1
|
Lee H, Yang X, Jin PR, Won KJ, Kim CH, Jeong H. The Discovery of Gut Microbial Metabolites as Modulators of Host Susceptibility to Acetaminophen-Induced Hepatotoxicity. Drug Metab Dispos 2024; 52:754-764. [PMID: 38302428 PMCID: PMC11257691 DOI: 10.1124/dmd.123.001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
The mammalian gut microbiota plays diverse and essential roles in modulating host physiology. Key mediators determining the outcome of the microbiota-host interactions are the small molecule metabolites produced by the gut microbiota. The liver is a major organ exposed to gut microbial metabolites, and it serves as the nexus for maintaining healthy interactions between the gut microbiota and the host. At the same time, the liver is the primary target of potentially harmful gut microbial metabolites. In this review, we provide an up-to-date list of gut microbial metabolites that have been identified to either increase or decrease host susceptibility to acetaminophen (APAP)-induced liver injury. The signaling pathways and molecular factors involved in the progression of APAP-induced hepatotoxicity are well-established, and we propose that the mouse model of APAP-induced hepatotoxicity serves as a model system for uncovering gut microbial metabolites with previously unknown functions. Furthermore, we envision that gut microbial metabolites identified to alter APAP-induced hepatotoxicity likely have broader implications in other liver diseases. SIGNIFICANCE STATEMENT: This review provides an overview of the role of the gut microbiota in modulating the host susceptibility to acetaminophen (APAP)-induced liver injury. It focuses on the roles of gut bacterial small molecule metabolites as mediators of the interaction between the gut microbiota and the liver. It also illustrates the utility of APAP-induced liver injury as a model to identify gut microbial metabolites with biological function.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Xiaotong Yang
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Pei-Ru Jin
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Kyoung-Jae Won
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Chang H Kim
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Hyunyoung Jeong
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| |
Collapse
|
2
|
Cho S, Yang X, Won KJ, Leone VA, Chang EB, Guzman G, Ko Y, Bae ON, Lee H, Jeong H. Phenylpropionic acid produced by gut microbiota alleviates acetaminophen-induced hepatotoxicity. Gut Microbes 2023; 15:2231590. [PMID: 37431867 PMCID: PMC10337503 DOI: 10.1080/19490976.2023.2231590] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
The gut microbiota affects hepatic drug metabolism. However, gut microbial factors modulating hepatic drug metabolism are largely unknown. In this study, using a mouse model of acetaminophen (APAP)-induced hepatotoxicity, we identified a gut bacterial metabolite that controls the hepatic expression of CYP2E1 that catalyzes the conversion of APAP to a reactive, toxic metabolite. By comparing C57BL/6 substrain mice from two different vendors, Jackson (6J) and Taconic (6N), which are genetically similar but harbor different gut microbiotas, we established that the differences in the gut microbiotas result in differential susceptibility to APAP-induced hepatotoxicity. 6J mice exhibited lower susceptibility to APAP-induced hepatotoxicity than 6N mice, and such phenotypic difference was recapitulated in germ-free mice by microbiota transplantation. Comparative untargeted metabolomic analysis of portal vein sera and liver tissues between conventional and conventionalized 6J and 6N mice led to the identification of phenylpropionic acid (PPA), the levels of which were higher in 6J mice. PPA supplementation alleviated APAP-induced hepatotoxicity in 6N mice by lowering hepatic CYP2E1 levels. Moreover, PPA supplementation also reduced carbon tetrachloride-induced liver injury mediated by CYP2E1. Our data showed that previously known PPA biosynthetic pathway is responsible for PPA production. Surprisingly, while PPA in 6N mouse cecum contents is almost undetectable, 6N cecal microbiota produces PPA as well as 6J cecal microbiota in vitro, suggesting that PPA production in the 6N gut microbiota is suppressed in vivo. However, previously known gut bacteria harboring the PPA biosynthetic pathway were not detected in either 6J or 6N microbiota, suggesting the presence of as-yet-unidentified PPA-producing gut microbes. Collectively, our study reveals a novel biological function of the gut bacterial metabolite PPA in the gut-liver axis and presents a critical basis for investigating PPA as a modulator of CYP2E1-mediated liver injury and metabolic diseases.
