1
|
Hill M, Roch S, Rodriguez JI. Maximum Likelihood Estimation for Unrooted 3-Leaf Trees: An Analytic Solution for the CFN Model. Bull Math Biol 2024; 86:106. [PMID: 38995457 PMCID: PMC11245464 DOI: 10.1007/s11538-024-01340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Maximum likelihood estimation is among the most widely-used methods for inferring phylogenetic trees from sequence data. This paper solves the problem of computing solutions to the maximum likelihood problem for 3-leaf trees under the 2-state symmetric mutation model (CFN model). Our main result is a closed-form solution to the maximum likelihood problem for unrooted 3-leaf trees, given generic data; this result characterizes all of the ways that a maximum likelihood estimate can fail to exist for generic data and provides theoretical validation for predictions made in Parks and Goldman (Syst Biol 63(5):798-811, 2014). Our proof makes use of both classical tools for studying group-based phylogenetic models such as Hadamard conjugation and reparameterization in terms of Fourier coordinates, as well as more recent results concerning the semi-algebraic constraints of the CFN model. To be able to put these into practice, we also give a complete characterization to test genericity.
Collapse
Affiliation(s)
- Max Hill
- Department of Mathematics, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| | - Sebastien Roch
- Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, WI, 53706-1388, USA
| | - Jose Israel Rodriguez
- Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, WI, 53706-1388, USA
| |
Collapse
|
2
|
Sun Y, Song X, Chen C, Li S, Gu J, Shao X. A New Record of Pogonatum tahitense (Polytrichaceae) from Tibet, China: Taxonomic Description, Range Expansion, and Biogeographic History. PLANTS (BASEL, SWITZERLAND) 2024; 13:846. [PMID: 38592873 PMCID: PMC10974980 DOI: 10.3390/plants13060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
The genus Pogonatum stands out as the most diverse within the family Polytrichaceae, encompassing over 50 species. Pogonatum tahitense has been recorded across various Pacific regions, including Hawaii in the United States and Tahiti in French Polynesia, as well as in Asia, such as in Taiwan in China, Java in Indonesia, and Sabah in Malaysia. In the current study, a specimen collected in Tibet, China, is described, confirming its taxonomic classification as P. tahitense through a comprehensive analysis integrating morphological evidence and molecular study based on sequences from the plastid (rbcL, rps4, trnL-F), mitochondrial (nad5), and nuclear (ITS2) regions. This documentation represents the first record of the species within mainland China. A time-calibrated, molecular-based phylogenetic analysis was conducted, employing various approaches for ancestral range inference. The findings suggest that P. tahitense originated during the Pleistocene epoch, approximately 1.8 mya, in Tibet, China.
Collapse
Affiliation(s)
- Yu Sun
- Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd., Jiujiang 332900, China; (Y.S.); (C.C.); (S.L.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaotong Song
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (X.S.); (J.G.)
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Chunfa Chen
- Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd., Jiujiang 332900, China; (Y.S.); (C.C.); (S.L.)
| | - Shuang Li
- Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd., Jiujiang 332900, China; (Y.S.); (C.C.); (S.L.)
| | - Jiqi Gu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (X.S.); (J.G.)
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaoming Shao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (X.S.); (J.G.)
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
- Resources & Environment College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| |
Collapse
|
3
|
Tang X, Zepeda-Nuñez L, Yang S, Zhao Z, Solís-Lemus C. Novel symmetry-preserving neural network model for phylogenetic inference. BIOINFORMATICS ADVANCES 2024; 4:vbae022. [PMID: 38638281 PMCID: PMC11026143 DOI: 10.1093/bioadv/vbae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 04/20/2024]
Abstract
Motivation Scientists world-wide are putting together massive efforts to understand how the biodiversity that we see on Earth evolved from single-cell organisms at the origin of life and this diversification process is represented through the Tree of Life. Low sampling rates and high heterogeneity in the rate of evolution across sites and lineages produce a phenomenon denoted "long branch attraction" (LBA) in which long nonsister lineages are estimated to be sisters regardless of their true evolutionary relationship. LBA has been a pervasive problem in phylogenetic inference affecting different types of methodologies from distance-based to likelihood-based. Results Here, we present a novel neural network model that outperforms standard phylogenetic methods and other neural network implementations under LBA settings. Furthermore, unlike existing neural network models in phylogenetics, our model naturally accounts for the tree isomorphisms via permutation invariant functions which ultimately result in lower memory and allows the seamless extension to larger trees. Availability and implementation We implement our novel theory on an open-source publicly available GitHub repository: https://github.com/crsl4/nn-phylogenetics.
Collapse
Affiliation(s)
- Xudong Tang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, United States
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Leonardo Zepeda-Nuñez
- Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Shengwen Yang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, United States
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Zelin Zhao
- Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Claudia Solís-Lemus
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, United States
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
4
|
Zhang J, Chi X, Zhong J, Fernie A, Alseekh S, Huang L, Qian D. Extensive nrDNA ITS polymorphism in Lycium: Non-concerted evolution and the identification of pseudogenes. FRONTIERS IN PLANT SCIENCE 2022; 13:984579. [PMID: 36092433 PMCID: PMC9453804 DOI: 10.3389/fpls.2022.984579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
The internal transcribed spacer (ITS) is one of the most extensively sequenced molecular markers in plant systematics due to its generally concerted evolution. While non-concerted evolution has been found in some plant taxa, such information is missing in Lycium. Molecular studies of six species and two variants of the genus Lycium revealed high levels of intra- and inter-individual polymorphism in the ITS, indicating non-concerted evolution. All genomic DNA ITS paralogues were identified as putative pseudogenes or functional paralogues through a series of comparisons of sequence features, including length and substitution variation, GC content, secondary structure stability, and the presence of conserved motifs in the 5.8S gene, and the rate of evolution. Approximately, 60% of ITS pseudogenes could be easily detected. Based on phylogenetic analysis, all pseudogenes were highly distinct from their corresponding functional copies, tended to evolve neutrally, and clustered randomly together in the evolutionary tree. The results probably suggest that this ITS non-concerted evolution is related to the recent divergence between tandem repeats within the Lycium genome and hybridization between species. Our study complements those of pseudogenes in plant taxa and provides a theoretical basis for the phylogeny and genetic origin of the genus Lycium while having important implications for the use of ITS molecular markers for phylogenetic reconstruction.
Collapse
Affiliation(s)
- Jiao Zhang
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiulian Chi
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juying Zhong
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Qian
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Vankan M, Ho SYW, Duchêne DA. Evolutionary Rate Variation Among Lineages in Gene Trees has a Negative Impact on Species-Tree Inference. Syst Biol 2021; 71:490-500. [PMID: 34255084 PMCID: PMC8830059 DOI: 10.1093/sysbio/syab051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/18/2021] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic analyses of genomic data provide a powerful means of reconstructing the evolutionary relationships among organisms, yet such analyses are often hindered by conflicting phylogenetic signals among loci. Identifying the signals that are most influential to species-tree estimation can help to inform the choice of data for phylogenomic analysis. We investigated this in an analysis of 30 phylogenomic data sets. For each data set, we examined the association between several branch-length characteristics of gene trees and the distance between these gene trees and the corresponding species trees. We found that the distance of each gene tree to the species tree inferred from the full data set was positively associated with variation in root-to-tip distances and negatively associated with mean branch support. However, no such associations were found for gene-tree length, a measure of the overall substitution rate at each locus. We further explored the usefulness of the best-performing branch-based characteristics for selecting loci for phylogenomic analyses. We found that loci that yield gene trees with high variation in root-to-tip distances have a disproportionately distant signal of tree topology compared with the complete data sets. These results suggest that rate variation across lineages should be taken into consideration when exploring and even selecting loci for phylogenomic analysis.[Branch support; data filtering; nucleotide substitution model; phylogenomics; substitution rate; summary coalescent methods.]
