1
|
Schuh RS, Franceschi EP, Brum BB, Fachel FNS, Poletto É, Vera LNP, Santos HS, Medeiros-Neves B, Monteagudo de Barros V, Helena da Rosa Paz A, Baldo G, Matte U, Giugliani R, Ferreira Teixeira H. Laronidase-loaded liposomes reach the brain and other hard-to-treat organs after noninvasive nasal administration. Int J Pharm 2024; 660:124355. [PMID: 38897489 DOI: 10.1016/j.ijpharm.2024.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by a lack of the lysosomal enzyme α-L-iduronidase (IDUA), responsible for the degradation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate, leading to multisystemic signs and symptoms. Enzyme replacement therapy (ERT) is a treatment that consists of weekly intravenous administrations of laronidase, a recombinant version of IDUA. However, ERT has limited access to certain tissues, such as bone, cartilage, and brain, and laronidase fails to trespass the BBB. In this sense, this study reports the development and characterization of laronidase-loaded liposomes for the treatment of MPS I mice. Liposomal complexes were obtained by the thin film formation method followed by microfluidization. The main characterization results showed mean vesicle size of 103.0 ± 3.3 nm, monodisperse populations of vesicles, zeta potential around + 30.0 ± 2.1 mV, and mucoadhesion strength of 5.69 ± 0.14 mN. Treatment of MPS I mice fibroblasts showed significant increase in enzyme activity. Nasal administration of complexes to MPS I mice resulted in significant increase in laronidase activity in the brain cortex, heart, lungs, kidneys, eyes, and serum. The overall results demonstrate the feasibility of nasal administration of laronidase-loaded liposomes to deliver enzyme in difficult-to-reach tissues, circumventing ERT issues and bringing hope as a potential treatment for MPS I.
Collapse
Affiliation(s)
- Roselena Silvestri Schuh
- Postgraduate Program in Pharmaceutical Sciences, UFRGS, Porto Alegre, RS, Brazil; Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | | | - Bruna Brazeiro Brum
- Postgraduate Program in Pharmaceutical Sciences, UFRGS, Porto Alegre, RS, Brazil; Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Édina Poletto
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Luisa Natália Pimentel Vera
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hallana Souza Santos
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Medeiros-Neves
- Postgraduate Program in Pharmaceutical Sciences, UFRGS, Porto Alegre, RS, Brazil
| | | | - Ana Helena da Rosa Paz
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Cells, Tissues and Genes, Experimental Research Centre, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | | |
Collapse
|
2
|
Baldo G. Crossing the gates of Babylon: Brain-penetrating enzyme replacement for lysosomal disorders. Mol Ther Methods Clin Dev 2023; 30:315-316. [PMID: 37637386 PMCID: PMC10447917 DOI: 10.1016/j.omtm.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Guilherme Baldo
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
- Casa dos Raros, R. São Manoel, 730 Santa Cecília, Porto Alegre, RS 90610-261, Brazil
| |
Collapse
|
3
|
Ellison S, Parker H, Bigger B. Advances in therapies for neurological lysosomal storage disorders. J Inherit Metab Dis 2023; 46:874-905. [PMID: 37078180 DOI: 10.1002/jimd.12615] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Lysosomal Storage Disorders (LSDs) are a diverse group of inherited, monogenic diseases caused by functional defects in specific lysosomal proteins. The lysosome is a cellular organelle that plays a critical role in catabolism of waste products and recycling of macromolecules in the body. Disruption to the normal function of the lysosome can result in the toxic accumulation of storage products, often leading to irreparable cellular damage and organ dysfunction followed by premature death. The majority of LSDs have no curative treatment, with many clinical subtypes presenting in early infancy and childhood. Over two-thirds of LSDs present with progressive neurodegeneration, often in combination with other debilitating peripheral symptoms. Consequently, there is a pressing unmet clinical need to develop new therapeutic interventions to treat these conditions. The blood-brain barrier is a crucial hurdle that needs to be overcome in order to effectively treat the central nervous system (CNS), adding considerable complexity to therapeutic design and delivery. Enzyme replacement therapy (ERT) treatments aimed at either direct injection into the brain, or using blood-brain barrier constructs are discussed, alongside more conventional substrate reduction and other drug-related therapies. Other promising strategies developed in recent years, include gene therapy technologies specifically tailored for more effectively targeting treatment to the CNS. Here, we discuss the most recent advances in CNS-targeted treatments for neurological LSDs with a particular emphasis on gene therapy-based modalities, such as Adeno-Associated Virus and haematopoietic stem cell gene therapy approaches that encouragingly, at the time of writing are being evaluated in LSD clinical trials in increasing numbers. If safety, efficacy and improved quality of life can be demonstrated, these therapies have the potential to be the new standard of care treatments for LSD patients.
