1
|
Jasso-Martínez JM, Quicke DLJ, Belokobylskij SA, Santos BF, Fernández-Triana JL, Kula RR, Zaldívar-Riverón A. Mitochondrial phylogenomics and mitogenome organization in the parasitoid wasp family Braconidae (Hymenoptera: Ichneumonoidea). BMC Ecol Evol 2022; 22:46. [PMID: 35413835 PMCID: PMC9006417 DOI: 10.1186/s12862-022-01983-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mitochondrial (mt) nucleotide sequence data has been by far the most common tool employed to investigate evolutionary relationships. While often considered to be more useful for shallow evolutionary scales, mt genomes have been increasingly shown also to contain valuable phylogenetic information about deep relationships. Further, mt genome organization provides another important source of phylogenetic information and gene reorganizations which are known to be relatively frequent within the insect order Hymenoptera. Here we used a dense taxon sampling comprising 148 mt genomes (132 newly generated) collectively representing members of most of the currently recognised subfamilies of the parasitoid wasp family Braconidae, which is one of the largest radiations of hymenopterans. We employed this data to investigate the evolutionary relationships within the family and to assess the phylogenetic informativeness of previously known and newly discovered mt gene rearrangements. RESULTS Most subfamilial relationships and their composition obtained were similar to those recovered in a previous phylogenomic study, such as the restoration of Trachypetinae and the recognition of Apozyginae and Proteropinae as valid braconid subfamilies. We confirmed and detected phylogenetic signal in previously known as well as novel mt gene rearrangements, including mt rearrangements within the cyclostome subfamilies Doryctinae and Rogadinae. CONCLUSIONS Our results showed that both the mt genome DNA sequence data and gene organization contain valuable phylogenetic signal to elucidate the evolution within Braconidae at different taxonomic levels. This study serves as a basis for further investigation of mt gene rearrangements at different taxonomic scales within the family.
Collapse
Affiliation(s)
- Jovana M Jasso-Martínez
- Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/n, Cd. Universitaria, Copilco, Coyoacán, A. P. 70-233, C. P. 04510, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Universidad Nacional Autónoma de México, Coyoacán, C. P. 04510, Ciudad de México, México
| | - Donald L J Quicke
- Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sergey A Belokobylskij
- Zoological Institute, Russian Academy of Sciences, St Petersburg, 199034, Russia
- Museum and Institute of Zoology Polish Academy of Sciences, 00-679, Warszawa, Poland
| | - Bernardo F Santos
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier CP50, 75231, Paris Cedex 05, France
| | | | - Robert R Kula
- Systematic Entomology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, C/O Department of Entomology, National Museum of Natural History, Washington, DC, USA
| | - Alejandro Zaldívar-Riverón
- Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/n, Cd. Universitaria, Copilco, Coyoacán, A. P. 70-233, C. P. 04510, Ciudad de México, México.
| |
Collapse
|
2
|
Jasso-Martínez JM, Santos BF, Zaldívar-Riverón A, Fernandez-Triana J, Sharanowski BJ, Richter R, Dettman JR, Blaimer BB, Brady SG, Kula RR. Phylogenomics of braconid wasps (Hymenoptera, Braconidae) sheds light on classification and the evolution of parasitoid life history traits. Mol Phylogenet Evol 2022; 173:107452. [DOI: 10.1016/j.ympev.2022.107452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023]
|
3
|
Sharanowski BJ, Ridenbaugh RD, Piekarski PK, Broad GR, Burke GR, Deans AR, Lemmon AR, Moriarty Lemmon EC, Diehl GJ, Whitfield JB, Hines HM. Phylogenomics of Ichneumonoidea (Hymenoptera) and implications for evolution of mode of parasitism and viral endogenization. Mol Phylogenet Evol 2020; 156:107023. [PMID: 33253830 DOI: 10.1016/j.ympev.2020.107023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
Ichneumonoidea is one of the most diverse lineages of animals on the planet with >48,000 described species and many more undescribed. Parasitoid wasps of this superfamily are mostly beneficial insects that attack and kill other arthropods and are important for understanding diversification and the evolution of life history strategies related to parasitoidism. Further, some lineages of parasitoids within Ichneumonoidea have acquired endogenous virus elements (EVEs) that are permanently a part of the wasp's genome and benefit the wasp through host immune disruption and behavioral control. Unfortunately, understanding the evolution of viral acquisition, parasitism strategies, diversification, and host immune disruption mechanisms, is deeply limited by the lack of a robust phylogenetic framework for Ichneumonoidea. Here we design probes targeting 541 genes across 91 taxa to test phylogenetic relationships, the evolution of parasitoid strategies, and the utility of probes to capture polydnavirus genes across a diverse array of taxa. Phylogenetic relationships among Ichneumonoidea were largely well resolved with most higher-level relationships maximally supported. We noted codon use biases between the outgroups, Braconidae, and Ichneumonidae and within Pimplinae, which were largely solved through analyses of amino acids rather than nucleotide data. These biases may impact phylogenetic reconstruction and caution for outgroup selection is recommended. Ancestral state reconstructions were variable for Braconidae across analyses, but consistent for reconstruction of idiobiosis/koinobiosis in Ichneumonidae. The data suggest many transitions between parasitoid life history traits across the whole superfamily. The two subfamilies within Ichneumonidae that have polydnaviruses are supported as distantly related, providing strong evidence for two independent acquisitions of ichnoviruses. Polydnavirus capture using our designed probes was only partially successful and suggests that more targeted approaches would be needed for this strategy to be effective for surveying taxa for these viral genes. In total, these data provide a robust framework for the evolution of Ichneumonoidea.
