1
|
Seyedtaghia MR, Jafarzadeh‐Esfehani R, Hosseini S, Kobravi S, Hakkaki M, Nilipour Y. A compound heterozygote case of glutaric aciduria type II in a patient carrying a novel candidate variant in ETFDH gene: A case report and literature review on compound heterozygote cases. Mol Genet Genomic Med 2024; 12:e2489. [PMID: 38967380 PMCID: PMC11225075 DOI: 10.1002/mgg3.2489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Glutaric aciduria type II (GA2) is a rare genetic disorder inherited in an autosomal recessive manner. Double dosage mutations in GA2 corresponding genes, ETFDH, ETFA, and ETFB, lead to defects in the catabolism of fatty acids, and amino acids lead to broad-spectrum phenotypes, including muscle weakness, developmental delay, and seizures. product of these three genes have crucial role in transferring electrons to the electron transport chain (ETC), but are not directly involve in ETC complexes. METHODS Here, by using exome sequencing, the cause of periodic cryptic gastrointestinal complications in a 19-year-old girl was resolved after years of diagnostic odyssey. Protein modeling for the novel variant served as another line of validation for it. RESULTS Exome Sequencing (ES) identified two variants in ETFDH: ETFDH:c.926T>G and ETFDH:c.1141G>C. These variants are likely contributing to the crisis in this case. To the best of our knowledge at the time of writing this manuscript, variant ETFDH:c.926T>G is reported here for the first time. Clinical manifestations of the case and pathological analysis are in consistent with molecular findings. Protein modeling provided another line of evidence proving the pathogenicity of the novel variant. ETFDH:c.926T>G is reported here for the first time in relation to the causation GA2. CONCLUSION Given the milder symptoms in this case, a review of GA2 cases caused by compound heterozygous mutations was conducted, highlighting the range of symptoms observed in these patients, from mild fatigue to more severe outcomes. The results underscore the importance of comprehensive genetic analysis in elucidating the spectrum of clinical presentations in GA2 and guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Mohammad Reza Seyedtaghia
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Reza Jafarzadeh‐Esfehani
- Blood Borne Infection Research Center, Academic Center for EducationCulcture and Research (ACECR)‐ Khorasan RazaviMashhadIran
| | - Seyedmojtaba Hosseini
- Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Medical Laboratory Sciences, 22 Bahman HospitalNeyshabur University of Medical SciencesNeyshaburIran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of DentistryTehran Azad UniversityTehranIran
| | - Mahdis Hakkaki
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for children's HealthShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Yao A, Li Z, Lyu J, Yu L, Wei S, Xue L, Wang H, Chen GQ. On the nutritional and therapeutic effects of ketone body D-β-hydroxybutyrate. Appl Microbiol Biotechnol 2021; 105:6229-6243. [PMID: 34415393 PMCID: PMC8377336 DOI: 10.1007/s00253-021-11482-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Abstract d-β-hydroxybutyrate (d-3HB), a monomer of microbial polyhydroxybutyrate (PHB), is also a natural ketone body produced during carbohydrate deprivation to provide energy to the body cells, heart, and brain. In recent years, increasing evidence demonstrates that d-3HB can induce pleiotropic effects on the human body which are highly beneficial for improving physical and metabolic health. Conventional ketogenic diet (KD) or exogenous ketone salts (KS) and esters (KE) have been used to increase serum d-3HB level. However, strict adaptation to the KD was often associated with poor patient compliance, while the ingestion of KS caused gastrointestinal distresses due to excessive consumption of minerals. As for ingestion of KE, subsequent degradation is required before releasing d-3HB for absorption, making these methods somewhat inferior. This review provides novel insights into a biologically synthesized d-3HB (d-3-hydroxybutyric acid) which can induce a faster increase in plasma d-3HB compared to the use of KD, KS, or KE. It also emphasizes on the most recent applications of d-3HB in different fields, including its use in improving exercise performance and in treating metabolic or age-related diseases. Ketones may become a fourth micro-nutrient that is necessary to the human body along with carbohydrates, proteins, and fats. Indeed, d-3HB being a small molecule with multiple signaling pathways within the body exhibits paramount importance in mitigating metabolic and age-related diseases. Nevertheless, specific dose–response relationships and safety margins of using d-3HB remain to be elucidated with more research. Key points • d-3HB induces pleiotropic effects on physical and metabolic health. • Exogenous ketone supplements are more effective than ketogenic diet. • d-3HB as a ketone supplement has long-term healthy impact.