Collapse
Affiliation(s)
- S Ellison
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
| | - H Parker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - B Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Chen C, Methley A, Naicker R, Rust S, Stepien KM. Neuropsychology assessment and outcomes in adult mucopolysaccharidosis - A systematic review as the first step to service development in a large tertiary Lysosomal Storage Disorders centre. Mol Genet Metab 2023; 138:106980. [PMID: 36709537 DOI: 10.1016/j.ymgme.2022.106980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
A systematic review of Randomised Controlled Trials in adult mucopolysaccharidoses (MPSs) was conducted to inform neuropsychology service development at a large tertiary Lysosomal Storage Diseases centre. Studies including psychological endpoints for cognition, mood, and quality of life were reviewed. Forty-eight studies met the inclusion criteria for full text review. Of the 48 studies, 44% (21/48) included adult participants, while psychological endpoints were used in 52% (25/48) for cognition, 11% (5/48) for mood, and 69% (33/48) for quality of life. Five studies included both adult participants and relevant psychological endpoints. Risk of bias ratings were 'high' for two studies, while two studies received a rating of 'some concerns', and the last study a 'low' risk of bias rating. The evidence base for psychological outcomes in adult MPS disorders is limited and insufficient for guiding neuropsychology service development. Data on the psychosocial effects of MPS across the lifespan will be crucial for planning service development and supporting the neuropsychological needs of adult patients and their families.
Collapse
Affiliation(s)
- Cliff Chen
- Clinical Neuropsychology Department, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, M6 8HD, United Kingdom.
| | - Abigail Methley
- Clinical Neuropsychology Department, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, M6 8HD, United Kingdom
| | - Ramona Naicker
- Library and Knowledge Service, Salford Royal Hospital, Manchester M6 8HD, United Kingdom
| | - Stewart Rust
- Neuropsychology Team, Department of Paediatric Psychosocial Services, Harrington Building, Royal Manchester Children's Hospital, Manchester, M13 9WL, United Kingdom
| | - Karolina M Stepien
- Adult Inherited Metabolic Diseases, Mark Holland Unit, Salford Royal NHS Foundation Trust, Salford M6 8HD, United Kingdom
| |
Collapse
|
5
|
Grimm NB, Lee JT. Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome. Trends Genet 2022; 38:920-943. [PMID: 35248405 PMCID: PMC9915138 DOI: 10.1016/j.tig.2022.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
The human X-chromosome harbors only 4% of our genome but carries over 20% of genes associated with intellectual disability. Given that they inherit only one X-chromosome, males are more frequently affected by X-linked neurodevelopmental genetic disorders than females. However, despite inheriting two X-chromosomes, females can also be affected because X-chromosome inactivation enables only one of two X-chromosomes to be expressed per cell. For Rett syndrome and similar X-linked disorders affecting females, disease-specific treatments have remained elusive. However, a cure may be found within their own cells because every sick cell carries a healthy copy of the affected gene on the inactive X (Xi). Therefore, selective Xi reactivation may be a viable approach that would address the root cause of various X-linked disorders. Here, we discuss Rett syndrome and compare current approaches in the pharmaceutical pipeline to restore MECP2 function. We then focus on Xi reactivation and review available methods, lessons learned, and future directions.