Collapse
Affiliation(s)
- Sungjoon Cho
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaotong Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyoung-Jae Won
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Vanessa A Leone
- Department of Animal & Dairy Sciences, College of Agriculture & Life Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugene B Chang
- Section of Gastroenterology, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Grace Guzman
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yeonju Ko
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Hyunwoo Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Hyunyoung Jeong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Hay AM, Howie HL, Gorham JD, D'Alessandro A, Spitalnik SL, Hudson KE, Zimring JC. Mouse background genetics in biomedical research: The devil's in the details. Transfusion 2021; 61:3017-3025. [PMID: 34480352 DOI: 10.1111/trf.16628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetically modified mice are used widely to explore mechanisms in most biomedical fields-including transfusion. Concluding that a gene modification is responsible for a phenotypic change assumes no other differences between the gene-modified and wild-type mice besides the targetted gene. STUDY DESIGN AND METHODS To test the hypothesis that the N-terminus of Band3, which regulates metabolism, affects RBC storage biology, RBCs from mice with a modified N-terminus of Band3 were stored under simulated blood bank conditions. All strains of mice were generated with the same initial embryonic stem cells from 129 mice and each strain was backcrossed with C57BL/6 (B6) mice. Both 24-h recoveries post-transfusion and metabolomics were determined for stored RBCs. Genetic profiles of mice were assessed by a high-resolution SNP array. RESULTS RBCs from mice with a mutated Band3 N-terminus had increased lipid oxidation and worse 24-h recoveries, "demonstrating" that Band3 regulates oxidative injury during RBC storage. However, SNP analysis demonstrated variable inheritance of 129 genetic elements between strains. Controlled interbreeding experiments demonstrated that the changes in lipid oxidation and some of the decreased 24-hr recovery were caused by inheritance of a region of chromosome 1 of 129 origin, and not due to the modification of Band 3. SNP genotyping of a panel of commonly used commercially available KO mice showed considerable 129 contamination, despite wild-type B6 mice being listed as the correct control. DISCUSSION Thousands of articles published each year use gene-modified mice, yet genetic background issues are rarely considered. Assessment of such issues are not, but should become, routine norms of murine experimentation.
Collapse
Affiliation(s)
- Ariel M Hay
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Heather L Howie
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - James D Gorham
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Angelo D'Alessandro
- University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - James C Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Zhou Z, Liu Z, Gao X, Long Q. Mitochondrial respiration in C57BL/6 substrains varies in response to myocardial infarction. J Bioenerg Biomembr 2021; 53:119-127. [PMID: 33630237 DOI: 10.1007/s10863-021-09884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
The C57BL/6 mouse strain have been commonly used for the genetic background animal models and experimental research. There are several major sources of C57BL/6 substrains for the biomedical research community which display genetic and phenotypic differences. Previous studies have suggested that the varies in baseline of cardiovascular phenotypes as well as in response to pressure overload by transverse aortic constriction (TAC). To investigate whether there exist substrain specific differences in response to heart failure post myocardial infarction (MI), consequently the impaired mitochondrial respiration, we performed MI surgery on two commonly used C57BL/6 substrains: C57BL/6J (BL/6J) and C57BL/6NCrl (BL/6N) mice. Subsequently, measurements about cardiac function, histology and mitochondrial respiration capacities were conducted to evaluate the differences. The data showed that C57BL/6J(BL/6J) mice is more resistant to the attack of MI, evidenced by lower mortality, less infarct size and better preserved cardiac function after MI, especially exhibited better mitochondrial respiration capacities, compared with the C57BL/6NCrl(BL/6N) mice.
Collapse
Affiliation(s)
- Zhou Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zhiheng Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xu Gao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Qinqiang Long
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
5
|
In Search for Genes Related to Atherosclerosis and Dyslipidemia Using Animal Models. Int J Mol Sci 2020; 21:ijms21062097. [PMID: 32197550 PMCID: PMC7139774 DOI: 10.3390/ijms21062097] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a multifactorial chronic disease that affects large arteries and may lead to fatal consequences. According to current understanding, inflammation and lipid accumulation are the two key mechanisms of atherosclerosis development. Animal models based on genetically modified mice have been developed to investigate these aspects. One such model is low-density lipoprotein (LDL) receptor knockout (KO) mice (ldlr-/-), which are characterized by a moderate increase of plasma LDL cholesterol levels. Another widely used genetically modified mouse strain is apolipoprotein-E KO mice (apoE-/-) that lacks the primary lipoprotein required for the uptake of lipoproteins through the hepatic receptors, leading to even greater plasma cholesterol increase than in ldlr-/- mice. These and other animal models allowed for conducting genetic studies, such as genome-wide association studies, microarrays, and genotyping methods, which helped identifying more than 100 mutations that contribute to atherosclerosis development. However, translation of the results obtained in animal models for human situations was slow and challenging. At the same time, genetic studies conducted in humans were limited by low sample sizes and high heterogeneity in predictive subclinical phenotypes. In this review, we summarize the current knowledge on the use of KO mice for identification of genes implicated in atherosclerosis and provide a list of genes involved in atherosclerosis-associated inflammatory pathways and their brief characteristics. Moreover, we discuss the approaches for candidate gene search in animals and humans and discuss the progress made in the field of epigenetic studies that appear to be promising for identification of novel biomarkers and therapeutic targets.
