative galactosemic children are treated aggressively with phototherapy to prevent ABE and KSD. Thus it is important that galactosemia is part of the work up for unconjugated hyperbilirubinemia.
Collapse
|
30
|
Afzal RM, Lund AM, Skovby F. The impact of consanguinity on the frequency of inborn errors of metabolism. Mol Genet Metab Rep 2018; 15:6-10. [PMID: 29387562 PMCID: PMC5772004 DOI: 10.1016/j.ymgmr.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/23/2022] Open
Abstract
Inborn errors of metabolism (IEM) are a heterogeneous group of genetic disorders present in all ethnic groups. We investigated the frequency of consanguinity among parents of newborns with IEM diagnosed by neonatal screening. Data were obtained from 15 years of expanded newborn screening for selected IEM with autosomal recessive mode of inheritance, a national screening program of newborns covering the period from 2002 until April 2017. Among the 838,675 newborns from Denmark, the Faroe Islands and Greenland, a total of 196 newborns had an IEM of whom 155 from Denmark were included in this study. These results were crosschecked against medical records. Information on consanguinity was extracted from medical records and telephone contact with the families. Among ethnic Danes, two cases of consanguinity were identified in 93 families (2.15%). Among ethnic minorities there were 20 cases of consanguinity among 33 families (60.6%). Consequently, consanguinity was 28.2 times more frequent among descendants of other geographic place of origin than Denmark. The frequency of consanguinity was conspicuously high among children of Pakistani, Afghan, Turkish and Arab origin (71.4%). The overall frequency of IEM was 25.5 times higher among children of Pakistani, Turkish, Afghan and Arab origin compared to ethnic Danish children (5.35:10,000 v 0.21:10,000). The frequency of IEM was 30-fold and 50-fold higher among Pakistanis (6.5:10,000) and Afghans (10.6:10,000), respectively, compared to ethnic Danish children. The data indicate a strong association between consanguinity and IEM. These figures could be useful to health professionals providing antenatal, pediatric, and clinical genetic services.
Collapse
Affiliation(s)
- Raja Majid Afzal
- Centre for Inherited Metabolic Diseases, Departments of Pediatrics and Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Allan Meldgaard Lund
- Centre for Inherited Metabolic Diseases, Departments of Pediatrics and Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Flemming Skovby
- Centre for Inherited Metabolic Diseases, Departments of Pediatrics and Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Messina M, Meli C, Raudino F, Pittalá A, Arena A, Barone R, Giuffrida F, Iacobacci R, Muccilli V, Sorge G, Fiumara A. Expanded Newborn Screening Using Tandem Mass Spectrometry: Seven Years of Experience in Eastern Sicily. Int J Neonatal Screen 2018; 4:12. [PMID: 33072938 PMCID: PMC7510204 DOI: 10.3390/ijns4020012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023] Open
Abstract
The expanded newborn screening for selected inborn errors of metabolism (IEM) in Sicily was introduced in 2007 by a Regional project entitled "Early detection of congenital metabolic diseases: expanded neonatal screening". It established two newborn screening laboratories, for Western and Eastern Sicily, which started their activity in 2011. Here we present the results of expanded screening (excluding phenylketonuria (PKU)) of the Eastern laboratory from January 2011 to December 2017. Our data highlight the importance of the expanded newborn screening as a basic health program to avoid the underestimation of rare diseases and the need of further investigations even when there are no textbook alterations of the metabolic profiles. We performed our analysis on dried blood spot by tandem mass spectrometry, according to Italian guidelines. A total of 196 samples from 60,408 newborns gave positive screening results (recall rate 0.32%) while 12 babies were true positive, including 2 newborns whose mothers resulted in being affected by a metabolic disease. The overall frequency of IEM found in the screening panel was 1:6041 (mothers excluded) or 1:5034 (mothers included). The introduction of MS/MS technology in Sicily has significantly increased the detection of inherited metabolic disorders, including those not previously covered, with a predictable improved outcome for several disorders.
Collapse
Affiliation(s)
- MariaAnna Messina
- Referral Center for Inherited Metabolic Diseases, Pediatric Clinical, AOU Policlinico-VE, Via Santa Sofia 78, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-3781-493
| | - Concetta Meli
- Referral Center for Inherited Metabolic Diseases, Pediatric Clinical, AOU Policlinico-VE, Via Santa Sofia 78, 95123 Catania, Italy
| | - Federica Raudino
- Referral Center for Inherited Metabolic Diseases, Pediatric Clinical, AOU Policlinico-VE, Via Santa Sofia 78, 95123 Catania, Italy
| | - Annarita Pittalá
- Referral Center for Inherited Metabolic Diseases, Pediatric Clinical, AOU Policlinico-VE, Via Santa Sofia 78, 95123 Catania, Italy
| | - Alessia Arena
- Referral Center for Inherited Metabolic Diseases, Pediatric Clinical, AOU Policlinico-VE, Via Santa Sofia 78, 95123 Catania, Italy
| | - Rita Barone
- Child Neurology and Psichiatry, AOU Policlinico-VE, Via Santa Sofia 78, 95123 Catania, Italy
| | - Fortunata Giuffrida
- Referral Center for Inherited Metabolic Diseases, Pediatric Clinical, AOU Policlinico-VE, Via Santa Sofia 78, 95123 Catania, Italy
| | - Riccardo Iacobacci
- Referral Center for Inherited Metabolic Diseases, Pediatric Clinical, AOU Policlinico-VE, Via Santa Sofia 78, 95123 Catania, Italy
| | - Vera Muccilli
- Chemistry Department, Uiversity of Catania, Viale Andrea Doria 5, 95123 Catania, Italy
| | - Giovanni Sorge
- Referral Center for Inherited Metabolic Diseases, Pediatric Clinical, AOU Policlinico-VE, Via Santa Sofia 78, 95123 Catania, Italy
| | - Agata Fiumara
- Referral Center for Inherited Metabolic Diseases, Pediatric Clinical, AOU Policlinico-VE, Via Santa Sofia 78, 95123 Catania, Italy
| |
Collapse
|
32
|
Extended and Fully Automated Newborn Screening Method for Mass Spectrometry Detection. Int J Neonatal Screen 2018; 4:2. [PMID: 33072928 PMCID: PMC7548895 DOI: 10.3390/ijns4010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/23/2017] [Indexed: 12/30/2022] Open
Abstract
A new and fully automated newborn screening method for mass spectrometry was introduced in this paper. Pathological relevant amino acids, acylcarnitines, and certain steroids are detected within 4 min per sample. Each sample is treated in an automated and standardized workflow, where a mixture of deuterated internal standards is sprayed onto the sample before extraction. All compounds showed good linearity, and intra- and inter-day variation lies within the acceptance criteria (except for aspartic acid). The described workflow decreases analysis cost and labor while improving the sample traceability towards good laboratory practice.