Collapse
Affiliation(s)
- Mezzalina Vankan
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.,Research School of Biology, Australian National University, ACT 2601, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - David A Duchêne
- Research School of Biology, Australian National University, ACT 2601, Australia.,Centre for Evolutionary Hologenomics, University of Copenhagen, Copenhagen 1352, Denmark
| |
Collapse
|
6
|
Londoño-Burbano A, Reis RE. A combined molecular and morphological phylogeny of the Loricariinae (Siluriformes: Loricariidae), with emphasis on the Harttiini and Farlowellini. PLoS One 2021; 16:e0247747. [PMID: 33720930 PMCID: PMC7959404 DOI: 10.1371/journal.pone.0247747] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/29/2021] [Indexed: 11/18/2022] Open
Abstract
We present a combined molecular and morphological phylogenetic analysis of the Loricariinae, with emphasis on the Harttiini (Cteniloricaria, Harttia, and Harttiella) and Farlowellini (Aposturisoma, Farlowella, Lamontichthys, Pterosturisoma, Sturisoma, and Sturisomatichthys). Character sampling comprised seven molecular markers (the mitochondrial Cytb, nd2, 12S and 16S, and the nuclear MyH6, RAG1 and RAG2) and 196 morphological characters. A total of 1,059 specimens, and 159 tissue samples were analized, representing 100 species. A Bayesian Inference analysis was performed using the concatenated data matrix, which is comprised of 6,819 characters. The Loricariinae were found to comprise the tribes (Hartiini (Loricariini, Farlowellini)), the latter two elevated from subtribes. A Maximum Parsimony analysis was also performed using the same data matrix in order to reveal phenotypical synapomorphies to diagnose each clade. Two MP trees were found with a length of 14,704 steps, consistency index of 0.29 and retention index of 0.61, which were summarized in a strict consensus tree. Harttiini includes (Harttiella (Cteniloricaria, Harttia), and Farlowellini includes (Lamontichthys (Pterosturisoma (Sturisoma (Sturisomatichthys, Farlowella)))). Aposturisoma was recovered nested within Farlowella and is synonymyzed to the latter. Sturisoma was corroborated as strictly cis-Andean, while Sturisomatichthys encompasses, besides the valid species already included in the genus, the trans-Andean species once belonging to Sturisoma sensu lato. Identification keys and phylogenetic diagnoses of family-group taxa and genera of both the Harttiini and the Farlowellini are provided.
Collapse
Affiliation(s)
- Alejandro Londoño-Burbano
- Museu Nacional, Universidade Federal do Rio de Janeiro, Departamento de Vertebrados - Setor de Ictiologia, São Cristóvão, Rio de Janeiro, RJ, Brazil
- Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Laboratório de Sistemática de Vertebrados, Porto Alegre, RS, Brazil
| | - Roberto E. Reis
- Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Laboratório de Sistemática de Vertebrados, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Jiménez FA, Notarnicola J, Gardner SL. HOST-SWITCHING EVENTS IN LITOMOSOIDES CHANDLER, 1931 (FILARIOIDEA: ONCHOCERCIDAE) ARE NOT RAMPANT BUT CLADE DEPENDENT. J Parasitol 2021; 107:320-335. [PMID: 33902110 DOI: 10.1645/20-35] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The genus Litomosoides Chandler, 1931, includes species that as adults occur in the thoracic and abdominal cavity of mammalian hosts and are presumably vectored by mites. The vertebrate hosts include a variety of Neotropical mammals such as phyllostomid and mormoopid bats; cricetid, sciurid, and hystricognath rodents; and didelphid marsupials. It has been suggested that Litomosoides is not a monophyletic group and that rampant horizontal transfer explains their presence in disparate groups of mammals. Herein we present a phylogenetic reconstruction including mitochondrial genes of 13 vouchered species. This phylogeny is used to reconstruct the evolutionary history of these parasites and the ancestral states of key characters used in species classification, namely, the configuration of the spicules. The historical association of these filarioids with 6 groups of mammals, as well as their ancestral geographic distributions, were reconstructed using Bayesian statistical approaches comparing alternative models of biogeography and evolution and fossil states in selected nodes of the phylogeny. The optimal reconstruction suggests a model of dispersal, extinction, and cladogenesis (DEC) driving the evolution of Litomosoides; the results suggest an origin of Litomosoides in South America and association of ancestors with phyllostomids, and strong evidence of at least 2 host-switching events: 1 of these involving cricetid rodents and the other mormoopid bats. The latter event included a simultaneous geographic expansion of the parasite lineage across South and North America. The host-switching event from phyllostomid bats into cricetid rodents occurred once these rodents diversified across South America; subsequent diversification of the latter clade resulted in 2 branches, each showing expansion of the parasites back into North America. This result suggests that both parasites and cricetid rodents established an association in South America, underwent diversification, and then dispersed into North America. Further, this clade of cricetid-dwelling species includes parasites featuring the "sigmodontis" spicule type. The identification of a single host-switching event involving the disparate lineages of Chiroptera and Rodentia offers a framework to reconstruct the gene evolution and diversification of this lineage after the host-switching event. This will help in predicting the ability of these parasites to infect sympatric mammals.
Collapse
Affiliation(s)
- F Agustín Jiménez
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901-6501
| | - Juliana Notarnicola
- Instituto de Biología Subtropical (IBS)-CONICET-CCT Nordeste, Bertoni 85 (3370) Puerto Iguazú, Misiones, Argentina
| | - Scott L Gardner
- The Harold W. Manter Laboratory of Parasitology, W 529 Nebraska Hall, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0514
| |
Collapse
|
8
|
Song N, Zhai Q, Zhang Y. Higher-level phylogenetic relationships of rove beetles (Coleoptera, Staphylinidae) inferred from mitochondrial genome sequences. Mitochondrial DNA A DNA Mapp Seq Anal 2021; 32:98-105. [PMID: 33570440 DOI: 10.1080/24701394.2021.1882444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Rove beetles (Staphylinidae) and allied families constitute a huge radiation of Coleoptera, but basal relationships in this group remain controversial. In this study, we newly sequenced eight mitogenomes of representatives of Staphylinidae by using next-generation sequencing method. Together with 99 existing mitogenomes of Staphyliniformia, (sub)family relationships were investigated with ML and Bayesian searches under various substitution models and data recoding schemes. The results consistently supported Scydmaenidae and Silphidae to be subordinate groups of Staphylinidae. Within the monophyletic Staphylinidae (including Scydmaenidae and Silphidae), the hypothesis of four major subfamily groups cannot be confirmed. Bayesian inferences under the site-heterogeneous mixture model generally supported the basal position of major clades corresponding to the Omaliine group. At the subfamily level, the monophyly of Pselaphinae, Oxytelinae, Scaphidiinae, Steninae and Staphylininae was supported. However, the subfamilies Omaliinae, Tachyporinae, Aleocharinae and Paederinae were each non-monophyletic.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qing Zhai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yaling Zhang
- Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| |
Collapse
|
9
|
Fleming JF, Feuda R, Roberts NW, Pisani D. A Novel Approach to Investigate the Effect of Tree Reconstruction Artifacts in Single-Gene Analysis Clarifies Opsin Evolution in Nonbilaterian Metazoans. Genome Biol Evol 2020; 12:3906-3916. [PMID: 32031627 PMCID: PMC7058159 DOI: 10.1093/gbe/evaa015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/02/2022] Open
Abstract
Our ability to correctly reconstruct a phylogenetic tree is strongly affected by both systematic errors and the amount of phylogenetic signal in the data. Current approaches to tackle tree reconstruction artifacts, such as the use of parameter-rich models, do not translate readily to single-gene alignments. This, coupled with the limited amount of phylogenetic information contained in single-gene alignments, makes gene trees particularly difficult to reconstruct. Opsin phylogeny illustrates this problem clearly. Opsins are G-protein coupled receptors utilized in photoreceptive processes across Metazoa and their protein sequences are roughly 300 amino acids long. A number of incongruent opsin phylogenies have been published and opsin evolution remains poorly understood. Here, we present a novel approach, the canary sequence approach, to investigate and potentially circumvent errors in single-gene phylogenies. First, we demonstrate our approach using two well-understood cases of long-branch attraction in single-gene data sets, and simulations. After that, we apply our approach to a large collection of well-characterized opsins to clarify the relationships of the three main opsin subfamilies.