Collapse
Affiliation(s)
- Niklas-Benedikt Grimm
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Picache JA, Zheng W, Chen CZ. Therapeutic Strategies For Tay-Sachs Disease. Front Pharmacol 2022; 13:906647. [PMID: 35865957 PMCID: PMC9294361 DOI: 10.3389/fphar.2022.906647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tay-Sachs disease (TSD) is an autosomal recessive disease that features progressive neurodegenerative presentations. It affects one in 100,000 live births. Currently, there is no approved therapy or cure. This review summarizes multiple drug development strategies for TSD, including enzyme replacement therapy, pharmaceutical chaperone therapy, substrate reduction therapy, gene therapy, and hematopoietic stem cell replacement therapy. In vitro and in vivo systems are described to assess the efficacy of the aforementioned therapeutic strategies. Furthermore, we discuss using MALDI mass spectrometry to perform a high throughput screen of compound libraries. This enables discovery of compounds that reduce GM2 and can lead to further development of a TSD therapy.
Collapse
|
7
|
Kovac V, Shapiro EG, Rudser KD, Mueller BA, Eisengart JB, Delaney KA, Ahmed A, King KE, Yund BD, Cowan MJ, Raiman J, Mamak EG, Harmatz PR, Shankar SP, Ali N, Cagle SR, Wozniak JR, Lim KO, Orchard PJ, Whitley CB, Nestrasil I. Quantitative brain MRI morphology in severe and attenuated forms of mucopolysaccharidosis type I. Mol Genet Metab 2022; 135:122-132. [PMID: 35012890 PMCID: PMC8898074 DOI: 10.1016/j.ymgme.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess our hypothesis that brain macrostructure is different in individuals with mucopolysaccharidosis type I (MPS I) and healthy controls (HC), we conducted a comprehensive multicenter study using a uniform quantitative magnetic resonance imaging (qMRI) protocol, with analyses that account for the effects of disease phenotype, age, and cognition. METHODS Brain MRIs in 23 individuals with attenuated (MPS IA) and 38 with severe MPS I (MPS IH), aged 4-25 years, enrolled under the study protocol NCT01870375, were compared to 98 healthy controls. RESULTS Cortical and subcortical gray matter, white matter, corpus callosum, ventricular and choroid plexus volumes in MPS I significantly differed from HC. Thicker cortex, lower white matter and corpus callosum volumes were already present at the youngest MPS I participants aged 4-5 years. Age-related differences were observed in both MPS I groups, but most markedly in MPS IH, particularly in cortical gray matter metrics. IQ scores were inversely associated with ventricular volume in both MPS I groups and were positively associated with cortical thickness only in MPS IA. CONCLUSIONS Quantitatively-derived MRI measures distinguished MPS I participants from HC as well as severe from attenuated forms. Age-related neurodevelopmental trajectories in both MPS I forms differed from HC. The extent to which brain structure is altered by disease, potentially spared by treatment, and how it relates to neurocognitive dysfunction needs further exploration.
Collapse
Affiliation(s)
- Victor Kovac
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Elsa G Shapiro
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Kyle D Rudser
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - Bryon A Mueller
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Julie B Eisengart
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Kathleen A Delaney
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Alia Ahmed
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Kelly E King
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Brianna D Yund
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Morton J Cowan
- UCSF Benioff Children's Hospital, University of California, San Francisco, CA, USA.
| | - Julian Raiman
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Eva G Mamak
- Department of Psychology, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Paul R Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA.
| | - Suma P Shankar
- Department of Ophthalmology and Human Genetics, Emory University, Atlanta, GA, USA.
| | - Nadia Ali
- Department of Human Genetics, Emory University, Atlanta, GA, USA.