Collapse
|
33
|
Taylor-Phillips S, Geppert J, Stinton C, Freeman K, Johnson S, Fraser H, Sutcliffe P, Clarke A. Comparison of a full systematic review versus rapid review approaches to assess a newborn screening test for tyrosinemia type 1. Res Synth Methods 2017; 8:475-484. [PMID: 28703492 DOI: 10.1002/jrsm.1255] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/31/2017] [Accepted: 07/06/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Rapid reviews are increasingly used to replace/complement systematic reviews to support evidence-based decision-making. Little is known about how this expedited process affects results. OBJECTIVES To assess differences between rapid and systematic review approaches for a case study of test accuracy of succinylacetone for detecting tyrosinemia type 1. METHODS Two reviewers conducted an "enhanced" rapid review then a systematic review. The enhanced rapid review involved narrower searches, a single reviewer checking 20% of titles/abstracts and data extraction, and quality assessment using an unadjusted QUADAS-2. Two reviewers performed the systematic review with a tailored QUADAS-2. Post hoc analysis examined rapid reviewing with a single reviewer (basic rapid review). RESULTS Ten papers were included. Basic rapid reviews would have missed 1 or 4 of these (dependent on which reviewer). Enhanced rapid and systematic reviews identified all 10 papers; one paper was only identified in the rapid review through reference checking. Two thousand one hundred seventy-six fewer title/abstracts and 129 fewer full texts were screened during the enhanced rapid review than the systematic review. The unadjusted QUADAS-2 generated more "unclear" ratings than the adjusted QUADAS-2 [29/70 (41.4%) versus 16/70 (22.9%)], and fewer "high" ratings [22/70 (31.4%) versus 42/70 (60.0%)]. Basic rapid reviews contained important inaccuracies in data extraction, which were detected by a second reviewer in the enhanced rapid and systematic reviews. CONCLUSIONS Enhanced rapid reviews with 20% checking by a second reviewer may be an appropriate tool for policymakers to expeditiously assess evidence. Basic rapid reviews (single reviewer) have higher risks of important inaccuracies and omissions.
Collapse
Affiliation(s)
| | - Julia Geppert
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Chris Stinton
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Karoline Freeman
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Hannah Fraser
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Paul Sutcliffe
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Aileen Clarke
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
34
|
Next generation sequencing as a follow-up test in an expanded newborn screening programme. Clin Biochem 2017; 52:48-55. [PMID: 29111448 DOI: 10.1016/j.clinbiochem.2017.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Contrary to many western European countries, most south-eastern European countries do not have an expanded newborn screening (NBS) program using tandem mass spectrometry. This study would represent one of the first expanded NBS studies in south-eastern Europe and will enable the estimation of the incidences of IEM in Slovenia. We proposed an expanded NBS approach including next-generation sequencing (NGS) as a confirmational analysis. DESIGN & METHODS We conducted a pilot study of expanded NBS for selected inborn errors of metabolism (IEM) in Slovenia including 10,048 NBS cards. We used an approach including tandem mass spectrometry followed by second tier tests including NGS. Based on the NBS results, 85 children were evaluated at a metabolic follow-up; 80 of them were analyzed using NGS. RESULTS Altogether, glutaric acidemia type 1 was confirmed in one patient who was a compound heterozygote for two known causative GCDH variants. A patient with suspected very long-chain acyl-CoA dehydrogenase deficiency had negative metabolic follow-up tests, but had two heterozygous ACADVL variants; one known disease-causing variant and one indel, namely c.205-8_205-7delinsGC, that is predicted to be causative. Nine participants had elevated metabolites characteristic of 3-methylcrotonyl-CoA carboxylase deficiency, 2 of them had known causative homozygous variants in MCCC1. The other seven were heterozygous; two had a novel genetic variant c.149_151dupCCA (p.Thr50dup). Cumulative incidences of IEM in Slovenia were similar to other European countries. CONCLUSIONS NGS proved to be valuable in explaining the abnormal metabolite concentrations in NBS as it enabled the differentiation between affected patients and mere heterozygotes, and it improved the turnaround time of genetic analysis. The results of this study will be instrumental in the routine implementation of expanded NBS in Slovenia.