Collapse
Affiliation(s)
- James F Fleming
- School of Earth Sciences, University of Bristol, United Kingdom.,Faculty of Environment and Information Studies, Keio University, Tsuruoka, Yamagata, Japan
| | - Roberto Feuda
- School of Earth Sciences, University of Bristol, United Kingdom
| | | | - Davide Pisani
- School of Earth Sciences, University of Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, United Kingdom
| |
Collapse
|
10
|
Erséus C, Williams BW, Horn KM, Halanych KM, Santos SR, James SW, Creuzé des Châtelliers M, Anderson FE. Phylogenomic analyses reveal a Palaeozoic radiation and support a freshwater origin for clitellate annelids. ZOOL SCR 2020. [DOI: 10.1111/zsc.12426] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christer Erséus
- Department of Biological and Environmental Sciences University of Gothenburg Göteborg Sweden
| | - Bronwyn W. Williams
- School of Biological Sciences Southern Illinois University Carbondale IL USA
- Research Laboratory North Carolina Museum of Natural Sciences Raleigh NC USA
| | - Kevin M. Horn
- School of Biological Sciences Southern Illinois University Carbondale IL USA
- Division of Natural Sciences and Mathematics Kentucky Wesleyan College Owensboro Kentucky USA
| | - Kenneth M. Halanych
- Molette Biology Laboratory for Environmental and Climate Change Studies Department of Biological Sciences Auburn University Auburn AL USA
| | - Scott R. Santos
- Molette Biology Laboratory for Environmental and Climate Change Studies Department of Biological Sciences Auburn University Auburn AL USA
| | - Samuel W. James
- Sustainable Living Department Maharishi University of Management Fairfield IA USA
| | | | - Frank E. Anderson
- School of Biological Sciences Southern Illinois University Carbondale IL USA
| |
Collapse
|
11
|
Chen W, Kenney T, Bielawski J, Gu H. Testing adequacy for DNA substitution models. BMC Bioinformatics 2019; 20:349. [PMID: 31221105 PMCID: PMC6585133 DOI: 10.1186/s12859-019-2905-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
Background Testing model adequacy is important before a DNA substitution model is chosen for phylogenetic inference. Using a mis-specified model can negatively impact phylogenetic inference, for example, the maximum likelihood method can be inconsistent when the DNA sequences are generated under a tree topology which is in the Felsentein Zone and analyzed with a mis-specified or inadequate model. However, model adequacy testing in phylogenetics is underdeveloped. Results Here we develop a simple, general, powerful and robust model test based on Pearson’s goodness-of-fit test and binning of site patterns. We demonstrate through simulation that this test is robust in its high power to reject the inadequate models for a large range of different ways of binning site patterns while the Type I error is controlled well. In the real data analysis we discovered many cases where models chosen by another method can be rejected by this new test, in particular, our proposed test rejects the most complex DNA model (GTR+I+ Γ) while the Goldman-Cox test fails to reject the commonly used simple models. Conclusions Model adequacy testing and bootstrap should be used together to assess reliability of conclusions after model selection and model fitting have already been applied to choose the model and fit it. The new goodness-of-fit test proposed in this paper is a simple and powerful model adequacy testing method serving such a regular model checking purpose. We caution against deriving strong conclusions from analyses based on inadequate models. At a minimum, those results derived from inadequate models can now be readly flagged using the new test, and reported as such.
Collapse
Affiliation(s)
- Wei Chen
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada
| | - Toby Kenney
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada
| | - Joseph Bielawski
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada.,Department of Biology, Dalhousie University, Halifax, Canada
| | - Hong Gu
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada.
| |
Collapse
|
12
|
Ballesteros JA, Sharma PP. A Critical Appraisal of the Placement of Xiphosura (Chelicerata) with Account of Known Sources of Phylogenetic Error. Syst Biol 2019; 68:896-917. [DOI: 10.1093/sysbio/syz011] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/20/2018] [Accepted: 02/10/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractHorseshoe crabs (Xiphosura) are traditionally regarded as sister group to the clade of terrestrial chelicerates (Arachnida). This hypothesis has been challenged by recent phylogenomic analyses, but the non-monophyly of Arachnida has consistently been disregarded as artifactual. We re-evaluated the placement of Xiphosura among chelicerates using the most complete phylogenetic data set to date, expanding outgroup sampling, and including data from whole genome sequencing projects. In spite of uncertainty in the placement of some arachnid clades, all analyses show Xiphosura consistently nested within Arachnida as the sister group to Ricinulei (hooded tick spiders). It is apparent that the radiation of arachnids is an old one and occurred over a brief period of time, resulting in several consecutive short internodes, and thus is a potential case for the confounding effects of incomplete lineage sorting (ILS). We simulated coalescent gene trees to explore the effects of increasing levels of ILS on the placement of horseshoe crabs. In addition, common sources of systematic error were evaluated, as well as the effects of fast-evolving partitions and the dynamics of problematic long branch orders. Our results indicated that the placement of horseshoe crabs cannot be explained by missing data, compositional biases, saturation, or ILS. Interrogation of the phylogenetic signal showed that the majority of loci favor the derived placement of Xiphosura over a monophyletic Arachnida. Our analyses support the inference that horseshoe crabs represent a group of aquatic arachnids, comparable to aquatic mites, breaking a long-standing paradigm in chelicerate evolution and altering previous interpretations of the ancestral transition to the terrestrial habitat. Future studies testing chelicerate relationships should approach the task with a sampling strategy where the monophyly of Arachnida is not held as the premise.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Statistical Inconsistency of Maximum Parsimony for k-Tuple-Site Data. Bull Math Biol 2019; 81:1173-1200. [PMID: 30607881 DOI: 10.1007/s11538-018-00552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
One of the main aims of phylogenetics is to reconstruct the "Tree of Life." In this respect, different methods and criteria are used to analyze DNA sequences of different species and to compare them in order to derive the evolutionary relationships of these species. Maximum parsimony is one such criterion for tree reconstruction, and it is the one which we will use in this paper. However, it is well known that tree reconstruction methods can lead to wrong relationship estimates. One typical problem of maximum parsimony is long branch attraction, which can lead to statistical inconsistency. In this work, we will consider a blockwise approach to alignment analysis, namely the so-called k-tuple analyses. For four taxa, it has already been shown that k-tuple-based analyses are statistically inconsistent if and only if the standard character-based (site-based) analyses are statistically inconsistent. So, in the four-taxon case, going from individual sites to k-tuples does not lead to any improvement. However, real biological analyses often consider more than only four taxa. Therefore, we analyze the case of five taxa for 2- and 3-tuple-site data and consider alphabets with two and four elements. We show that the equivalence of single-site data and k-tuple-site data then no longer holds. Even so, we can show that maximum parsimony is statistically inconsistent for k-tuple-site data and five taxa.
Collapse
|
14
|
New patellogastropod mitogenomes help counteracting long-branch attraction in the deep phylogeny of gastropod mollusks. Mol Phylogenet Evol 2018; 133:12-23. [PMID: 30572020 DOI: 10.1016/j.ympev.2018.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023]
Abstract
Long-branch attraction (LBA) is a well-known artifact in phylogenetic reconstruction. Sparse taxon sampling and extreme heterogeneity of evolutionary rates among lineages generate propitious situations for LBA, even defying probabilistic methods of phylogenetic inference. A clear example illustrating LBA challenges is the difficulty of reconstructing the deep gastropod phylogeny, particularly using mitochondrial (mt) genomes. Previous studies consistently obtained unorthodox phylogenetic relationships due to the LBA between the mitogenomes of patellogastropods (true limpets, represented only by Lottia digitalis), heterobranchs, and outgroup taxa. Here, we use the reconstruction of the gastropod mitogenomic phylogeny as a case exercise to test the effect of key methodological approaches proposed to counteract LBA, including the selection of slow-evolving representatives, the use of different outgroups, the application of site-heterogeneous evolutionary models, and the removal of fast-evolving sites. In this regard, we sequenced three new patellogastropod mt genomes, which displayed shorter branches than the one of Lottia as well as gene organizations more similar to that of the hypothetical gastropod ancestor. Phylogenetic analyses incorporating the mt genomes of Patella ferruginea, Patella vulgata, and Cellana radiata allowed eliminating the artificial clustering of Patellogastropoda and Heterobranchia that had prevailed in previous studies. Furthermore, the use of site-heterogeneous models with certain combinations of lineages within the outgroup allowed eliminating also the LBA between Heterobranchia and the outgroup, and recovering Apogastropoda (i.e., Caenogastropoda + Heterobranchia). Hence, for the first time, we were able to obtain a mitogenomic phylogeny of gastropods that is congruent with both morphological and nuclear datasets.
Collapse
|
15
|
Abstract
The origin of animals, one of the major transitions in evolution, remains mysterious. Many key aspects of animal evolution can be reconstructed by comparing living species within a robust phylogenetic framework. However, uncertainty remains regarding the evolutionary relationships between two ancient animal lineages - sponges and ctenophores - and the remaining animal phyla. Comparative morphology and some phylogenomic analyses support the view that sponges represent the sister lineage to the rest of the animals, while other phylogenomic analyses support ctenophores, a phylum of carnivorous, gelatinous marine organisms, as the sister lineage. Here, we explore why different studies yield different answers and discuss the implications of the two alternative hypotheses for understanding the origin of animals. Reconstruction of ancient evolutionary radiations is devilishly difficult and will likely require broader sampling of sponge and ctenophore genomes, improved analytical strategies and critical analyses of the phylogenetic distribution and molecular mechanisms underlying apparently conserved traits. Rather than staking out positions in favor of the ctenophores-sister or the sponges-sister hypothesis, we submit that research programs aimed at understanding the biology of the first animals should instead embrace the uncertainty surrounding early animal evolution in their experimental designs.