| | | | - Jeffrey R Wozniak
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kelvin O Lim
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Paul J Orchard
- Division of Pediatric Blood & Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Chester B Whitley
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Igor Nestrasil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Center for Magnetic Resonance Research (CMRR), Department of Radiology, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Li Y, Liu D, Yu Y. Case Report: Mucopolysaccharidosis Type I Treatment With α-L-Iduronidase Replacement Therapy. Front Pediatr 2022; 10:823044. [PMID: 35433540 PMCID: PMC9010773 DOI: 10.3389/fped.2022.823044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Mucopolysaccharidosis is a rare disease and can be divided into seven different subtypes, according to the affected enzyme. Mucopolysaccharidosis type I, the first subtype discovered and reported, mainly affects the in vivo storage of degraded sugar. The current treatment methods are symptomatic therapy, enzyme replacement therapy, and allogeneic hematopoietic stem cell transplantation. In China, the enzyme for the treatment of mucopolysaccharidosis type I was approved in June 2020. We report a case of an 18-month-old Chinese boy with mucopolysaccharidosis type I who received enzyme replacement therapy with concentrated laronidase solution. This is the second case of the disease in China, and the first case of a child under 2 years of age. Following the therapy, urine mucopolysaccharide particle levels were significantly lower, and the patient's symptoms improved. The medical records of Chinese patients who have been treated with enzyme replacement therapy for mucopolysaccharidosis type I also showed similar results. This case demonstrated that enzyme replacement therapy is a safe and effective treatment for patients with mucopolysaccharidosis type I.
Collapse
Affiliation(s)
- Ying Li
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Deyun Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Yue Yu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
9
|
Rodriguez Ciancio JIR, Aquilina K. Complications associated with intrathecal drug delivery in a paediatric patient with Niemann-Pick type C. BMJ Case Rep 2021; 14:e241786. [PMID: 33962928 PMCID: PMC8108650 DOI: 10.1136/bcr-2021-241786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 11/04/2022] Open
Abstract
We report on a male subject with a diagnosis of Niemann-Pick type C (NPC). He received an experimental medicinal product intrathecally initially via lumbar puncture (LP) and eventually via intrathecal drug delivery device. Shortly after implantation, the device catheter migrated outside of the intrathecal space and coiled subcutaneously. The treatment continued via LP after removal of the device. A subdural haematoma developed after repeated LPs. It was surgically evacuated and the patient recovered with sequelae. Surgically implanted drug delivery devices are designed to bypass the blood-brain barrier and deliver a medicinal product directly into the cerebrospinal fluid circulation. Their use has extended into the field of neurodegenerative disorders. Significant adverse events can occur at any given time after implantation including neurological injury, dislodgement or displacement of any of its components, infection and drug-related complications; all can significantly affect the quality of life of patients. Repeated LPs also carry significant risk.
Collapse
|
10
|
Shapiro EG, Eisengart JB. The natural history of neurocognition in MPS disorders: A review. Mol Genet Metab 2021; 133:8-34. [PMID: 33741271 DOI: 10.1016/j.ymgme.2021.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/22/2023]
Abstract
MPS disorders are associated with a wide spectrum of neurocognitive effects, from mild problems with attention and executive functions to progressive and degenerative neuronopathic disease. Studies of the natural history of neurocognition are necessary to determine the profile of abnormality and the rates of change, which are crucial to select endpoints for clinical trials of brain treatments and to make clinical recommendations for interventions to improve patients' quality of life. The goal of this paper is to review neurocognitive natural history studies to determine the current state of knowledge and assist in directing future research in all MPS disorders. There are seven different types of MPS diseases, each resulting from a specific enzyme deficiency and each having a separate natural history. MPS IX, will not be discussed as there are only 4 cases reported in the literature without cognitive abnormality. For MPS IH, hematopoietic cell transplant (HCT) is standard of care and many studies have documented the relationship between age at treatment and neurocognitive outcome, and to