Collapse
|
35
|
Coelho AI, Rubio-Gozalbo ME, Vicente JB, Rivera I. Sweet and sour: an update on classic galactosemia. J Inherit Metab Dis 2017; 40:325-342. [PMID: 28281081 PMCID: PMC5391384 DOI: 10.1007/s10545-017-0029-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 02/03/2023]
Abstract
Classic galactosemia is a rare inherited disorder of galactose metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme of the Leloir pathway. It presents in the newborn period as a life-threatening disease, whose clinical picture can be resolved by a galactose-restricted diet. The dietary treatment proves, however, insufficient in preventing severe long-term complications, such as cognitive, social and reproductive impairments. Classic galactosemia represents a heavy burden on patients' and their families' lives. After its first description in 1908 and despite intense research in the past century, the exact pathogenic mechanisms underlying galactosemia are still not fully understood. Recently, new important insights on molecular and cellular aspects of galactosemia have been gained, and should open new avenues for the development of novel therapeutic strategies. Moreover, an international galactosemia network has been established, which shall act as a platform for expertise and research in galactosemia. Herein are reviewed some of the latest developments in clinical practice and research findings on classic galactosemia, an enigmatic disorder with many unanswered questions warranting dedicated research.
Collapse
Affiliation(s)
- Ana I Coelho
- Department of Pediatrics and Department of Clinical Genetics, Maastricht University Medical Centre, P. Debyelaan 25, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Department of Clinical Genetics, Maastricht University Medical Centre, P. Debyelaan 25, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabel Rivera
- Metabolism & Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
Bækvad-Hansen M, Bybjerg-Grauholm J, Poulsen JB, Hansen CS, Hougaard DM, Hollegaard MV. Evaluation of whole genome amplified DNA to decrease material expenditure and increase quality. Mol Genet Metab Rep 2017; 11:36-45. [PMID: 28487825 PMCID: PMC5408502 DOI: 10.1016/j.ymgmr.2017.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/02/2017] [Accepted: 04/02/2017] [Indexed: 02/04/2023] Open
Abstract
Aim The overall aim of this study is to evaluate whole genome amplification of DNA extracted from dried blood spot samples. We wish to explore ways of optimizing the amplification process, while decreasing the amount of input material and inherently the cost. Our primary focus of optimization is on the amount of input material, the amplification reaction volume, the number of replicates and amplification time and temperature. Increasing the quality of the amplified DNA and the subsequent results of array genotyping is a secondary aim of this project. Methods This study is based on DNA extracted from dried blood spot samples. The extracted DNA was subsequently whole genome amplified using the REPLIg kit and genotyped on the PsychArray BeadChip (assessing > 570,000 SNPs genome wide). We used Genome Studio to evaluate the quality of the genotype data by call rates and log R ratios. Results The whole genome amplification process is robust and does not vary between replicates. Altering amplification time, temperature or number of replicates did not affect our results. We found that spot size i.e. amount of input material could be reduced without compromising the quality of the array genotyping data. We also showed that whole genome amplification reaction volumes can be reduced by a factor of 4, without compromising the DNA quality. Discussion Whole genome amplified DNA samples from dried blood spots is well suited for array genotyping and produces robust and reliable genotype data. However, the amplification process introduces additional noise to the data, making detection of structural variants such as copy number variants difficult. With this study, we explore ways of optimizing the amplification protocol in order to reduce noise and increase data quality. We found, that the amplification process was very robust, and that changes in amplification time or temperature did not alter the genotyping calls or quality of the array data. Adding additional replicates of each sample also lead to insignificant changes in the array data. Thus, the amount of noise introduced by the amplification process was consistent regardless of changes made to the amplification protocol. We also explored ways of decreasing material expenditure by reducing the spot size or the amplification reaction volume. The reduction did not affect the quality of the genotyping data.
Collapse
Affiliation(s)
- Marie Bækvad-Hansen
- Corresponding author at: Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen S, Denmark.Danish Center for Neonatal ScreeningDepartment of Congenital DiseasesStatens Serum InstitutArtillerivej 5Copenhagen SDK-2300Denmark
| | | | | | | | | | | |
Collapse
|
37
|
Jansen ME, Lister KJ, van Kranen HJ, Cornel MC. Policy Making in Newborn Screening Needs a Structured and Transparent Approach. Front Public Health 2017; 5:53. [PMID: 28377917 PMCID: PMC5359248 DOI: 10.3389/fpubh.2017.00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/01/2017] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Newborn bloodspot screening (NBS) programs have expanded significantly in the past years and are expected to expand further with the emergence of genetic technologies. Historically, NBS expansion has often occurred following ad hoc consideration of conditions, instead of a structured and transparent approach. In this review, we explore issues pertinent to NBS policy making, through the lens of the policy cycle: (a) agenda setting, (b) policy advice, (c) policy decision, (d) implementation, and (e) evaluation. METHODS A literature search was conducted to gather information on the elements specific to NBS and its policy making process. RESULTS The review highlighted two approaches to nominate a condition: a structured approach through horizon scanning; and an ad hoc process. For assessment of a condition, there was unanimous support for a robust process based on criteria. While the need to assess harms and benefits was a repeated theme in the articles, there is no agreed-upon threshold for benefit in decision-making. Furthermore, the literature was consistent in its recommendation for an overarching, independent, multidisciplinary group providing recommendations to government. An implementation plan focusing on the different levels on which NBS operates and the information needed on each level is essential for successful implementation. Continuously monitoring, and improving a program is vital, particularly following the implementation of screening for a new condition. An advisory committee could advise on implementation, development, review, modification, and cessation of (parts of) NBS. CONCLUSION The results highlight that there are a wave of issues facing NBS programs that policy makers must take into account when developing policy processes. What conditions to screen, and the technologies used in NBS, are both up for debate.