Collapse
|
16
|
Evolution of Eukaryal and Archaeal Pseudouridine Synthase Pus10. J Mol Evol 2018; 86:77-89. [PMID: 29349599 DOI: 10.1007/s00239-018-9827-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
In archaea, pseudouridine (Ψ) synthase Pus10 modifies uridine (U) to Ψ at positions 54 and 55 of tRNA. In contrast, Pus10 is not found in bacteria, where modifications at those two positions are carried out by TrmA (U54 to m5U54) and TruB (U55 to Ψ55). Many eukaryotes have an apparent redundancy; their genomes contain orthologs of archaeal Pus10 and bacterial TrmA and TruB. Although eukaryal Pus10 genes share a conserved catalytic domain with archaeal Pus10 genes, their biological roles are not clear for the two reasons. First, experimental evidence suggests that human Pus10 participates in apoptosis induced by the tumor necrosis factor-related apoptosis-inducing ligand. Whether the function of human Pus10 is in place or in addition to of Ψ synthesis in tRNA is unknown. Second, Pus10 is found in earlier evolutionary branches of fungi (such as chytrid Batrachochytrium) but is absent in all dikaryon fungi surveyed (Ascomycetes and Basidiomycetes). We did a comprehensive analysis of sequenced genomes and found that orthologs of Pus10, TrmA, and TruB were present in all the animals, plants, and protozoa surveyed. This indicates that the common eukaryotic ancestor possesses all the three genes. Next, we examined 116 archaeal and eukaryotic Pus10 protein sequences to find that Pus10 existed as a single copy gene in all the surveyed genomes despite ancestral whole genome duplications had occurred. This indicates a possible deleterious gene dosage effect. Our results suggest that functional redundancy result in gene loss or neofunctionalization in different evolutionary lineages.
Collapse
|
17
|
Assessing the utility of transcriptome data for inferring phylogenetic relationships among coleoid cephalopods. Mol Phylogenet Evol 2018; 118:330-342. [DOI: 10.1016/j.ympev.2017.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022]
|
18
|
Kück P, Wilkinson M, Groß C, Foster PG, Wägele JW. Can quartet analyses combining maximum likelihood estimation and Hennigian logic overcome long branch attraction in phylogenomic sequence data? PLoS One 2017; 12:e0183393. [PMID: 28841676 PMCID: PMC5571918 DOI: 10.1371/journal.pone.0183393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/03/2017] [Indexed: 12/28/2022] Open
Abstract
Systematic biases such as long branch attraction can mislead commonly relied upon model-based (i.e. maximum likelihood and Bayesian) phylogenetic methods when, as is usually the case with empirical data, there is model misspecification. We present PhyQuart, a new method for evaluating the three possible binary trees for any quartet of taxa. PhyQuart was developed through a process of reciprocal illumination between a priori considerations and the results of extensive simulations. It is based on identification of site-patterns that can be considered to support a particular quartet tree taking into account the Hennigian distinction between apomorphic and plesiomorphic similarity, and employing corrections to the raw observed frequencies of site-patterns that exploit expectations from maximum likelihood estimation. We demonstrate through extensive simulation experiments that, whereas maximum likeilihood estimation performs well in many cases, it can be outperformed by PhyQuart in cases where it fails due to extreme branch length asymmetries producing long-branch attraction artefacts where there is only very minor model misspecification.
Collapse
Affiliation(s)
- Patrick Kück
- Zoologisches Forschungsmuseum Alexander Koenig, Bonn, 53113, Germany
- The Natural History Museum, London, SW7 5BD, United Kingdom
| | - Mark Wilkinson
- The Natural History Museum, London, SW7 5BD, United Kingdom
| | - Christian Groß
- The Natural History Museum, London, SW7 5BD, United Kingdom
- Delft University of Technology, Delft, 2628 CD, The Netherlands
| | | | - Johann W. Wägele
- Zoologisches Forschungsmuseum Alexander Koenig, Bonn, 53113, Germany
| |
Collapse
|
19
|
Machado A, Rodríguez-Expósito E, López M, Hernández M. Phylogenetic analysis of the genus Laparocerus, with comments on colonisation and diversification in Macaronesia (Coleoptera, Curculionidae, Entiminae). Zookeys 2017:1-77. [PMID: 28331386 PMCID: PMC5345357 DOI: 10.3897/zookeys.651.10097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/08/2017] [Indexed: 01/02/2023] Open
Abstract
The flightless Entiminae weevil genus Laparocerus is the species-richest genus, with 237 species and subspecies, inhabiting Macaronesia (Madeira archipelago, Selvagens, Canary Islands) and the continental 'Macaronesian enclave' in Morocco (one single polytypic species). This is the second contribution to gain insight of the genus and assist in its systematic revision with a mitochondrial phylogenetic analysis. It centres on the Canarian clade, adding the 12S rRNA gene to the combined set of COII and 16S rRNA used in our first contribution on the Madeiran clade (here re-analysed). The nuclear 28S rRNA was also used to produce an additional 4-gene tree to check coherency with the 3-gene tree. A total of 225 taxa (95%) has been sequenced, mostly one individual per taxa. Plausible explanations for incoherent data (mitochondrial introgressions, admixture, incomplete lineage sorting, etc.) are discussed for each of the monophyletic subclades that are coincident with established subgenera, or are restructured or newly described. The overall mean genetic divergence (p-distance) among species is 8.2%; the mean divergence within groups (subgenera) ranks from 2.9 to 7.0% (average 4.6%), and between groups, from 5.4% to 12.0% (average 9.2%). A trustful radiation event within a young island (1.72 Ma) was used to calibrate and produce a chronogram using the software RelTime. These results confirm the monophyly of both the Madeiran (36 species and subspecies) and the Canarian (196 species and subspecies) clades, which originated ca. 11.2 Ma ago, and started to radiate in their respective archipelagos ca. 8.5 and 7.7 Ma ago. The Madeiran clade seems to have begun in Porto Santo, and from there it jumped to the Desertas and to Madeira, with additional radiations. The Canarian clade shows a sequential star-shape radiation process generating subclades with a clear shift from East to West in coherence with the decreasing age of the islands. Laparocerus garretai from the Selvagens belongs to a Canarian subclade, and Laparocerus susicus from Morocco does not represent the ancestral continental lineage, but a back-colonisation from the Canaries to Africa. Dispersal processes, colonisation patterns, and ecological remarks are amply discussed. Diversification has been adaptive as well as non-adaptive, and the role of 'geological turbulence' is highlighted as one of the principal drivers of intra-island allopatric speciation. Based on the phylogenetic results, morphological features and distribution, five new monophyletic subgenera are described: Aridotroxsubg. n., Belicariussubg. n., Bencomiussubg. n., Canariotroxsubg. n., and Purpuraniussubg. n., totalling twenty subgenera in Laparocerus.
Collapse
Affiliation(s)
| | - Eduardo Rodríguez-Expósito
- Chopin 1, 38208 La Laguna, Tenerife, Canary Islands, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias
| | - Mercedes López
- Chopin 1, 38208 La Laguna, Tenerife, Canary Islands, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias
| | - Mariano Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias; Departamento de Bioquímica, Microbiología, Biología Celular y Genética. Universidad de La Laguna. Avda. Astrofisico Fco. Sánchez s/n 38207 La Laguna, Tenerife, Spain
| |
Collapse
|
20
|
Motility, morphology and phylogeny of the plasmodial worm, Ceratomyxa vermiformis n. sp. (Cnidaria: Myxozoa: Myxosporea). Parasitology 2016; 144:158-168. [DOI: 10.1017/s0031182016001852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThe Myxozoa demonstrate extensive morphological simplification and miniaturization relative to their free-living cnidarian ancestors. This is particularly pronounced in the highly derived myxosporeans, which develop as plasmodia and pseudoplasmodia. To date, motility in these stages has been linked with membrane deformation (e.g. as pseudopodia and mobile folds). Here we illustrate a motile, elongate plasmodium that undergoes coordinated undulatory locomotion, revealing remarkable convergence to a functional worm at the cellular level. Ultrastructural and confocal analyses of these plasmodia identify a highly differentiated external layer containing an actin-rich network, long tubular mitochondria, abundant microtubules, a secreted glycocalyx layer, and an internal region where sporogony occurs and which contains homogeneously distributed granular/fibrillar material. We consider how some of these features may support motility. We also describe the species based on spore morphology and SSU rDNA sequence data, undertake molecular phylogenetic analysis to place it within an early-diverging clade of the ceratomyxids, and evaluate the resultant implications for classification (validity of the genus Meglitschia) and for inferring early host environments (freshwater) of ceratomyxids.