Collapse
Affiliation(s)
| | - Ryan D Ridenbaugh
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| | - Patrick K Piekarski
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA; Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Gavin R Broad
- Department of Life Sciences, the Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA 30606, USA
| | - Andrew R Deans
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
| | | | - Gloria J Diehl
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| | - James B Whitfield
- Department of Entomology, University of Illinois, Urbana, IL 61801, USA
| | - Heather M Hines
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802; Department of Biology, Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
4
|
Sharanowski BJ, Peixoto L, Dal Molin A, Deans AR. Multi-gene phylogeny and divergence estimations for Evaniidae (Hymenoptera). PeerJ 2019; 7:e6689. [PMID: 30976469 PMCID: PMC6451838 DOI: 10.7717/peerj.6689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 02/24/2019] [Indexed: 11/20/2022] Open
Abstract
Ensign wasps (Hymenoptera: Evaniidae) develop as predators of cockroach eggs (Blattodea), have a wide distribution and exhibit numerous interesting biological phenomena. The taxonomy of this lineage has been the subject of several recent, intensive efforts, but the lineage lacked a robust phylogeny. In this paper we present a new phylogeny, based on increased taxonomic sampling and data from six molecular markers (mitochondrial 16S and COI, and nuclear markers 28S, RPS23, CAD, and AM2), the latter used for the first time in phylogenetic reconstruction. Our intent is to provide a robust phylogeny that will stabilize and facilitate revision of the higher-level classification. We also show the continued utility of molecular motifs, especially the presence of an intron in the RPS23 fragments of certain taxa, to diagnose evaniid clades and assist with taxonomic classification. Furthermore, we estimate divergence times among evaniid lineages for the first time, using multiple fossil calibrations. Evaniidae radiated primarily in the Early Cretaceous (134.1-141.1 Mya), with and most extant genera diverging near the K-T boundary. The estimated phylogeny reveals a more robust topology than previous efforts, with the recovery of more monophyletic taxa and better higher-level resolution. The results facilitate a change in ensign wasp taxonomy, with Parevania, and Papatuka, syn. nov. becoming junior synonyms of Zeuxevania, and Acanthinevania, syn. nov. being designated as junior synonym of Szepligetella. We transfer 30 species to Zeuxevania, either reestablishing past combinations or as new combinations. We also transfer 20 species from Acanthinevania to Szepligetella as new combinations.
Collapse
Affiliation(s)
- Barbara J. Sharanowski
- Department of Biology, University of Central Florida, Orlando, FL, United States of America
| | - Leanne Peixoto
- Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Anamaria Dal Molin
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Andrew R. Deans
- Frost Entomological Museum, Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
5
|
Chen XX, van Achterberg C. Systematics, Phylogeny, and Evolution of Braconid Wasps: 30 Years of Progress. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:335-358. [PMID: 30332295 DOI: 10.1146/annurev-ento-011118-111856] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The parasitoid wasp family Braconidae is likely the second-most species-rich family in the animal kingdom. Braconid wasps are widely distributed and often encountered. They constitute one of the principal groups of natural enemies of phytophagous insects, of which many are serious pest species. The enormous biological diversification of braconid wasps has led to many homoplasies, which contributed widely to instabilities in historical classifications. Recent studies using combinations of genetic markers or total mitochondrial genomes allow for better founded groupings and will ultimately lead to a stable classification. We present the current status of the phylogenetics of the Braconidae in a historical perspective and our understanding of the effects on higher classification.