Collapse
Affiliation(s)
- Marleen E Jansen
- Section Community Genetics, Department of Clinical Genetics, Amsterdam Public Health Research Institute, Amsterdam, Netherlands; Institute for Public Health Genomics, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Karla J Lister
- Screening Policy Section, Office of Population Health Genomics, Department of Health, Government of Western Australia , Perth, WA , Australia
| | - Henk J van Kranen
- Institute for Public Health Genomics, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands; Center for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Martina C Cornel
- Section Community Genetics, Department of Clinical Genetics, Amsterdam Public Health Research Institute , Amsterdam , Netherlands
| |
Collapse
|
38
|
Stinton C, Geppert J, Freeman K, Clarke A, Johnson S, Fraser H, Sutcliffe P, Taylor-Phillips S. Newborn screening for Tyrosinemia type 1 using succinylacetone - a systematic review of test accuracy. Orphanet J Rare Dis 2017; 12:48. [PMID: 28274233 PMCID: PMC5343414 DOI: 10.1186/s13023-017-0599-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/23/2017] [Indexed: 01/19/2023] Open
Abstract
Background Tyrosinemia type 1 is an autosomal recessive disorder of amino acid metabolism. Without treatment, death in childhood is common. Treatment with nitisinone and dietary restrictions are associated with improved outcomes; some studies suggest better outcomes when treatment begins at an asymptomatic stage. Newborn screening allows for earlier identification, but there is uncertainty regarding the test accuracy of the current method: succinylacetone measurement in dried blood spots using tandem mass spectrometry. Methods We conducted a systematic review of literature published up to January 2016. Two reviewers independently assessed titles, abstracts, full texts, and conducted quality appraisals. A single reviewer extracted data, which was checked by a second reviewer. Results Ten studies provided test accuracy data: five studies reporting screening experiences and five case–control studies. Sensitivity (29 cases in total) and specificity (34,403 controls in total) were 100% in the case–control studies, but could not be calculated in the studies reporting screening experiences due to a lack of follow-up of screen-negative babies. Positive predictive values in the screening experience studies ranged from 66.7% (2 true positive cases, 1 false positive case from ~500,000 people screened) to 100% (8 true positive cases from 856,671 people screened); negative predictive values could not be calculated. Positive and negative predictive values cannot be calculated from case–control studies. Conclusions Screening for Tyrosinemia type 1 using tandem mass spectrometry measurement of succinylacetone from dried blood spots appears to be promising. Confirmation of test accuracy data should be obtained from studies that include a two-year follow-up of individuals who screen negative. Electronic supplementary material The online version of this article (doi:10.1186/s13023-017-0599-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chris Stinton
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, England
| | - Julia Geppert
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, England
| | - Karoline Freeman
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, England
| | - Aileen Clarke
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, England
| | - Samantha Johnson
- Warwick Library, University of Warwick, Coventry, CV4 7AL, England
| | - Hannah Fraser
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, England
| | - Paul Sutcliffe
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, England
| | | |
Collapse
|
39
|
Welling L, Boelen A, Derks TGJ, Schielen PCJI, de Vries M, Williams M, Wijburg FA, Bosch AM. Nine years of newborn screening for classical galactosemia in the Netherlands: Effectiveness of screening methods, and identification of patients with previously unreported phenotypes. Mol Genet Metab 2017; 120:223-228. [PMID: 28065439 DOI: 10.1016/j.ymgme.2016.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/27/2016] [Accepted: 12/27/2016] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Newborn screening (NBS) for classical galactosemia (CG) was introduced in the Netherlands in 2007. Multiple screening methods have been used since, and currently a two-tier system is used, with residual enzyme activity of galactose-1-phosphate-uridyltransferase (GALT) and total galactose concentration in dried blood spots as the primary and secondary markers. As it is essential to monitor effectiveness of NBS programs, we assessed the effectiveness of different screening methods used over time (primary aim), and aimed to identify and investigate patients identified through NBS with previously unreported clinical and biochemical phenotypes (secondary aim). METHODS The effectiveness of different screening methods and their cut-off values (COVs), as used from 2007 through 2015, was determined, and the clinical and biochemical data of all identified patients were retrospectively collected. RESULTS All screening methods and COVs resulted in relatively high false-positive rates and low positive predictive values. Total galactose levels in dried blood spots were far above the COV for NBS in all true positive cases. A total of 31 galactosemia patients were identified, and when corrected for a family with three affected siblings, 14% had a previously unreported phenotype and genotype. These individuals did not demonstrate any symptoms at the time of diagnosis while still being exposed to galactose, had galactose-1-phosphate values below detection limit within months after the start of diet, and had previously unreported genotypes. CONCLUSION Optimization of NBS for CG in the Netherlands is warranted because of the high false-positive rate, which may result in significant harm. Furthermore, a surprising 14% of newborns identified with CG by screening had previously unreported clinical and biochemical phenotypes and genotypes. For them, individualized prognostication and treatment are warranted, in order to avoid unnecessary stringent galactose restriction.