Collapse
|
21
|
Harrington RC, Faircloth BC, Eytan RI, Smith WL, Near TJ, Alfaro ME, Friedman M. Phylogenomic analysis of carangimorph fishes reveals flatfish asymmetry arose in a blink of the evolutionary eye. BMC Evol Biol 2016; 16:224. [PMID: 27769164 PMCID: PMC5073739 DOI: 10.1186/s12862-016-0786-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
Abstract
Background Flatfish cranial asymmetry represents one of the most remarkable morphological innovations among vertebrates, and has fueled vigorous debate on the manner and rate at which strikingly divergent phenotypes evolve. A surprising result of many recent molecular phylogenetic studies is the lack of support for flatfish monophyly, where increasingly larger DNA datasets of up to 23 loci have either yielded a weakly supported flatfish clade or indicated the group is polyphyletic. Lack of resolution for flatfish relationships has been attributed to analytical limitations for dealing with processes such as nucleotide non-stationarity and incomplete lineage sorting (ILS). We tackle this phylogenetic problem using a sequence dataset comprising more than 1,000 ultraconserved DNA element (UCE) loci covering 45 carangimorphs, the broader clade containing flatfishes and several other specialized lineages such as remoras, billfishes, and archerfishes. Results We present a phylogeny based on UCE loci that unequivocally supports flatfish monophyly and a single origin of asymmetry. We document similar levels of discordance among UCE loci as in previous, smaller molecular datasets. However, relationships among flatfishes and carangimorphs recovered from multilocus concatenated and species tree analyses of our data are robust to the analytical framework applied and size of data matrix used. By integrating the UCE data with a rich fossil record, we find that the most distinctive carangimorph bodyplans arose rapidly during the Paleogene (66.0–23.03 Ma). Flatfish asymmetry, for example, likely evolved over an interval of no more than 2.97 million years. Conclusions The longstanding uncertainty in phylogenetic hypotheses for flatfishes and their carangimorph relatives highlights the limitations of smaller molecular datasets when applied to successive, rapid divergences. Here, we recovered significant support for flatfish monophyly and relationships among carangimorphs through analysis of over 1,000 UCE loci. The resulting time-calibrated phylogeny points to phenotypic divergence early within carangimorph history that broadly matches with the predictions of adaptive models of lineage diversification. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0786-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard C Harrington
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK. .,Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT, 06520, USA.
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ron I Eytan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - W Leo Smith
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Thomas J Near
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT, 06520, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Matt Friedman
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK.,Museum of Paleontology and Department of Earth and Environmental Science, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI, 48109-1079, USA
| |
Collapse
|
22
|
Gatesy J, Meredith RW, Janecka JE, Simmons MP, Murphy WJ, Springer MS. Resolution of a concatenation/coalescence kerfuffle: partitioned coalescence support and a robust family‐level tree for Mammalia. Cladistics 2016; 33:295-332. [DOI: 10.1111/cla.12170] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 12/14/2022] Open
Affiliation(s)
- John Gatesy
- Department of Biology University of California Riverside CA 92521 USA
| | - Robert W. Meredith
- Department of Biology and Molecular Biology Montclair State University Montclair NJ 07043 USA
| | - Jan E. Janecka
- Department of Biological Sciences Duquesne University Pittsburgh PA 15282 USA
| | - Mark P. Simmons
- Department of Biology Colorado State University Fort Collins CO 80523 USA
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences Texas A&M University College Station TX 77843 USA
| | - Mark S. Springer
- Department of Biology University of California Riverside CA 92521 USA
| |
Collapse
|
23
|
Ney B, Ahmed FH, Carere CR, Biswas A, Warden AC, Morales SE, Pandey G, Watt SJ, Oakeshott JG, Taylor MC, Stott MB, Jackson CJ, Greening C. The methanogenic redox cofactor F 420 is widely synthesized by aerobic soil bacteria. ISME JOURNAL 2016; 11:125-137. [PMID: 27505347 DOI: 10.1038/ismej.2016.100] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
F420 is a low-potential redox cofactor that mediates the transformations of a wide range of complex organic compounds. Considered one of the rarest cofactors in biology, F420 is best known for its role in methanogenesis and has only been chemically identified in two phyla to date, the Euryarchaeota and Actinobacteria. In this work, we show that this cofactor is more widely distributed than previously reported. We detected the genes encoding all five known F420 biosynthesis enzymes (cofC, cofD, cofE, cofG and cofH) in at least 653 bacterial and 173 archaeal species, including members of the dominant soil phyla Proteobacteria, Chloroflexi and Firmicutes. Metagenome datamining validated that these genes were disproportionately abundant in aerated soils compared with other ecosystems. We confirmed through high-performance liquid chromatography analysis that aerobically grown stationary-phase cultures of three bacterial species, Paracoccus denitrificans, Oligotropha carboxidovorans and Thermomicrobium roseum, synthesized F420, with oligoglutamate sidechains of different lengths. To understand the evolution of F420 biosynthesis, we also analyzed the distribution, phylogeny and genetic organization of the cof genes. Our data suggest that although the Fo precursor to F420 originated in methanogens, F420 itself was first synthesized in an ancestral actinobacterium. F420 biosynthesis genes were then disseminated horizontally to archaea and other bacteria. Together, our findings suggest that the cofactor is more significant in aerobic bacterial metabolism and soil ecosystem composition than previously thought. The cofactor may confer several competitive advantages for aerobic soil bacteria by mediating their central metabolic processes and broadening the range of organic compounds they can synthesize, detoxify and mineralize.
Collapse
Affiliation(s)
- Blair Ney
- Research School of Chemistry, Australian National University, Acton, Australian Capital Territory, Australia.,The Commonwealth Scientific and Industrial Research Organisation, Land and Water, Acton, Australian Capital Territory, Australia
| | - F Hafna Ahmed
- Research School of Chemistry, Australian National University, Acton, Australian Capital Territory, Australia
| | - Carlo R Carere
- GNS Science, Wairakei Research Centre, Taupō, New Zealand
| | - Ambarish Biswas
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew C Warden
- The Commonwealth Scientific and Industrial Research Organisation, Land and Water, Acton, Australian Capital Territory, Australia
| | - Sergio E Morales
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gunjan Pandey
- The Commonwealth Scientific and Industrial Research Organisation, Land and Water, Acton, Australian Capital Territory, Australia
| | - Stephen J Watt
- Research School of Chemistry, Australian National University, Acton, Australian Capital Territory, Australia
| | - John G Oakeshott
- The Commonwealth Scientific and Industrial Research Organisation, Land and Water, Acton, Australian Capital Territory, Australia
| | - Matthew C Taylor
- The Commonwealth Scientific and Industrial Research Organisation, Land and Water, Acton, Australian Capital Territory, Australia
| | | | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, Australian Capital Territory, Australia
| | - Chris Greening
- The Commonwealth Scientific and Industrial Research Organisation, Land and Water, Acton, Australian Capital Territory, Australia
| |
Collapse
|
24
|
Dabert M, Proctor H, Dabert J. Higher-level molecular phylogeny of the water mites (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae). Mol Phylogenet Evol 2016; 101:75-90. [DOI: 10.1016/j.ympev.2016.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/09/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
|
25
|
Buenaventura E, Whitmore D, Pape T. Molecular phylogeny of the hyperdiverse genusSarcophaga(Diptera: Sarcophagidae), and comparison between algorithms for identification of rogue taxa. Cladistics 2016; 33:109-133. [DOI: 10.1111/cla.12161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Eliana Buenaventura
- Natural History Museum of Denmark; Universitetsparken 15 Copenhagen DK-2100 Denmark
| | - Daniel Whitmore
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Thomas Pape
- Natural History Museum of Denmark; Universitetsparken 15 Copenhagen DK-2100 Denmark
| |
Collapse
|
26
|
Alama-Bermejo G, Jirků M, Kodádková A, Pecková H, Fiala I, Holzer AS. Species complexes and phylogenetic lineages of Hoferellus (Myxozoa, Cnidaria) including revision of the genus: A problematic case for taxonomy. Parasit Vectors 2016; 9:13. [PMID: 26754529 PMCID: PMC4709930 DOI: 10.1186/s13071-015-1265-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/13/2015] [Indexed: 11/16/2022] Open
Abstract
Background Myxozoans are metazoan parasites whose traditional spore morphology-based taxonomy conflicts DNA based phylogenies. Freshwater species of the genus Hoferellus are parasites of the excretory system, with several members infecting food and ornamental fish species, as well as amphibians. This study aims to increase our understanding of their molecular diversity and development, aspects about which little is known, and to generate a molecular diagnostic tool to discriminate between different pathogenic and non-pathogenic Hoferellus spp. Methods SSU and ITS rDNA phylogeny, along with morphological descriptions using light and electron microscopy were used to identify and characterize Hoferellus species collected from the urinary system of fishes and frogs. A PCR-based diagnostic assay was designed to differentiate between cryptic Hoferellus spp in cyprinid fishes commonly cultured in Central Europe. Results Our phylogenetic results separate the species of Hoferellus into two phylogenetic sublineages which are indistinguishable on the basis of generic morphological traits: 1) The Hoferellus sensu stricto sublineage, which is composed of the type species Hoferellus cyprini, Hoferellus carassii and a cryptic species, Hoferellus sp. detected only molecularly in common carp. 2) The Hoferellus sensu lato sublineage into which the new species we described in this study, Hoferellus gnathonemi sp. n. from the kidney of the elephantnose fish and Hoferellus anurae from reed frogs, are placed together with Hoferellus gilsoni previously sequenced from European eel. Apart from phylogenetic analyses, we also provide novel ultrastructural data on the phagocytotic nature of some Hoferellus plasmodia and on the elusive intracellular stages ascribed to the presporogonic development of this genus. Conclusions We provide molecular evidence of the polyphyly of the genus Hoferellus and provide novel morphological details of its members. Based on the presented data, we revise and propose emendation of the genus Hoferellus.