a lesser extent, neurocognitive status at baseline. However, the mortality and morbidity associated with the transplant process and residual long-term problems after transplant, have led to renewed efforts to find better treatments. Rather than natural history, new trials will likely need to use the developmental trajectories of the patients with HCT as a comparators. The literature has extensive data regarding developmental trajectories post-HCT. For attenuated MPS I, significant neurocognitive deficits have been documented, but more longitudinal data are needed in order to support a treatment directed at their attention and executive function abnormalities. The neuronopathic form of MPS II has been a challenge due to the variability of the trajectory of the disease with differences in timing of slowing of development and decline. Finding predictors of the course of the disease has only been partially successful, using mutation type and family history. Because of lack of systematic data and clinical trials that precede a thorough understanding of the disease, there is need for a major effort to gather natural history data on the entire spectrum of MPS II. Even in the attenuated disease, attention and executive function abnormalities need documentation. Lengthy detailed longitudinal studies are needed to encompass the wide variability in MPS II. In MPS IIIA, the existence of three good natural history studies allowed a quasi-meta-analysis. In patients with a rapid form of the disease, neurocognitive development slowed up until 42 to 47 months, halted up to about 54 months, then declined rapidly thereafter, with a leveling off at an extremely low age equivalent score below 22 months starting at about chronological age of 6. Those with slower or attenuated forms have been more variable and difficult to characterize. Because of the plethora of studies in IIIA, it has been recommended that data be combined from natural history studies to minimize the burden on parents and patients. Sufficient data exists to understand the natural history of cognition in MPS IIIA. MPS IIIB is quite similar to IIIA, but more attenuated patients in that phenotype have been reported. MPS IIIC and D, because they are so rare, have little documentation of natural history despite the prospects of treatments. MPS IV and VI are the least well documented of the MPS disorders with respect to their neurocognitive natural history. Because, like attenuated MPS I and II, they do not show progression of neurocognitive abnormality and most patients function in the range of normality, their behavioral, attentional, and executive function abnormalities have been ignored to the detriment of their quality of life. A peripheral treatment for MPS VII, extremely rare even among MPS types, has recently been approved with a post-approval monitoring system to provide neurocognitive natural history data in the future. More natural history studies in the MPS forms with milder cognitive deficits (MPS I, II, IV, and VI) are recommended with the goal of improving these patients' quality of life with and without new brain treatments, beyond the benefits of available peripheral enzyme replacement therapy. Recommendations are offered at-a-glance with respect to what areas most urgently need attention to clarify neurocognitive function in all MPS types.
Collapse
Affiliation(s)
- Elsa G Shapiro
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Shapiro Neuropsychology Consulting LLC, Portland, OR, USA.
| | - Julie B Eisengart
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
McBride KL, Flanigan KM. Update in the Mucopolysaccharidoses. Semin Pediatr Neurol 2021; 37:100874. [PMID: 33892850 DOI: 10.1016/j.spen.2021.100874] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
The mucopolysaccharidoses (MPS) are a genetically heterogenous group of enzyme deficiencies marked by accumulation of glycosaminoglycans in lysosomes leading to multisystem disease. Although significant therapeutic advances have been made for the MPS disorders, including recombinant enzyme replacement approaches, the neuronopathic features of MPS lack adequate treatment. Gene therapies, including adeno-associated virus vectors targeting the central nervous system, hold significant promise for this group of disorders. Optimal outcomes of all therapies will require early disease identification and treatment, ideally by newborn screening.
Collapse
Affiliation(s)
- Kim L McBride
- The Center for Cardiovascular Research and the Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital; and the Ohio State University, Columbus, OH; Department of Pediatrics, the Ohio State University, Columbus, OH.
| | - Kevin M Flanigan
- Department of Pediatrics, the Ohio State University, Columbus, OH; Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital; and the Ohio State University, Columbus, OH.