Collapse
Affiliation(s)
- Xue-Xin Chen
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China
| | - Cornelis van Achterberg
- Department of Terrestrial Zoology, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands;
| |
Collapse
|
6
|
Whitfield JB, Austin AD, Fernandez-Triana JL. Systematics, Biology, and Evolution of Microgastrine Parasitoid Wasps. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:389-406. [PMID: 29058979 DOI: 10.1146/annurev-ento-020117-043405] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The braconid parasitoid wasp subfamily Microgastrinae is perhaps the most species-rich subfamily of animals on Earth. Despite their small size, they are familiar to agriculturalists and field ecologists alike as one of the principal groups of natural enemies of caterpillars feeding on plants. Their abundance and nearly ubiquitous terrestrial distribution, their intricate interactions with host insects, and their historical association with mutualistic polydnaviruses have all contributed to Microgastrinae becoming a key group of organisms for studying parasitism, parasitoid genomics, and mating biology. However, these rich sources of data have not yet led to a robust genus-level classification of the group, and some taxonomic confusion persists as a result. We present the current status of understanding of the general biology, taxonomic history, diversity, geographical patterns, host relationships, and phylogeny of Microgastrinae as a stimulus and foundation for further study. Current progress in elucidating the biology and taxonomy of this important group is rapid and promises a revolution in the classification of these wasps in the near future.
Collapse
Affiliation(s)
- James B Whitfield
- Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA;
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia;
| | | |
Collapse
|
7
|
Li Q, Wei SJ, Tang P, Wu Q, Shi M, Sharkey MJ, Chen XX. Multiple Lines of Evidence from Mitochondrial Genomes Resolve Phylogenetic Relationships of Parasitic Wasps in Braconidae. Genome Biol Evol 2016; 8:2651-62. [PMID: 27503293 PMCID: PMC5630901 DOI: 10.1093/gbe/evw184] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 11/30/2022] Open
Abstract
The rapid increase in the number of mitochondrial genomes in public databases provides opportunities for insect phylogenetic studies; but it also provides challenges because of gene rearrangements and variable substitution rates among both lineages and sites. Typically, phylogenetic studies use mitochondrial sequence data but exclude other features of the mitochondrial genome from analyses. Here, we undertook large-scale sequencing of mitochondrial genomes from a worldwide collection of specimens belonging to Braconidae, one of the largest families of Metazoa. The strand-asymmetry of base composition in the mitochondrial genomes of braconids is reversed, providing evidence for monophyly of the Braconidae. We have reconstructed a backbone phylogeny of the major lineages of Braconidae from gene order of the mitochondrial genomes. Standard phylogenetic analyses of DNA sequences provided strong support for both Cyclostomes and Noncyclostomes. Four subfamily complexes, that is, helconoid, euphoroid, sigalphoid, and microgastroid, within the Noncyclostomes were reconstructed robustly, the first three of which formed a monophyletic group sister to the last one. Aphidiinae was recovered as a lineage sister to other groups of Cyclostomes, while the Ichneutinae was recovered as paraphyletic. Separate analyses of the subdivided groups showed congruent relationships, employing different matrices and methods, for the internal nodes of the Cyclostomes and the microgastroid complex of subfamilies. This research, using multiple lines of evidence from mitochondrial genomes, illustrates multiple uses of mitochondrial genomes for phylogenetic inference in Braconidae.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Jun Wei
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Plant and Environmental Protection, Beijing, China