Collapse
Affiliation(s)
- Gema Alama-Bermejo
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, 37005, Czech Republic. .,Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, Paterna, 46980, Spain. .,Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Miloslav Jirků
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.
| | - Alena Kodádková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.
| | - Hana Pecková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.
| | - Ivan Fiala
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.
| |
Collapse
|
27
|
Verheye ML, Martin P, Backeljau T, D'Udekem D'Acoz C. DNA analyses reveal abundant homoplasy in taxonomically important morphological characters of Eusiroidea (Crustacea, Amphipoda). ZOOL SCR 2015. [DOI: 10.1111/zsc.12153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Marie L. Verheye
- OD Taxonomy and Phylogeny; Royal Belgian Institute of Natural Sciences; rue Vautier 29 B-1000 Brussels Belgium
| | - Patrick Martin
- OD Taxonomy and Phylogeny; Royal Belgian Institute of Natural Sciences; rue Vautier 29 B-1000 Brussels Belgium
| | - Thierry Backeljau
- OD Taxonomy and Phylogeny; Royal Belgian Institute of Natural Sciences; rue Vautier 29 B-1000 Brussels Belgium
| | - Cédric D'Udekem D'Acoz
- OD Taxonomy and Phylogeny; Royal Belgian Institute of Natural Sciences; rue Vautier 29 B-1000 Brussels Belgium
| |
Collapse
|
28
|
Song N, Li H, Cai W, Yan F, Wang J, Song F. Phylogenetic relationships of Hemiptera inferred from mitochondrial and nuclear genes. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4380-4389. [PMID: 26478175 DOI: 10.3109/19401736.2015.1089538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Here, we reconstructed the Hemiptera phylogeny based on the expanded mitochondrial protein-coding genes and the nuclear 18S rRNA gene, separately. The differential rates of change across lineages may associate with long-branch attraction (LBA) effect and result in conflicting estimates of phylogeny from different types of data. To reduce the potential effects of systematic biases on inferences of topology, various data coding schemes, site removal method, and different algorithms were utilized in phylogenetic reconstruction. We show that the outgroups Phthiraptera, Thysanoptera, and the ingroup Sternorrhyncha share similar base composition, and exhibit "long branches" relative to other hemipterans. Thus, the long-branch attraction between these groups is suspected to cause the failure of recovering Hemiptera under the homogeneous model. In contrast, a monophyletic Hemiptera is supported when heterogeneous model is utilized in the analysis. Although higher level phylogenetic relationships within Hemiptera remain to be answered, consensus between analyses is beginning to converge on a stable phylogeny.
Collapse
Affiliation(s)
- Nan Song
- a College of Plant Protection, Henan Agricultural University , Zhengzhou , People's Republic of China and
| | - Hu Li
- b Department of Entomology , China Agricultural University , Beijing , People's Republic of China
| | - Wanzhi Cai
- b Department of Entomology , China Agricultural University , Beijing , People's Republic of China
| | - Fengming Yan
- a College of Plant Protection, Henan Agricultural University , Zhengzhou , People's Republic of China and
| | - Jianyun Wang
- b Department of Entomology , China Agricultural University , Beijing , People's Republic of China
| | - Fan Song
- b Department of Entomology , China Agricultural University , Beijing , People's Republic of China
| |
Collapse
|
29
|
|
30
|
Tachypleus syriacus (Woodward)—a sexually dimorphic Cretaceous crown limulid reveals underestimated horseshoe crab divergence times. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0229-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Kück P, Wägele JW. Plesiomorphic character states cause systematic errors in molecular phylogenetic analyses: a simulation study. Cladistics 2015; 32:461-478. [DOI: 10.1111/cla.12132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Affiliation(s)
- Patrick Kück
- The Natural History Museum Cromwell Road SW7 5BD London UK
| | - J. Wolfgang Wägele
- Zoologisches Forschungsmuseum Alexander Koenig Adenauerallee 160 53113 Bonn Germany
| |
Collapse
|
32
|
Su Z, Townsend JP. Utility of characters evolving at diverse rates of evolution to resolve quartet trees with unequal branch lengths: analytical predictions of long-branch effects. BMC Evol Biol 2015; 15:86. [PMID: 25968460 PMCID: PMC4429678 DOI: 10.1186/s12862-015-0364-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/29/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The detection and avoidance of "long-branch effects" in phylogenetic inference represents a longstanding challenge for molecular phylogenetic investigations. A consequence of parallelism and convergence, long-branch effects arise in phylogenetic inference when there is unequal molecular divergence among lineages, and they can positively mislead inference based on parsimony especially, but also inference based on maximum likelihood and Bayesian approaches. Long-branch effects have been exhaustively examined by simulation studies that have compared the performance of different inference methods in specific model trees and branch length spaces. RESULTS In this paper, by generalizing the phylogenetic signal and noise analysis to quartets with uneven subtending branches, we quantify the utility of molecular characters for resolution of quartet phylogenies via parsimony. Our quantification incorporates contributions toward the correct tree from either signal or homoplasy (i.e. "the right result for either the right reason or the wrong reason"). We also characterize a highly conservative lower bound of utility that incorporates contributions to the correct tree only when they correspond to true, unobscured parsimony-informative sites (i.e. "the right result for the right reason"). We apply the generalized signal and noise analysis to classic quartet phylogenies in which long-branch effects can arise due to unequal rates of evolution or an asymmetrical topology. Application of the analysis leads to identification of branch length conditions in which inference will be inconsistent and reveals insights regarding how to improve sampling of molecular loci and taxa in order to correctly resolve phylogenies in which long-branch effects are hypothesized to exist. CONCLUSIONS The generalized signal and noise analysis provides analytical prediction of utility of characters evolving at diverse rates of evolution to resolve quartet phylogenies with unequal branch lengths. The analysis can be applied to identifying characters evolving at appropriate rates to resolve phylogenies in which long-branch effects are hypothesized to occur.
Collapse
Affiliation(s)
- Zhuo Su
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
| | - Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
- Department of Biostatistics, Yale University, New Haven, CT, 06520, USA.
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA.
- Department of Biostatistics, Yale School of Public Health, 135 College St #222., New Haven, CT, 06511, United States of America.
| |
Collapse
|
33
|
Barker DG, Barker TM, Davis MA, Schuett GW. A review of the systematics and taxonomy of Pythonidae: an ancient serpent lineage. Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David G. Barker
- Vida Preciosa International, Inc.; P.O. Box 300 Boerne TX 78006 USA
| | - Tracy M. Barker
- Vida Preciosa International, Inc.; P.O. Box 300 Boerne TX 78006 USA
| | - Mark A. Davis
- Illinois Natural History Survey; Prairie Research Institute; University of Illinois Urbana Champaign; 1816 South Oak St. Champaign IL 61820 USA
| | - Gordon W. Schuett
- Department of Biology and Center for Behavioral Neuroscience; Georgia State University; Atlanta GA 30303 USA
- The Copperhead Institute; P.O. Box 6755 Spartanburg SC 29304 USA
- Chiricahua Desert Museum; P.O. Box 376 Rodeo NM 88056 USA
| |
Collapse
|
34
|
Evolutionary origin of Ceratonova shasta and phylogeny of the marine myxosporean lineage. Mol Phylogenet Evol 2015; 86:75-89. [PMID: 25797924 DOI: 10.1016/j.ympev.2015.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 01/15/2023]
Abstract
In order to clarify the phylogenetic relationships among the main marine myxosporean clades including newly established Ceratonova clade and scrutinizing their evolutionary origins, we performed large-scale phylogenetic analysis of all myxosporean species from the marine myxosporean lineage based on three gene analyses and statistical topology tests. Furthermore, we obtained new molecular data for Ceratonova shasta, C. gasterostea, eight Ceratomyxa species and one Myxodavisia species. We described five new species: Ceratomyxa ayami n. sp., C. leatherjacketi n. sp., C. synaphobranchi n. sp., C. verudaensis n. sp. and Myxodavisia bulani n. sp.; two of these formed a new, basal Ceratomyxa subclade. We identified that the Ceratomyxa clade is basal to all other marine myxosporean lineages, and Kudoa with Enteromyxum are the most recently branching clades. Topologies were least stable at the nodes connecting the marine urinary clade, the marine gall bladder clade and the Ceratonova clade. Bayesian inference analysis of SSU rDNA and the statistical tree topology tests suggested that Ceratonova is closely related to the Enteromyxum and Kudoa clades, which represent a large group of histozoic species. A close relationship between Ceratomyxa and Ceratonova was not supported, despite their similar myxospore morphologies. Overall, the site of sporulation in the vertebrate host is a more accurate predictor of phylogenetic relationships than the morphology of the myxospore.