Collapse
Affiliation(s)
- Aliya Yao
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Zihua Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinyan Lyu
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Liusong Yu
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Situ Wei
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Lingyun Xue
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Hui Wang
- Department of Colorectal Surgery, Guangdong Province Biomedical Material Conversion and Evaluation Engineering Technology Center, Institute of Biomedical Innovation, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong Province, China
| | - Guo-Qiang Chen
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China. .,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China. .,School of Life Sciences and Dept Chemical Engineering, Center for Synthetic and Systems Biology (CSSB), Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Bleeker JC, Visser G, Clarke K, Ferdinandusse S, de Haan FH, Houtkooper RH, IJlst L, Kok IL, Langeveld M, van der Pol WL, de Sain‐van der Velden MGM, Sibeijn‐Kuiper A, Takken T, Wanders RJA, van Weeghel M, Wijburg FA, van der Woude LH, Wüst RCI, Cox PJ, Jeneson JAL. Nutritional ketosis improves exercise metabolism in patients with very long-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2020; 43:787-799. [PMID: 31955429 PMCID: PMC7384182 DOI: 10.1002/jimd.12217] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
A maladaptive shift from fat to carbohydrate (CHO) oxidation during exercise is thought to underlie myopathy and exercise-induced rhabdomyolysis in patients with fatty acid oxidation (FAO) disorders. We hypothesised that ingestion of a ketone ester (KE) drink prior to exercise could serve as an alternative oxidative substrate supply to boost muscular ATP homeostasis. To establish a rational basis for therapeutic use of KE supplementation in FAO, we tested this hypothesis in patients deficient in Very Long-Chain acyl-CoA Dehydrogenase (VLCAD). Five patients (range 17-45 y; 4 M/1F) patients were included in an investigator-initiated, randomised, blinded, placebo-controlled, 2-way cross-over study. Patients drank either a KE + CHO mix or an isocaloric CHO equivalent and performed 35 minutes upright cycling followed by 10 minutes supine cycling inside a Magnetic Resonance scanner at individual maximal FAO work rate (fatmax; approximately 40% VO2 max). The protocol was repeated after a 1-week interval with the alternate drink. Primary outcome measures were quadriceps phosphocreatine (PCr), Pi and pH dynamics during exercise and recovery assayed by in vivo 31 P-MR spectroscopy. Secondary outcomes included plasma and muscle metabolites and respiratory gas exchange recordings. Ingestion of KE rapidly induced mild ketosis and increased muscle BHB content. During exercise at FATMAX, VLCADD-specific plasma acylcarnitine levels, quadriceps glycolytic intermediate levels and in vivo Pi/PCr ratio were all lower in KE + CHO than CHO. These results provide a rational basis for future clinical trials of synthetic ketone ester supplementation therapy in patients with FAO disorders. Trial registration: ClinicalTrials.gov. Protocol ID: NCT03531554; METC2014.492; ABR51222.042.14.
Collapse
Affiliation(s)
- Jeannette C. Bleeker
- Department of Metabolic Diseases, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Metabolic Diseases, Emma Children's Hospital, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Metabolic Diseases, Emma Children's Hospital, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Kieran Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ferdinand H. de Haan
- ACHIEVE, Center for Applied Research, Faculty of HealthUniversity of Applied Sciences AmsterdamAmsterdamThe Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Irene L. Kok
- Department of Metabolic Diseases, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, Spieren voor Spieren KindercentrumUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Anita Sibeijn‐Kuiper
- Neuroimaging Center, Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Tim Takken
- Center for Child Development & Exercise, Department of Medical PhysiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Ronald J. A. Wanders
- Department of Metabolic Diseases, Emma Children's Hospital, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
- Core Facility Metabolomics, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Frits A. Wijburg
- Department of Metabolic Diseases, Emma Children's Hospital, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luc H. van der Woude
- Human Movement SciencesUniversity Medical Center GroningenGroningenThe Netherlands
| | - Rob C. I. Wüst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Pete J. Cox
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Jeroen A. L. Jeneson
- Neuroimaging Center, Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenGroningenThe Netherlands
- Center for Child Development & Exercise, Department of Medical PhysiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Radiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
4
|
Golonka RM, Xiao X, Abokor AA, Joe B, Vijay-Kumar M. Altered nutrient status reprograms host inflammation and metabolic health via gut microbiota. J Nutr Biochem 2020; 80:108360. [PMID: 32163821 PMCID: PMC7242157 DOI: 10.1016/j.jnutbio.2020.108360] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
The metabolism of macro- and micronutrients is a complex and highly regulated biological process. An imbalance in the metabolites and their signaling networks can lead to nonresolving inflammation and consequently to the development of chronic inflammatory-associated diseases. Therefore, identifying the accumulated metabolites and altered pathways during inflammatory disorders would not only serve as "real-time" markers but also help in the development of nutritional therapeutics. In this review, we explore recent research that has delved into elucidating the effects of carbohydrate/calorie restriction, protein malnutrition, lipid emulsions and micronutrient deficiencies on metabolic health and inflammation. Moreover, we describe the integrated stress response in terms of amino acid starvation and lipemia and how this modulates new age diseases such as inflammatory bowel disease and atherosclerosis. Lastly, we explain the latest research on metaflammation and inflammaging. This review focuses on multiple signaling pathways, including, but not limited to, the FGF21-β-hydroxybutryate-NLRP3 axis, the GCN2-eIF2α-ATF4 pathway, the von Hippel-Lindau/hypoxia-inducible transcription factor pathway and the TMAO-PERK-FoxO1 axis. Additionally, throughout the review, we explain how the gut microbiota responds to altered nutrient status and also how antimicrobial peptides generated from nutrient-based signaling pathways can modulate the gut microbiota. Collectively, it must be emphasized that metabolic starvation and inflammation are strongly regulated by both environmental (i.e., nutrition, gut microbiome) and nonenvironmental (i.e., genetics) factors, which can influence the susceptibility to inflammatory disorders.
Collapse
Affiliation(s)
- Rachel M Golonka
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Xia Xiao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A Abokor
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614.
| |
Collapse
|