Collapse
Affiliation(s)
- Lindsey Welling
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands.
| | - Anita Boelen
- Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Peter C J I Schielen
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Maaike de Vries
- Department of Pediatrics, University Medical Center St Radboud Nijmegen, Nijmegen, The Netherlands.
| | - Monique Williams
- Department of Pediatrics, Erasmus MC-Sophia children's Hospital, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Frits A Wijburg
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands.
| | - Annet M Bosch
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Landau YE, Waisbren SE, Chan LMA, Levy HL. Long-term outcome of expanded newborn screening at Boston children's hospital: benefits and challenges in defining true disease. J Inherit Metab Dis 2017; 40:209-218. [PMID: 28054209 DOI: 10.1007/s10545-016-0004-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/30/2022]
Abstract
INTRODUCTION There is no universal consensus of the disorders included in newborn screening programs. Few studies so far, mostly short-term, have compared the outcome of disorders detected by expanded newborn screening (ENBS) to the outcome of the same disorders detected clinically. METHODS We compared the clinical and neurodevelopmental outcomes in patients with metabolic disorders detected by ENBS, including biotinidase testing, with those detected clinically and followed at the Metabolism Clinic at Boston Children's Hospital. RESULTS One hundred eighty-nine patients came to attention from ENBS and 142 were clinically diagnosed. 3-methylcrotonyl-CoA carboxylase, biotinidase, and carnitine deficiencies were exclusively identified by ENBS and medium chain acyl-CoA dehydrogenase (MCADD) and very long chain acyl-CoA dehydrogenase deficiencies (VLCADD) were predominantly identified by ENBS whereas the organic acid disorders more often came to attention clinically. Only 2% of the ENBS-detected cases had clinically severe outcomes compared to 42% of those clinically detected. The mean IQ score was 103 + 17 for the ENBS-detected cases and 77 + 24 for those clinically detected. Those newly included disorders that seem to derive the greatest benefit from ENBS include the fatty acid oxidation disorders, profound biotinidase deficiency, tyrosinemia type 1, and perhaps carnitine deficiency. CONCLUSION Although the NBS-identified and clinically-identified cohorts were not completely comparable, this long-term study shows likely substantial improvement overall in the outcome of these metabolic disorders in the NBS infants. Infants with mild disorders and benign variants may represent a significant number of infants identified by ENBS. The future challenge will be to unequivocally differentiate the disorders most benefitting from ENBS and adjust programs accordingly.
Collapse
Affiliation(s)
- Yuval E Landau
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, The Chaim Sheba Medical Center, Tel Hashomer, and the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Genetics and Genomics, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, 1 Autumn Street, Rm 526.1, Boston, MA, 02115, USA
| | - Susan E Waisbren
- Division of Genetics and Genomics, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, 1 Autumn Street, Rm 526.1, Boston, MA, 02115, USA
| | - Lawrence M A Chan
- Division of Genetics and Genomics, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, 1 Autumn Street, Rm 526.1, Boston, MA, 02115, USA
| | - Harvey L Levy
- Division of Genetics and Genomics, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, 1 Autumn Street, Rm 526.1, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
Rasmussen J, Hougaard DM, Sandhu N, Fjællegaard K, Petersen PR, Steuerwald U, Lund AM. Primary Carnitine Deficiency: Is Foetal Development Affected and Can Newborn Screening Be Improved? JIMD Rep 2017; 36:35-40. [PMID: 28105570 DOI: 10.1007/8904_2016_30] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Primary carnitine deficiency (PCD) causes low levels of carnitine in patients potentially leading to metabolic and cardiac symptoms. Newborn screening for PCD is now routine in many countries by measuring carnitine levels in infants. In this study we report Apgar scores, length and weight in newborns with PCD and newborns born to mothers with PCD compared to controls. Furthermore we report how effective different screening algorithms have been to detect newborns with PCD in the Faroe Islands. RESULTS Newborns with PCD and newborns born to mothers with PCD did not differ with regard to Apgar scores, length and weight compared to controls. Newborns with PCD and newborns born to mothers with PCD had significantly lower levels of free carnitine (fC0) than controls. Screening algorithms focusing only on fC0 had a high rate of detection of newborns with PCD. Sample collection 4-9 days after birth seems to result in a higher detection rate than the current 2-3 days. CONCLUSION The clinical status at birth in infants with PCD and infants born to mothers with PCD does not differ compared to control infants. Screening algorithms for PCD should focus on fC0, and blood samples should be taken when the maternal influence on fC0 has diminished.