Collapse
|
35
|
Oleinik AG, Skurikhina LA, Brykov VA. Phylogeny of charrs of the genus Salvelinus based on mitochondrial DNA data. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415010093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Finnerty JR, Gilmore TD. Methods for analyzing the evolutionary relationship of NF-κB proteins using free, web-driven bioinformatics and phylogenetic tools. Methods Mol Biol 2015; 1280:631-46. [PMID: 25736776 DOI: 10.1007/978-1-4939-2422-6_37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phylogenetic analysis enables one to reconstruct the functional evolution of proteins. Current understanding of NF-κB signaling derives primarily from studies of a relatively small number of laboratory models-mainly vertebrates and insects-that represent a tiny fraction of animal evolution. As such, NF-κB has been the subject of limited phylogenetic analysis. The recent discovery of NF-κB proteins in "basal" marine animals (e.g., sponges, sea anemones, corals) and NF-κB-like proteins in non-metazoan lineages extends the origin of NF-κB signaling by several hundred million years and provides the opportunity to investigate the early evolution of this pathway using phylogenetic approaches. Here, we describe a combination of bioinformatic and phylogenetic analyses based on menu-driven, open-source computer programs that are readily accessible to molecular biologists without formal training in phylogenetic methods. These phylogenetically based comparisons of NF-κB proteins are powerful in that they reveal deep conservation and repeated instances of parallel evolution in the sequence and structure of NF-κB in distant animal groups, which suggest that important functional constraints limit the evolution of this protein.
Collapse
Affiliation(s)
- John R Finnerty
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA,
| | | |
Collapse
|
37
|
Liu L, Xi Z, Davis CC. Coalescent Methods Are Robust to the Simultaneous Effects of Long Branches and Incomplete Lineage Sorting. Mol Biol Evol 2014; 32:791-805. [DOI: 10.1093/molbev/msu331] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Gatesy J, Springer MS. Phylogenetic analysis at deep timescales: Unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Mol Phylogenet Evol 2014; 80:231-66. [DOI: 10.1016/j.ympev.2014.08.013] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/26/2014] [Accepted: 08/10/2014] [Indexed: 11/16/2022]
|
39
|
Boussau B, Walton Z, Delgado JA, Collantes F, Beani L, Stewart IJ, Cameron SA, Whitfield JB, Johnston JS, Holland PW, Bachtrog D, Kathirithamby J, Huelsenbeck JP. Strepsiptera, phylogenomics and the long branch attraction problem. PLoS One 2014; 9:e107709. [PMID: 25272037 PMCID: PMC4182670 DOI: 10.1371/journal.pone.0107709] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/14/2014] [Indexed: 11/18/2022] Open
Abstract
Insect phylogeny has recently been the focus of renewed interest as advances in sequencing techniques make it possible to rapidly generate large amounts of genomic or transcriptomic data for a species of interest. However, large numbers of markers are not sufficient to guarantee accurate phylogenetic reconstruction, and the choice of the model of sequence evolution as well as adequate taxonomic sampling are as important for phylogenomic studies as they are for single-gene phylogenies. Recently, the sequence of the genome of a strepsipteran has been published and used to place Strepsiptera as sister group to Coleoptera. However, this conclusion relied on a data set that did not include representatives of Neuropterida or of coleopteran lineages formerly proposed to be related to Strepsiptera. Furthermore, it did not use models that are robust against the long branch attraction artifact. Here we have sequenced the transcriptomes of seven key species to complete a data set comprising 36 species to study the higher level phylogeny of insects, with a particular focus on Neuropteroidea (Coleoptera, Strepsiptera, Neuropterida), especially on coleopteran taxa considered as potential close relatives of Strepsiptera. Using models robust against the long branch attraction artifact we find a highly resolved phylogeny that confirms the position of Strepsiptera as a sister group to Coleoptera, rather than as an internal clade of Coleoptera, and sheds new light onto the phylogeny of Neuropteroidea.
Collapse
Affiliation(s)
- Bastien Boussau
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Zaak Walton
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| | - Juan A. Delgado
- Departamento de Zoologia y Antropologia Fisica, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | - Francisco Collantes
- Departamento de Zoologia y Antropologia Fisica, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | - Laura Beani
- Dipartimento di Biologia, Università di Firenze, Sesto Fiorentino, Firenze, Italia
| | - Isaac J. Stewart
- Fisher High School, Fisher, IL, United States of America
- Department of Entomology, University of Illinois, Urbana, IL, United States of America
| | - Sydney A. Cameron
- Department of Entomology, University of Illinois, Urbana, IL, United States of America
| | - James B. Whitfield
- Department of Entomology, University of Illinois, Urbana, IL, United States of America
| | - J. Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Peter W.H. Holland
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| | | | - John P. Huelsenbeck
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
40
|
Taylor DJ, Ballinger MJ, Zhan JJ, Hanzly LE, Bruenn JA. Evidence that ebolaviruses and cuevaviruses have been diverging from marburgviruses since the Miocene. PeerJ 2014; 2:e556. [PMID: 25237605 PMCID: PMC4157239 DOI: 10.7717/peerj.556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/12/2014] [Indexed: 01/10/2023] Open
Abstract
An understanding of the timescale of evolution is critical for comparative virology but remains elusive for many RNA viruses. Age estimates based on mutation rates can severely underestimate divergences for ancient viral genes that are evolving under strong purifying selection. Paleoviral dating, however, can provide minimum age estimates for ancient divergence, but few orthologous paleoviruses are known within clades of extant viruses. For example, ebolaviruses and marburgviruses are well-studied mammalian pathogens, but their comparative biology is difficult to interpret because the existing estimates of divergence are controversial. Here we provide evidence that paleoviral elements of two genes (ebolavirus-like VP35 and NP) in cricetid rodent genomes originated after the divergence of ebolaviruses and cuevaviruses from marburgviruses. We provide evidence of orthology by identifying common paleoviral insertion sites among the rodent genomes. Our findings indicate that ebolaviruses and cuevaviruses have been diverging from marburgviruses since the early Miocene.
Collapse
Affiliation(s)
- Derek J. Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Matthew J. Ballinger
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jack J. Zhan
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Laura E. Hanzly
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jeremy A. Bruenn
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
41
|
Parks SL, Goldman N. Maximum likelihood inference of small trees in the presence of long branches. Syst Biol 2014; 63:798-811. [PMID: 24996414 PMCID: PMC6371681 DOI: 10.1093/sysbio/syu044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 06/20/2014] [Indexed: 11/14/2022] Open
Abstract
The statistical basis of maximum likelihood (ML), its robustness, and the fact that it appears to suffer less from biases lead to it being one of the most popular methods for tree reconstruction. Despite its popularity, very few analytical solutions for ML exist, so biases suffered by ML are not well understood. One possible bias is long branch attraction (LBA), a regularly cited term generally used to describe a propensity for long branches to be joined together in estimated trees. Although initially mentioned in connection with inconsistency of parsimony, LBA has been claimed to affect all major phylogenetic reconstruction methods, including ML. Despite the widespread use of this term in the literature, exactly what LBA is and what may be causing it is poorly understood, even for simple evolutionary models and small model trees. Studies looking at LBA have focused on the effect of two long branches on tree reconstruction. However, to understand the effect of two long branches it is also important to understand the effect of just one long branch. If ML struggles to reconstruct one long branch, then this may have an impact on LBA. In this study, we look at the effect of one long branch on three-taxon tree reconstruction. We show that, counterintuitively, long branches are preferentially placed at the tips of the tree. This can be understood through the use of analytical solutions to the ML equation and distance matrix methods. We go on to look at the placement of two long branches on four-taxon trees, showing that there is no attraction between long branches, but that for extreme branch lengths long branches are joined together disproportionally often. These results illustrate that even small model trees are still interesting to help understand how ML phylogenetic reconstruction works, and that LBA is a complicated phenomenon that deserves further study.