| | - Pu Tang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qiong Wu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Min Shi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | - Xue-Xin Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Li XY, van Achterberg C, Tan JC. Revision of the subfamily Opiinae (Hymenoptera, Braconidae) from Hunan (China), including thirty-six new species and two new genera. Zookeys 2013; 268:1-186. [PMID: 23653521 PMCID: PMC3592199 DOI: 10.3897/zookeys.268.4071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/11/2013] [Indexed: 11/12/2022] Open
Abstract
The species of the subfamily Opiinae (Hymenoptera: Braconidae) from Hunan (Oriental China) are revised and illustrated. Thirty-six new species are described: Apodesmia bruniclypealis Li & van Achterberg, sp. n., Apodesmia melliclypealis Li & van Achterberg, sp. n., Areotetes albiferus Li & van Achterberg, sp. n., Areotetes carinuliferus Li & van Achterberg, sp. n., Areotetes striatiferus Li & van Achterberg, sp. n., Coleopioides diversinotum Li & van Achterberg, sp. n., Coleopioides postpectalis Li & van Achterberg, sp. n., Fopius dorsopiferus Li, van Achterberg & Tan, sp. n., Indiopius chenae Li & van Achterberg, sp. n., Opiognathus aulaciferus Li & van Achterberg, sp. n., Opiognathus brevibasalis Li & van Achterberg, sp. n., Opius crenuliferus Li & van Achterberg, sp. n., Opius malarator Li, van Achterberg & Tan, sp. n., Opius monilipalpis Li & van Achterberg, sp. n., Opius pachymerus Li & van Achterberg, sp. n., Opius songi Li & van Achterberg, sp. n., Opius youi Li & van Achterberg, sp. n., Opius zengi Li & van Achterberg, sp. n., Phaedrotoma acuticlypeata Li & van Achterberg, sp. n., Phaedrotoma angiclypeata Li & van Achterberg, sp. n., Phaedrotoma antenervalis Li & van Achterberg, sp. n., Phaedrotoma depressiclypealisLi & van Achterberg, sp. n., Phaedrotoma flavisoma Li & van Achterberg, sp. n., Phaedrotoma nigrisoma Li & van Achterberg, sp. n., Phaedrotoma protuberator Li & van Achterberg, sp. n., Phaedrotoma rugulifera Li & van Achterberg, sp. n., Li & van Achterberg,Phaedrotoma striatinota Li & van Achterberg, sp. n., Phaedrotoma vermiculifera Li & van Achterberg, sp. n., Rhogadopsis latipennis Li & van Achterberg, sp. n., Rhogadopsis longicaudifera Li & van Achterberg, sp. n., Rhogadopsis maculosa Li, van Achterberg & Tan, sp. n., Rhogadopsis obliqua Li & van Achterberg, sp. n., Rhogadopsis sculpturator Li & van Achterberg, sp. n., Utetes longicarinatus Li & van Achterberg, sp. n. and Xynobius notauliferus Li & van Achterberg, sp. n. Areotetes van Achterberg & Li, gen. n. (type species: Areotetes carinuliferus sp. n.) and Coleopioides van Achterberg & Li, gen. n. (type species: Coleopioides postpectalis sp. n. are described. All species are illustrated and keyed. In total 30 species of Opiinae are sequenced and the cladograms are presented. Neopius Gahan, 1917, Opiognathus Fischer, 1972, Opiostomus Fischer, 1972, and Rhogadopsis Brèthes, 1913, are treated as a valid genera based on molecular and morphological differences. Opius vittata Chen & Weng, 2005 (not Opius vittatus Ruschka, 1915), Opius ambiguus Weng & Chen, 2005 (not Wesmael, 1835) and Opius mitis Chen & Weng, 2005 (not Fischer, 1963) are primary homonymsandarerenamed into Phaedrotoma depressa Li & van Achterberg, nom. n., Opius cheni Li & van Achterberg, nom. n. andOpius wengi Li & van Achterberg, nom. n., respectively. Phaedrotoma terga (Chen & Weng, 2005) comb. n.,Diachasmimorpha longicaudata (Ashmead, 1905) and Biosteres pavitita Chen & Weng, 2005, are reported new for Hunan, Opiostomus aureliae (Fischer, 1957) comb. n. is new for China and Hunan; Xynobius maculipennis(Enderlein, 1912) comb. n. is new for Hunan and continental China and Rhogadopsis longuria (Chen & Weng, 2005) comb. n. is new for Hunan. The following new combinations are given: Apodesmia puncta (Weng & Chen, 2005) comb. n., Apodesmia tracta (Weng & Chen, 2005) comb. n., Areotetes laevigatus (Weng & Chen, 2005) comb. n., Phaedrotoma dimidia (Chen & Weng, 2005) comb. n., Phaedrotoma improcera (Weng & Chen, 