| |
Collapse
|
12
|
Hampe CS, Wesley J, Lund TC, Orchard PJ, Polgreen LE, Eisengart JB, McLoon LK, Cureoglu S, Schachern P, McIvor RS. Mucopolysaccharidosis Type I: Current Treatments, Limitations, and Prospects for Improvement. Biomolecules 2021; 11:189. [PMID: 33572941 PMCID: PMC7911293 DOI: 10.3390/biom11020189] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal disease, caused by a deficiency of the enzyme alpha-L-iduronidase (IDUA). IDUA catalyzes the degradation of the glycosaminoglycans dermatan and heparan sulfate (DS and HS, respectively). Lack of the enzyme leads to pathologic accumulation of undegraded HS and DS with subsequent disease manifestations in multiple organs. The disease can be divided into severe (Hurler syndrome) and attenuated (Hurler-Scheie, Scheie) forms. Currently approved treatments consist of enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). Patients with attenuated disease are often treated with ERT alone, while the recommended therapy for patients with Hurler syndrome consists of HSCT. While these treatments significantly improve disease manifestations and prolong life, a considerable burden of disease remains. Notably, treatment can partially prevent, but not significantly improve, clinical manifestations, necessitating early diagnosis of disease and commencement of treatment. This review discusses these standard therapies and their impact on common disease manifestations in patients with MPS I. Where relevant, results of animal models of MPS I will be included. Finally, we highlight alternative and emerging treatments for the most common disease manifestations.
Collapse
Affiliation(s)
| | | | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.); (J.B.E.)
| | - Paul J. Orchard
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.); (J.B.E.)
| | - Lynda E. Polgreen
- The Lundquist Institute at Harbor, UCLA Medical Center, Torrance, CA 90502, USA;
| | - Julie B. Eisengart
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.); (J.B.E.)
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Sebahattin Cureoglu
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.C.); (P.S.)
| | - Patricia Schachern
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.C.); (P.S.)
| | - R. Scott McIvor
- Immusoft Corp, Minneapolis, MN 55413, USA;
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
van der Lee JH, Morton J, Adams HR, Clarke L, Eisengart JB, Escolar ML, Giugliani R, Harmatz P, Hogan M, Kearney S, Muenzer J, Muschol N, Rust S, Saville BR, Semrud-Clikeman M, Wang R, Shapiro E. Therapy development for the mucopolysaccharidoses: Updated consensus recommendations for neuropsychological endpoints. Mol Genet Metab 2020; 131:181-196. [PMID: 32917509 DOI: 10.1016/j.ymgme.2020.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 01/11/2023]
Abstract
Neurological dysfunction represents a significant clinical component of many of the mucopolysaccharidoses (also known as MPS disorders). The accurate and consistent assessment of neuropsychological function is essential to gain a greater understanding of the precise natural history of these conditions and to design effective clinical trials to evaluate the impact of therapies on the brain. In 2017, an International MPS Consensus Panel published recommendations for best practice in the design and conduct of clinical studies investigating the effects of therapies on cognitive function and adaptive behavior in patients with neuronopathic mucopolysaccharidoses. Based on an International MPS Consensus Conference held in February 2020, this article provides updated consensus recommendations and expands the objectives to include approaches for assessing behavioral and social-emotional state, caregiver burden and quality of life in patients with all mucopolysaccharidoses.
Collapse
Affiliation(s)
- Johanna H van der Lee
- Knowledge Institute of the Dutch Association of Medical Specialists, Utrecht, Netherlands; Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Clinical Research Office, Amsterdam, Netherlands
| | | | - Heather R Adams
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lorne Clarke
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Julie B Eisengart
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Maria L Escolar
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roberto Giugliani
- Department of Genetics, UFRGS, and Medical Genetics Service, HPCA, Porto Alegre, Brazil
| | - Paul Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | | | - Shauna Kearney
- Clinical Paediatric Psychology, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Joseph Muenzer
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole Muschol
- Department of Pediatric, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Stewart Rust
- Paediatric Psychosocial Department, Royal Manchester Children's Hospital, Manchester, UK
| | - Benjamin R Saville
- Berry Consultants LLC, Austin, TX, USA; Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret Semrud-Clikeman
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Raymond Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County, Orange, CA, USA
| | - Elsa Shapiro
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Shapiro Neuropsychology Consulting LLC, Portland, OR, USA.
| |
Collapse
|