Collapse
|
6
|
Scarfe L, Menshikh A, Newton E, Zhu Y, Delgado R, Finney C, de Caestecker MP. Long-term outcomes in mouse models of ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 2019; 317:F1068-F1080. [PMID: 31411074 PMCID: PMC7132317 DOI: 10.1152/ajprenal.00305.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Severe acute kidney injury has a high mortality and is a risk factor for progressive chronic kidney disease. None of the potential therapies that have been identified in preclinical studies have successfully improved clinical outcomes. This failure is partly because animal models rarely reflect the complexity of human disease: most preclinical studies are short term and are commonly performed in healthy, young, male mice. Therapies that are effective in preclinical models that share common clinical features seen in patients with acute kidney injury, including genetic diversity, different sexes, and comorbidities, and evaluate long-term outcomes are more likely to predict success in the clinic. Here, we evaluated susceptibility to chronic kidney disease after ischemia-reperfusion injury with delayed nephrectomy by monitoring long-term functional and histological responses to injury. We defined conditions required to induce long-term postinjury renal dysfunction and fibrosis without increased mortality in a reproducible way and evaluate effect of mouse strains, sexes, and preexisting diabetes on these responses.
Collapse
Affiliation(s)
- Lauren Scarfe
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna Menshikh
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily Newton
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuantee Zhu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Rachel Delgado
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charlene Finney
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
7
|
Nowak TS, Mulligan MK. Impact of C57BL/6 substrain on sex-dependent differences in mouse stroke models. Neurochem Int 2018; 127:12-21. [PMID: 30448566 DOI: 10.1016/j.neuint.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/18/2023]
Abstract
We have recently found significant variation in stroke vulnerability among substrains of C57BL/6 mice, observing that commonly used N-lineage substrains exhibit larger infarcts than C57BL/6J and related substrains. Parallel variation was also seen with respect to sex differences in stroke vulnerability, in that C57BL/6 mice of the N-lineage exhibited comparable infarct sizes in males and females, whereas infarcts tended to be smaller in females than in males of J-lineage substrains. This adds to the growing list of recognized phenotypic and genetic differences among C57BL/6 substrains. Although no previous studies have explicitly compared substrains with respect to sex differences in stroke vulnerability, unrecognized background mismatch has occurred in some studies involving control and genetically modified mice. The aims of this review are to: present the evidence for associated substrain- and sex-dependent differences in a mouse permanent occlusion stroke model; examine the extent to which the published literature in other models compares with these recent results; and consider the potential impact of unrecognized heterogeneity in substrain background on the interpretation of studies investigating the impact of genetic modifications on sex differences in stroke outcome. Substrain emerges as a critical variable to be documented in any experimental stroke study in mice.
Collapse
Affiliation(s)
- Thaddeus S Nowak
- Department of Neurology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
8
|
Liron T, Raphael B, Hiram‐Bab S, Bab IA, Gabet Y. Bone loss in C57BL/6J‐OlaHsd mice, a substrain of C57BL/6J carrying mutated alpha‐synuclein and multimerin‐1 genes. J Cell Physiol 2017; 233:371-377. [DOI: 10.1002/jcp.25895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Tamar Liron
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Bitya Raphael
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Sahar Hiram‐Bab
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Itai A. Bab
- Bone LaboratoryThe Hebrew University of JerusalemJerusalemIsrael
| | - Yankel Gabet
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
9
|
Affiliation(s)
- Elizabeth M McNally
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
10
|
Gordon R, Singh N, Lawana V, Ghosh A, Harischandra DS, Jin H, Hogan C, Sarkar S, Rokad D, Panicker N, Anantharam V, Kanthasamy AG, Kanthasamy A. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease. Neurobiol Dis 2016; 93:96-114. [PMID: 27151770 DOI: 10.1016/j.nbd.2016.04.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic microglial activation has been linked to the progressive degeneration of the nigrostriatal dopaminergic neurons evidenced in Parkinson's disease (PD) pathogenesis. The exact etiology of PD remains poorly understood. Although both oxidative stress and neuroinflammation are identified as co-contributors in PD pathogenesis, signaling mechanisms underlying neurodegenerative processes have yet to be defined. Indeed, we recently identified that protein kinase C delta (PKCδ) activation is critical for induction of dopaminergic neuronal loss in response to neurotoxic stressors. However, it remains to be defined whether PKCδ activation contributes to immune signaling events driving microglial neurotoxicity. In the present study, we systematically investigated whether PKCδ contributes to the heightened microglial activation response following exposure to major proinflammatory