2005) comb. n., Phaedrotoma amputata (Weng & Chen, 2005) comb. n., Phaedrotoma larga (Weng & Chen, 2005) comb. n., Phaedrotoma osculas (Weng & Chen, 2005) comb. n., Phaedrotoma postuma (Chen & Weng, 2005) comb. n., Phaedrotoma rugulosa (Chen & Weng, 2005) comb. n., Phaedrotoma tabularis (Weng & Chen, 2005) comb. n., Rhogadopsis apii (Chen & Weng, 2005) comb. n., Rhogadopsis dimidia (Chen & Weng, 2005) comb. n., Rhogadopsis diutia (Chen & Weng, 2005) comb. n., Rhogadopsis longuria (Chen & Weng, 2005) comb. n., Rhogadopsis pratellae (Weng & Chen, 2005) comb. n., Rhogadopsis pratensis (Weng & Chen, 2005) comb. n., Rhogadopsis sculpta (Chen & Weng, 2005) comb. n., Rhogadopsis sulcifer (Fischer, 1975) comb. n., Rhogadopsis tabidula(Weng & Chen, 2005) comb. n., Xynobius complexus (Weng & Chen, 2005) comb. n., Xynobius indagatrix (Weng & Chen, 2005) comb. n., Xynobius multiarculatus (Chen & Weng, 2005) comb. n. THE FOLLOWING (SUB)GENERA ARE SYNONYMISED: Snoflakopius Fischer, 1972, Jucundopius Fischer, 1984, Opiotenes Fischer, 1998, and Oetztalotenes Fischer, 1998, with Opiostomus Fischer, 1971; Xynobiotenes Fischer, 1998, with Xynobius Foerster, 1862; Allotypus Foerster, 1862, Lemnaphilopius Fischer, 1972, Agnopius Fischer, 1982, and Cryptognathopius Fischer, 1984, with Apodesmia Foerster, 1862; Nosopoea Foerster, 1862, Tolbia Cameron, 1907, Brachycentrus Szépligeti, 1907, Baeocentrum Schulz, 1911, Hexaulax Cameron, 1910, Coeloreuteus Roman, 1910, Neodiospilus Szépligeti, 1911, Euopius Fischer, 1967, Gerius Fischer, 1972, Grimnirus Fischer, 1972, Hoenirus Fischer, 1972, Mimirus Fischer, 1972, Gastrosema Fischer, 1972, Merotrachys Fischer, 1972, Phlebosema Fischer, 1972, Neoephedrus Samanta, Tamili, Saha & Raychaudhuri, 1983, Adontopius Fischer, 1984, Kainopaeopius Fischer, 1986, Millenniopius Fischer, 1996, and Neotropopius Fischer, 1999, with Phaedrotoma Foerster, 1862.
Collapse
Affiliation(s)
- Xi-Ying Li
- College of Bio-Safety Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Cornelis van Achterberg
- Department of Terrestrial Zoology, Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, The Netherlands
| | - Ji-Cai Tan
- College of Bio-Safety Science and Technology, Hunan Agriculture University, Changsha 410128, China
| |
Collapse
|
9
|
Leppänen SA, Altenhofer E, Liston AD, Nyman T. ECOLOGICAL VERSUS PHYLOGENETIC DETERMINANTS OF TROPHIC ASSOCIATIONS IN A PLANT-LEAFMINER-PARASITOID FOOD WEB. Evolution 2013; 67:1493-502. [DOI: 10.1111/evo.12028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 11/26/2012] [Indexed: 11/30/2022]
|
10
|
Karlsson D, Ronquist F. Skeletal morphology of Opius dissitus and Biosteres carbonarius (Hymenoptera: Braconidae), with a discussion of terminology. PLoS One 2012; 7:e32573. [PMID: 22558068 PMCID: PMC3340384 DOI: 10.1371/journal.pone.0032573] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/27/2012] [Indexed: 11/19/2022] Open
Abstract
The Braconidae, a family of parasitic wasps, constitute a major taxonomic challenge with an estimated diversity of 40,000 to 120,000 species worldwide, only 18,000 of which have been described to date. The skeletal morphology of braconids is still not adequately understood and the terminology is partly idiosyncratic, despite the fact that anatomical features form the basis for most taxonomic work on the group. To help address this problem, we describe the external skeletal morphology of Opius dissitus Muesebeck 1963 and Biosteres carbonarius Nees 1834, two diverse representatives of one of the least known and most diverse braconid subfamilies, the Opiinae. We review the terminology used to describe skeletal features in the Ichneumonoidea in general and the Opiinae in particular, and identify a list of recommend terms, which are linked to the online Hymenoptera Anatomy Ontology. The morphology of the studied species is illustrated with SEM-micrographs, photos and line drawings. Based on the examined species, we discuss intraspecific and interspecific morphological variation in the Opiinae and point out character complexes that merit further study.