Collapse
Affiliation(s)
- Jan Rasmussen
- Department of Internal Medicine, National Hospital, FO-100, Torshavn, Faroe Islands.
| | - David M Hougaard
- Section of Neonatal Screening and Hormones, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Noreen Sandhu
- Section of Neonatal Screening and Hormones, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Katrine Fjællegaard
- Department of Internal Medicine, National Hospital, FO-100, Torshavn, Faroe Islands
| | - Poula R Petersen
- Department of Internal Medicine, National Hospital, FO-100, Torshavn, Faroe Islands
| | - Ulrike Steuerwald
- Department of Occupational and Public Health, National Hospital System, Torshavn, Faroe Islands.,Screening-Laboratories Hannover, Hannover, Germany
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
42
|
Varela-Lema L, Paz-Valinas L, Atienza-Merino G, Zubizarreta-Alberdi R, Villares RV, López-García M. Appropriateness of newborn screening for classic galactosaemia: a systematic review. J Inherit Metab Dis 2016; 39:633-649. [PMID: 27116003 DOI: 10.1007/s10545-016-9936-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/28/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Currently, there is no universal agreement on galactosaemia screening, fundamentally because of the risk-benefit uncertainties. We conducted two exhaustive systematic searches in the main electronic databases (PubMed, Embase, Cochrane, etc.) to recover relevant information about the disease and screening test/s in order to support decision making in Spain. All of the 45 studies identified that covered disease issues were retrospective case series or cross-sectional analysis (level-4 evidence). Studies consistently found that the majority of patients presented characteristic symptomatology before diagnosis. Long term disabilities were not significantly correlated with age of diagnosis, onset of dietary restriction or strict diet compliance. The five studies that provided accuracy data used different cut-off points and verification tests, and thus differed in their definitions of a positive case (level-3b evidence). The estimated sensitivity was 100 % and the specificity 99.9 %. The false-positive rate ranged from 0.0005 % to 0.25 %, and the PPV from 0 % to 64.3 %. The comparative clinical effectiveness in relation to not screening or implementation of other programs is unknown. In summary, existing evidence remains insufficient to establish the appropriateness of newborn screening for galactosaemia screening, although health benefits could be expected if early diagnosis and treatment is achieved. If screening is implemented in Spain, it would be important that a pilot programme be implemented to assess false positive rate and ensure that early diagnosis is not delayed.
Collapse
Affiliation(s)
- L Varela-Lema
- Scientific-Technical Advice Unit (avalia-t), Galician Agency for Health Knowledge Management, ACIS, Santiago de Compostela, Spain.
| | - L Paz-Valinas
- Scientific-Technical Advice Unit (avalia-t), Galician Agency for Health Knowledge Management, ACIS, Santiago de Compostela, Spain
| | - G Atienza-Merino
- Scientific-Technical Advice Unit (avalia-t), Galician Agency for Health Knowledge Management, ACIS, Santiago de Compostela, Spain
| | - R Zubizarreta-Alberdi
- Department of Innovation and Public Health, Galician Health Authority, Santiago de Compostela, Spain
| | - R Vizoso Villares
- Department of Innovation and Public Health, Galician Health Authority, Santiago de Compostela, Spain
| | - M López-García
- Scientific-Technical Advice Unit (avalia-t), Galician Agency for Health Knowledge Management, ACIS, Santiago de Compostela, Spain
| |
Collapse
|
43
|
Poulsen JB, Lescai F, Grove J, Bækvad-Hansen M, Christiansen M, Hagen CM, Maller J, Stevens C, Li S, Li Q, Sun J, Wang J, Nordentoft M, Werge TM, Mortensen PB, Børglum AD, Daly M, Hougaard DM, Bybjerg-Grauholm J, Hollegaard MV. High-Quality Exome Sequencing of Whole-Genome Amplified Neonatal Dried Blood Spot DNA. PLoS One 2016; 11:e0153253. [PMID: 27089011 PMCID: PMC4835089 DOI: 10.1371/journal.pone.0153253] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/26/2016] [Indexed: 12/16/2022] Open
Abstract
Stored neonatal dried blood spot (DBS) samples from neonatal screening programmes are a valuable diagnostic and research resource. Combined with information from national health registries they can be used in population-based studies of genetic diseases. DNA extracted from neonatal DBSs can be amplified to obtain micrograms of an otherwise limited resource, referred to as whole-genome amplified DNA (wgaDNA). Here we investigate the robustness of exome sequencing of wgaDNA of neonatal DBS samples. We conducted three pilot studies of seven, eight and seven subjects, respectively. For each subject we analysed a neonatal DBS sample and corresponding adult whole-blood (WB) reference sample. Different DNA sample types were prepared for each of the subjects. Pilot 1: wgaDNA of 2x3.2mm neonatal DBSs (DBS_2x3.2) and raw DNA extract of the WB reference sample (WB_ref). Pilot 2: DBS_2x3.2, WB_ref and a WB_ref replica sharing DNA extract with the WB_ref sample. Pilot 3: DBS_2x3.2, WB_ref, wgaDNA of 2x1.6 mm neonatal DBSs and wgaDNA of the WB reference sample. Following sequencing and data analysis, we compared pairwise variant calls to obtain a measure of similarity—the concordance rate. Concordance rates were slightly lower when comparing DBS vs WB sample types than for any two WB sample types of the same subject before filtering of the variant calls. The overall concordance rates were dependent on the variant type, with SNPs performing best. Post-filtering, the comparisons of DBS vs WB and WB vs WB sample types yielded similar concordance rates, with values close to 100%. WgaDNA of neonatal DBS samples performs with great accuracy and efficiency in exome sequencing. The wgaDNA performed similarly to matched high-quality reference—whole-blood DNA—based on concordance rates calculated from variant calls. No differences were observed substituting 2x3.2 with 2x1.6 mm discs, allowing for additional reduction of sample material in future projects.