stressors, including α-synuclein, tumor necrosis factor α (TNFα), and lipopolysaccharide (LPS). We report that exposure to the aforementioned inflammatory stressors dramatically upregulated PKCδ with a concomitant increase in its kinase activity and nuclear translocation in both BV-2 microglial cells and primary microglia. Importantly, we also observed a marked upregulation of PKCδ in the microglia of the ventral midbrain region of PD patients when compared to age-matched controls, suggesting a role for microglial PKCδ in neurodegenerative processes. Further, shRNA-mediated knockdown and genetic ablation of PKCδ in primary microglia blunted the microglial proinflammatory response elicited by the inflammogens, including ROS generation, nitric oxide production, and proinflammatory cytokine and chemokine release. Importantly, we found that PKCδ activated NFκB, a key mediator of inflammatory signaling events, after challenge with inflammatory stressors, and that transactivation of NFκB led to translocation of the p65 subunit to the nucleus, IκBα degradation and phosphorylation of p65 at Ser536. Furthermore, both genetic ablation and siRNA-mediated knockdown of PKCδ attenuated NFκB activation, suggesting that PKCδ regulates NFκB activation subsequent to microglial exposure to inflammatory stimuli. To further investigate the pivotal role of PKCδ in microglial activation in vivo, we utilized pre-clinical models of PD. We found that PKCδ deficiency attenuated the proinflammatory response in the mouse substantia nigra, reduced locomotor deficits and recovered mice from sickness behavior in an LPS-induced neuroinflammation model of PD. Likewise, we found that PKCδ knockout mice treated with MPTP displayed a dampened microglial inflammatory response. Moreover, PKCδ knockout mice exhibited reduced susceptibility to the neurotoxin-induced dopaminergic neurodegeneration and associated motor impairments. Taken together, our studies propose a pivotal role for PKCδ in PD pathology, whereby sustained PKCδ activation drives sustained microglial inflammatory responses and concomitant dopaminergic neurotoxicity consequently leading to neurobehavioral deficits. We conclude that inhibiting PKCδ activation may represent a novel therapeutic strategy in PD treatment.
Collapse
Affiliation(s)
- Richard Gordon
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Neeraj Singh
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Vivek Lawana
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anamitra Ghosh
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Dilshan S Harischandra
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Colleen Hogan
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Souvarish Sarkar
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Dharmin Rokad
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Nikhil Panicker
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Arthi Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
11
|
Newberry EP, Kennedy S, Xie Y, Luo J, Jiang H, Ory DS, Davidson NO. Phenotypic divergence in two lines of L-Fabp-/- mice reflects substrain differences and environmental modifiers. Am J Physiol Gastrointest Liver Physiol 2015; 309:G648-61. [PMID: 26251469 PMCID: PMC4609928 DOI: 10.1152/ajpgi.00170.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/29/2015] [Indexed: 01/31/2023]
Abstract
Phenotypic divergence in diet-induced obesity (DIO) and hepatic steatosis has been reported in two independently generated lines of L-Fabp(-/-) mice [New Jersey (NJ) L-Fabp(-/-) vs. Washington University (WU) L-Fabp(-/-) mice]. We performed side-by-side studies to examine differences between the lines and investigate the role of genetic background, intestinal microbiota, sex, and diet in the divergent phenotypes. Fasting-induced steatosis was attenuated in both L-Fabp(-/-) lines compared with C57BL/6J controls, with restoration of hepatic triglyceride levels following adenoviral L-Fabp rescue. Both lines were protected against DIO after high-saturated-fat diet feeding. Hepatic steatosis was attenuated in WU but not NJ L-Fabp(-/-) mice, although this difference between the lines disappeared upon antibiotic treatment and cohousing. In contrast, there was phenotypic divergence in L-Fabp(-/-) mice fed a high cocoa butter fat diet, with WU L-Fabp(-/-) mice, but not NJ L-Fabp(-/-) mice, showing protection against both DIO and hepatic steatosis, with some sex-dependent (female > male) differences. Dense mapping revealed no evidence of unintended targeting, duplications, or deletions surrounding the Fabp1 locus in either line and only minor differences in mRNA expression of genes located near the targeted allele. However, a C57BL/6 substrain screen showed that the NJ L-Fabp(-/-) line contains ∼40% C57BL/6N genomic DNA, despite reports that these mice were backcrossed six generations. Overall, these findings suggest that some of the phenotypic divergence between the two L-Fabp(-/-) lines may reflect unanticipated differences in genetic background, underscoring the importance of genetic background in phenotypic characterization.
Collapse
Affiliation(s)
- Elizabeth P. Newberry
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Susan Kennedy
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yan Xie
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jianyang Luo
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hui Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel S. Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas O. Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|