Collapse
Affiliation(s)
- Sarah L Parks
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, CB10 1SD, United Kingdom
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, CB10 1SD, United Kingdom
| |
Collapse
|
42
|
Ibáñez-Marcelo E, Casanellas M. EM for phylogenetic topology reconstruction on nonhomogeneous data. BMC Evol Biol 2014; 14:132. [PMID: 24938507 PMCID: PMC4074583 DOI: 10.1186/1471-2148-14-132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/11/2014] [Indexed: 11/29/2022] Open
Abstract
Background The reconstruction of the phylogenetic tree topology of four taxa is, still nowadays, one of the main challenges in phylogenetics. Its difficulties lie in considering not too restrictive evolutionary models, and correctly dealing with the long-branch attraction problem. The correct reconstruction of 4-taxon trees is crucial for making quartet-based methods work and being able to recover large phylogenies. Methods We adapt the well known expectation-maximization algorithm to evolutionary Markov models on phylogenetic 4-taxon trees. We then use this algorithm to estimate the substitution parameters, compute the corresponding likelihood, and to infer the most likely quartet. Results In this paper we consider an expectation-maximization method for maximizing the likelihood of (time nonhomogeneous) evolutionary Markov models on trees. We study its success on reconstructing 4-taxon topologies and its performance as input method in quartet-based phylogenetic reconstruction methods such as QFIT and QuartetSuite. Our results show that the method proposed here outperforms neighbor-joining and the usual (time-homogeneous continuous-time) maximum likelihood methods on 4-leaved trees with among-lineage instantaneous rate heterogeneity, and perform similarly to usual continuous-time maximum-likelihood when data satisfies the assumptions of both methods. Conclusions The method presented in this paper is well suited for reconstructing the topology of any number of taxa via quartet-based methods and is highly accurate, specially regarding largely divergent trees and time nonhomogeneous data.
Collapse
Affiliation(s)
- Esther Ibáñez-Marcelo
- Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C - 08193 Bellaterra, Barcelona, Spain.
| | | |
Collapse
|
43
|
Allcock AL, Lindgren A, Strugnell J. The contribution of molecular data to our understanding of cephalopod evolution and systematics: a review. J NAT HIST 2014. [DOI: 10.1080/00222933.2013.825342] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
44
|
Bartošová P, Fiala I, Jirků M, Cinková M, Caffara M, Fioravanti ML, Atkinson SD, Bartholomew JL, Holzer AS. Sphaerospora sensu stricto: taxonomy, diversity and evolution of a unique lineage of myxosporeans (Myxozoa). Mol Phylogenet Evol 2013; 68:93-105. [PMID: 23500334 DOI: 10.1016/j.ympev.2013.02.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/18/2022]
Abstract
Myxosporeans (Myxozoa) are eukaryotic parasites, primarily of fish, whose classification is in a state of flux as taxonomists attempt to synthesize the traditional morphology-based system with emerging DNA sequence-based phylogenies. The genus Sphaerospora Thélohan, 1892, which includes pathogenic species that cause significant impacts on fisheries and aquaculture, is one of the most polyphyletic taxa and exemplifies the current challenges facing myxozoan taxonomists. The type species, S. elegans, clusters within the Sphaerospora sensu stricto clade, members of which share similar tissue tropism and long insertions in their variable rRNA gene regions. However, other morphologically similar sphaerosporids lie in different branches of myxozoan phylogenetic trees. Herein, we significantly extend taxonomic sampling of sphaerosporids with SSU+LSU rDNA and EF-2 sequence data for 12 taxa including three representatives of the morphologically similar genus Polysporoplasma Sitjà-Bobadilla et Álvarez-Pellitero, 1995. These taxa were sampled from different vertebrate host groups, biogeographic realms and environments. Our phylogenetic analyses and statistical tests of single and concatenated datasets revealed Sphaerospora s. s. as a strongly supported monophyletic lineage, that clustered sister to the whole myxosporean clade (freshwater+marine lineages). Generally, Sphaerospora s. s. rDNA sequences (up to 3.7 kb) are the longest of all myxozoans and indeed metazoans. The sphaerosporid clade has two lineages, which have specific morphological, biological and sequence traits. Lineage A taxa (marine Sphaerospora spp.) have a single binucleate sporoplasm and shorter AT-rich rDNA inserts. Lineage B taxa (freshwater/brackish Sphaerospora spp.+marine/brackish Polysporoplasma spp.) have 2-12 uninucleate sporoplasms and longer GC-rich rDNA inserts. Lineage B has four subclades that correlate with host group and habitat; all Polysporoplasma species, including the type species, cluster together in one of these subclades. We thus suppress the genus Polysporoplasma and the family Polysporoplasmidae and emend the generic diagnosis of the genus Sphaerospora. The combination of morphological, biological and DNA sequence data applied in this study helped to elucidate an important part of the taxonomic puzzle within the phylum Myxozoa.
Collapse
Affiliation(s)
- Pavla Bartošová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Molecular phylogeny and historical biogeography of the Anatolian lizard Apathya (Squamata, Lacertidae). Mol Phylogenet Evol 2013; 66:992-1001. [DOI: 10.1016/j.ympev.2012.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/23/2012] [Accepted: 12/05/2012] [Indexed: 11/20/2022]
|
46
|
Budd A, Devos DP. Evaluating the Evolutionary Origins of Unexpected Character Distributions within the Bacterial Planctomycetes-Verrucomicrobia-Chlamydiae Superphylum. Front Microbiol 2012; 3:401. [PMID: 23189077 PMCID: PMC3505017 DOI: 10.3389/fmicb.2012.00401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/31/2012] [Indexed: 12/26/2022] Open
Abstract
Recently, several characters that are absent from most bacteria, but which are found in many eukaryotes or archaea, have been identified within the bacterial Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum. Hypotheses of the evolutionary history of such characters are commonly based on the inference of phylogenies of gene or protein families associated with the traits, estimated from multiple sequence alignments (MSAs). So far, studies of this kind have focused on the distribution of (i) two genes involved in the synthesis of sterol, (ii) tubulin genes, and (iii) c1 transfer genes. In many cases, these analyses have concluded that horizontal gene transfer (HGT) is likely to have played a role in shaping the taxonomic distribution of these gene families. In this article, we describe several issues with the inference of HGT from such analyses, in particular concerning the considerable uncertainty associated with our estimation of both gene family phylogenies (especially those containing ancient lineage divergences) and the Tree of Life (ToL), and the need for wider use and further development of explicit probabilistic models to compare hypotheses of vertical and horizontal genetic transmission. We suggest that data which is often taken as evidence for the occurrence of ancient HGT events may not be as convincing as is commonly described, and consideration of alternative theories is recommended. While focusing on analyses including PVCs, this discussion is also relevant for inferences of HGT involving other groups of organisms.
Collapse
Affiliation(s)
- A. Budd
- European Molecular Biology LaboratoryHeidelberg, Germany
| | - D. P. Devos
- European Molecular Biology LaboratoryHeidelberg, Germany
| |
Collapse
|
47
|
Kück P, Mayer C, Wägele JW, Misof B. Long branch effects distort maximum likelihood phylogenies in simulations despite selection of the correct model. PLoS One 2012; 7:e36593. [PMID: 22662120 PMCID: PMC3359070 DOI: 10.1371/journal.pone.0036593] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/10/2012] [Indexed: 11/18/2022] Open
Abstract
The aim of our study was to test the robustness and efficiency of maximum likelihood with respect to different long branch effects on multiple-taxon trees. We simulated data of different alignment lengths under two different 11-taxon trees and a broad range of different branch length conditions. The data were analyzed with the true model parameters as well as with estimated and incorrect assumptions about among-site rate variation. If length differences between connected branches strongly increase, tree inference with the correct likelihood model assumptions can fail. We found that incorporating invariant sites together with Γ distributed site rates in the tree reconstruction (Γ+I) increases the robustness of maximum likelihood in comparison with models using only Γ. The results show that for some topologies and branch lengths the reconstruction success of maximum likelihood under the correct model is still low for alignments with a length of 100,000 base positions. Altogether, the high confidence that is put in maximum likelihood trees is not always justified under certain tree shapes even if alignment lengths reach 100,000 base positions.
Collapse
Affiliation(s)
- Patrick Kück
- Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Bonn, Germany.
| | | | | | | |
Collapse
|
48
|
Christin PA, Besnard G, Edwards EJ, Salamin N. Effect of genetic convergence on phylogenetic inference. Mol Phylogenet Evol 2012; 62:921-7. [DOI: 10.1016/j.ympev.2011.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 12/31/2022]
|
49
|
Rodríguez E, Barbeitos M, Daly M, Gusmão LC, Häussermann V. Toward a natural classification: phylogeny of acontiate sea anemones (Cnidaria, Anthozoa, Actiniaria). Cladistics 2012; 28:375-392. [DOI: 10.1111/j.1096-0031.2012.00391.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Rothfels CJ, Larsson A, Kuo LY, Korall P, Chiou WL, Pryer KM. Overcoming Deep Roots, Fast Rates, and Short Internodes to Resolve the Ancient Rapid Radiation of Eupolypod II Ferns. Syst Biol 2012; 61:490-509. [DOI: 10.1093/sysbio/sys001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carl J. Rothfels
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Anders Larsson
- Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Li-Yaung Kuo
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Petra Korall
- Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Wen-Liang Chiou
- Botanical Garden Division, Taiwan Forestry Research Institute, 53 Nan-hai Road, Taipei 10066, Taiwan
| | - Kathleen M. Pryer
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| |
Collapse
|