Collapse
Affiliation(s)
- Jesper Buchhave Poulsen
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Francesco Lescai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Molecular Medicine, Statens Serum Institut, Copenhagen, Denmark
| | - Christian Munch Hagen
- Department for Congenital Disorders, Molecular Medicine, Statens Serum Institut, Copenhagen, Denmark
| | - Julian Maller
- Broad Institute, Stanley Center, Cambridge, Massachusetts, United States of America
| | - Christine Stevens
- Broad Institute, Stanley Center, Cambridge, Massachusetts, United States of America
| | - Shenting Li
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | | | | | - Jun Wang
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Merete Nordentoft
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- Mental Health Centre Copenhagen, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mears Werge
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- Mental Health Centre Sct. Hans, Institute for Biological Psychiatry, Capital Region of Denmark, Roskilde, Denmark
| | - Preben Bo Mortensen
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Anders Dupont Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH - Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus University, Aarhus, Denmark
- iSEQ - Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Mark Daly
- Broad Institute, Stanley Center, Cambridge, Massachusetts, United States of America
| | - David Michael Hougaard
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, The Danish Neonatal Screening Biobank, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
- * E-mail:
| | - Mads Vilhelm Hollegaard
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, Section of Neonatal Genetics, Statens Serum Institut, Copenhagen, Denmark
- Department for Congenital Disorders, Danish Centre for Neonatal Screening, The Danish Neonatal Screening Biobank, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
44
|
Abstract
Inborn errors of metabolism are single gene disorders resulting from the defects in the biochemical pathways of the body. Although these disorders are individually rare, collectively they account for a significant portion of childhood disability and deaths. Most of the disorders are inherited as autosomal recessive whereas autosomal dominant and X-linked disorders are also present. The clinical signs and symptoms arise from the accumulation of the toxic substrate, deficiency of the product, or both. Depending on the residual activity of the deficient enzyme, the initiation of the clinical picture may vary starting from the newborn period up until adulthood. Hundreds of disorders have been described until now and there has been a considerable clinical overlap between certain inborn errors. Resulting from this fact, the definite diagnosis of inborn errors depends on enzyme assays or genetic tests. Especially during the recent years, significant achievements have been gained for the biochemical and genetic diagnosis of inborn errors. Techniques such as tandem mass spectrometry and gas chromatography for biochemical diagnosis and microarrays and next-generation sequencing for the genetic diagnosis have enabled rapid and accurate diagnosis. The achievements for the diagnosis also enabled newborn screening and prenatal diagnosis. Parallel to the development the diagnostic methods; significant progress has also been obtained for the treatment. Treatment approaches such as special diets, enzyme replacement therapy, substrate inhibition, and organ transplantation have been widely used. It is obvious that by the help of the preclinical and clinical research carried out for inborn errors, better diagnostic methods and better treatment approaches will high likely be available.
Collapse
|
45
|
van Rijt WJ, Koolhaas GD, Bekhof J, Heiner Fokkema MR, de Koning TJ, Visser G, Schielen PCJI, van Spronsen FJ, Derks TGJ. Inborn Errors of Metabolism That Cause Sudden Infant Death: A Systematic Review with Implications for Population Neonatal Screening Programmes. Neonatology 2016; 109:297-302. [PMID: 26907928 DOI: 10.1159/000443874] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/08/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Many inborn errors of metabolism (IEMs) may present as sudden infant death (SID). Nowadays, increasing numbers of patients with IEMs are identified pre-symptomatically by population neonatal bloodspot screening (NBS) programmes. However, some patients escape early detection because their symptoms and signs start before NBS test results become available, they even die even before the sample for NBS has been drawn or because there are IEMs which are not included in the NBS programmes. OBJECTIVES AND METHODS This was a comprehensive systematic literature review to identify all IEMs associated with SID, including their treatability and detectability by NBS technologies. Reye syndrome (RS) was included in the search strategy because this condition can be considered a possible pre-stage of SID in a continuum of aggravating symptoms. RESULTS 43 IEMs were identified that were associated with SID and/or RS. Of these, (1) 26 can already present during the neonatal period, (2) treatment is available for at least 32, and (3) 26 can currently be identified by the analysis of acylcarnitines and amino acids in dried bloodspots (DBS). CONCLUSION We advocate an extensive analysis of amino acids and acylcarnitines in blood/plasma/DBS and urine for all children who died suddenly and/or unexpectedly, including neonates in whom blood had not yet been drawn for the routine NBS test. The application of combined metabolite screening and DNA-sequencing techniques would facilitate fast identification and maximal diagnostic yield. This is important information for clinicians who need to maintain clinical awareness and decision-makers to improve population NBS programmes.
Collapse
Affiliation(s)
- Willemijn J van Rijt
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Inborn Errors of Metabolism in the United Arab Emirates: Disorders Detected by Newborn Screening (2011-2014). JIMD Rep 2015; 28:127-135. [PMID: 26589311 DOI: 10.1007/8904_2015_512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 01/30/2023] Open
Abstract
This study reports on the inborn errors of metabolism (IEM) detected by our national newborn screening between 2011 and 2014. One hundred fourteen patients (55 UAE citizens and 59 residents) were diagnosed during this period. The program was most comprehensive (tested 29 IEM) and universally applied in 2013, giving an incidence of 1 in 1,787 citizens. This relatively high prevalence resulted from the frequent consanguineous marriages (81.5%) among affected families. The following eight disorders accounted for 80% of the entities: biotinidase deficiency (14 of 55), phenylketonuria (11 of 55), 3-methylcrotonyl glycinuria (9 of 55), medium-chain acyl-CoA dehydrogenase deficiency (4 of 55), argininosuccinic aciduria, glutaric aciduria type 1, glutaric aciduria type 2, and methylmalonyl-CoA mutase deficiency (2 of 55 each). Mutation analysis was performed in 48 (87%) of the 55 patients, and 33 distinct mutations were identified. Twenty-nine (88%) mutations were clinically significant and, thus, could be included in our premarital screening. Most mutations were homozygous, except for the biotinidase deficiency. The BTD mutations c.1207T>G (found in citizens) and c.424C>A (found in Somalians) were associated with undetectable biotinidase activity. Thus, the high prevalence of IEM in our region is amenable to newborn and premarital screening, which is expected to halt most of these diseases.