Collapse
Affiliation(s)
- Dave Karlsson
- Department of Entomology, Swedish Museum of Natural History, Stockholm, Sweden.
| | | |
Collapse
|
11
|
Quicke DLJ, Smith MA, Janzen DH, Hallwachs W, Fernandez-Triana J, Laurenne NM, Zaldívar-Riverón A, Shaw MR, Broad GR, Klopfstein S, Shaw SR, Hrcek J, Hebert PDN, Miller SE, Rodriguez JJ, Whitfield JB, Sharkey MJ, Sharanowski BJ, Jussila R, Gauld ID, Chesters D, Vogler AP. Utility of the DNA barcoding gene fragment for parasitic wasp phylogeny (Hymenoptera: Ichneumonoidea): data release and new measure of taxonomic congruence. Mol Ecol Resour 2012; 12:676-85. [PMID: 22487608 DOI: 10.1111/j.1755-0998.2012.03143.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The enormous cytochrome oxidase subunit I (COI) sequence database being assembled from the various DNA barcoding projects as well as from independent phylogenetic studies constitutes an almost unprecedented amount of data for molecular systematics, in addition to its role in species identification and discovery. As part of a study of the potential of this gene fragment to improve the accuracy of phylogenetic reconstructions, and in particular, exploring the effects of dense taxon sampling, we have assembled a data set for the hyperdiverse, cosmopolitan parasitic wasp superfamily Ichneumonoidea, including the release of 1793 unpublished sequences. Of approximately 84 currently recognized Ichneumonoidea subfamilies, 2500 genera and 41,000 described species, barcoding 5'-COI data were assembled for 4168 putative species-level terminals (many undescribed), representing 671 genera and all but ten of the currently recognized subfamilies. After the removal of identical and near-identical sequences, the 4174 initial sequences were reduced to 3278. We show that when subjected to phylogenetic analysis using both maximum likelihood and parsimony, there is a broad correlation between taxonomic congruence and number of included sequences. We additionally present a new measure of taxonomic congruence based upon the Simpson diversity index, the Simpson dominance index, which gives greater weight to morphologically recognized taxonomic groups (subfamilies) recovered with most representatives in one or a few contiguous groups or subclusters.
Collapse
|
12
|
Stigenberg J, Vikberg V, Belokobylskij SA. Meteorus acerbiavorussp. nov. (Hymenoptera, Braconidae), a gregarious parasitoid ofAcerbia alpina(Quensel) (Lepidoptera, Arctiidae) in North Finland. J NAT HIST 2011. [DOI: 10.1080/00222933.2011.552807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Pitz KM, Sierwald P. Phylogeny of the millipede order Spirobolida (Arthropoda: Diplopoda: Helminthomorpha). Cladistics 2010; 26:497-525. [PMID: 34875768 DOI: 10.1111/j.1096-0031.2009.00303.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study examines relationships within the millipede order Spirobolida using an exemplar approach, sampling within families to maximize geographical and morphological diversity; due to lack of available material, Allopocockiidae and Hoffmanobolidae were not included in analyses. The focus of this study was to test monophyly of the order, the suborders, and the families of Spirobolida and to propose interfamilial relationships using morphological and molecular data in a total-evidence approach. Both maximum-parsimony analyses and Bayesian inference were employed to analyse two datasets consisting of combined morphological and molecular data, one aligned using progressive alignment methods and the second aligned by secondary structure models. Rhinocricidae was recovered sister to all remaining spirobolidan millipedes and is elevated to suborder status as suborder Rhinocricidea. Trigoniulidea was recovered as monophyletic as was Spirobolidea excluding Rhinocricidae; Spirobolidea is redefined to reflect this change. All previously recognized families were recovered, with the exception of Spirobolidae; in all instances, this family was paraphyletic or part of a polytomy that lacked sufficient resolution to assess its monophyly. The results reaffirm much of the existing taxonomic foundation within Spirobolida. This study provides the first phylogenetic test of higher-level relationships within Spirobolida and will serve as a foundation for future work in this group at finer levels. © The Willi Hennig Society 2010.
Collapse
Affiliation(s)
| | - Petra Sierwald
- Department of Zoology, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
14
|
Perrichot V, Nel A, Quicke DLJ. New braconid wasps from French Cretaceous amber (Hymenoptera, Braconidae): synonymization with Eoichneumonidae and implications for the phylogeny of Ichneumonoidea. ZOOL SCR 2009. [DOI: 10.1111/j.1463-6409.2008.00358.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Current World Literature. Curr Opin Allergy Clin Immunol 2008; 8:360-3. [DOI: 10.1097/aci.0b013e32830abac8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|