Collapse
|
47
|
Aksglaede L, Christensen M, Olesen JH, Duno M, Olsen RKJ, Andresen BS, Hougaard DM, Lund AM. Abnormal Newborn Screening in a Healthy Infant of a Mother with Undiagnosed Medium-Chain Acyl-CoA Dehydrogenase Deficiency. JIMD Rep 2015; 23:67-70. [PMID: 25763512 DOI: 10.1007/8904_2015_428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/05/2015] [Accepted: 02/18/2015] [Indexed: 05/08/2023] Open
Abstract
A neonate with low blood free carnitine level on newborn tandem mass spectrometry screening was evaluated for possible carnitine transporter defect (CTD). The plasma concentration of free carnitine was marginally reduced, and the concentrations of acylcarnitines (including C6, C8, and C10:1) were normal on confirmatory tests. Organic acids in urine were normal. In addition, none of the frequent Faroese SLC22A5 mutations (p.N32S, c.825-52G>A) which are common in the Danish population were identified. Evaluation of the mother showed low-normal free carnitine, but highly elevated medium-chain acylcarnitines (C6, C8, and C10:1) consistent with medium-chain acyl-CoA dehydrogenase deficiency (MCADD). The diagnosis was confirmed by the finding of homozygous presence of the c.985A>G mutation in ACADM.
Collapse
Affiliation(s)
- Lise Aksglaede
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark,
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wolf B. Why screen newborns for profound and partial biotinidase deficiency? Mol Genet Metab 2015; 114:382-7. [PMID: 25638506 DOI: 10.1016/j.ymgme.2015.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Barry Wolf
- Department of Research Administration, Henry Ford Hospital, Detroit, MI 48202, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
49
|
Estrella J, Wilcken B, Carpenter K, Bhattacharya K, Tchan M, Wiley V. Expanded newborn screening in New South Wales: missed cases. J Inherit Metab Dis 2014; 37:881-7. [PMID: 24970580 DOI: 10.1007/s10545-014-9727-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/10/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
There have been few reports of cases missed by expanded newborn screening. Tandem mass spectrometry was introduced in New South Wales, Australia in 1998 to screen for selected disorders of amino acid, organic acid and fatty acid metabolism. Of 1,500,000 babies screened by 2012, 1:2700 were diagnosed with a target disorder. Fifteen affected babies were missed by testing, and presented clinically or in family studies. In three cases (cobalamin C defect, very-long-chain acyl-CoA dehydrogenase deficiency and glutaric aciduria type 1), this led to modification of analyte cut-off values or protocols during the first 3 years. Two patients with intermittent MSUD, two with β-ketothiolase deficiency, two with citrin deficiency, two siblings with arginosuccinic aciduria, two siblings with homocystinuria, and one with cobalamin C defect had analyte values and ratios below the action limits which could not have been detected without unacceptable false-positive rates. A laboratory interpretation error led to missing one case of cobalamin C defect. Reference ranges, regularly reviewed, were not altered. For citrin deficiency, while relevant metabolites are detectable by tandem mass spectrometry, our cut-off values do not specifically screen for that disorder. Most of the missed cases are doing well and with no acute presentations although eight of 15 are likely to have been somewhat adversely affected by a late diagnosis. Analyte ratio and cut-off value optimisations are important, but for some disorders occasional missed cases may have to be tolerated to maintain an acceptable specificity, and avoid harm from screening.
Collapse
Affiliation(s)
- Jane Estrella
- Department of Medical Genetics Westmead Hospital, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Moorthie S, Cameron L, Sagoo GS, Bonham JR, Burton H. Systematic review and meta-analysis to estimate the birth prevalence of five inherited metabolic diseases. J Inherit Metab Dis 2014; 37:889-98. [PMID: 25022222 DOI: 10.1007/s10545-014-9729-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 01/06/2023]
Abstract
Many newborn screening programmes now use tandem mass spectrometry in order to screen for a variety of diseases. However, countries have embraced this technology with a differing pace of change and for different conditions. This has been facilitated by the ability of this diagnostic method to limit analysis to specific metabolites of interest, enabling targeted screening for particular conditions. MS/MS was introduced in 2009 in England to implement newborn bloodspot screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD) raising the possibility of screening for other inherited metabolic disorders. Recently, a pilot screening programme was conducted in order to evaluate the health and economic consequences of screening for five additional inherited metabolic disorders in England. As part of this study we conducted a systematic review and meta-analysis to estimate the birth prevalence of these conditions: maple syrup urine disease, homocystinuria (pyridoxine unresponsive), glutaric aciduria type I, isovaleric acidaemia and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency including trifunctional protein deficiency. We identified a total of 99 studies that were able to provide information on the prevalence of one or more of the disorders. The vast majority of studies were of screening programmes with some reporting on clinically detected cases.
Collapse
|