1
|
Jaynes KE, Myers EA, Gvoždík V, Blackburn DC, Portik DM, Greenbaum E, Jongsma GFM, Rödel MO, Badjedjea G, Bamba-Kaya A, Baptista NL, Akuboy JB, Ernst R, Kouete MT, Kusamba C, Masudi FM, McLaughlin PJ, Nneji LM, Onadeko AB, Penner J, Vaz Pinto P, Stuart BL, Tobi E, Zassi-Boulou AG, Leaché AD, Fujita MK, Bell RC. Giant Tree Frog diversification in West and Central Africa: Isolation by physical barriers, climate, and reproductive traits. Mol Ecol 2021; 31:3979-3998. [PMID: 34516675 DOI: 10.1111/mec.16169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/18/2021] [Accepted: 09/02/2021] [Indexed: 01/25/2023]
Abstract
Secondary sympatry amongst sister lineages is strongly associated with genetic and ecological divergence. This pattern suggests that for closely related species to coexist in secondary sympatry, they must accumulate differences in traits that mediate ecological and/or reproductive isolation. Here, we characterized inter- and intraspecific divergence in three giant tree frog species whose distributions stretch across West and Central Africa. Using genome-wide single-nucleotide polymorphism data, we demonstrated that species-level divergence coincides temporally and geographically with a period of large-scale forest fragmentation during the late Pliocene. Our environmental niche models further supported a dynamic history of climatic suitability and stability, and indicated that all three species occupy distinct environmental niches. We found modest morphological differentiation amongst the species with significant divergence in tympanum diameter and male advertisement call. In addition, we confirmed that two species occur in secondary sympatry in Central Africa but found no evidence of hybridization. These patterns support the hypothesis that cycles of genetic exchange and isolation across West and Central Africa have contributed to globally significant biodiversity. Furthermore, divergence in both ecology and reproductive traits appear to have played important roles in maintaining distinct lineages. At the intraspecific level, we found that climatic refugia, precipitation gradients, marine incursions, and potentially riverine barriers generated phylogeographic structure throughout the Pleistocene and into the Holocene. Further studies examining phenotypic divergence and secondary contact amongst these geographically structured populations may demonstrate how smaller scale and more recent biogeographic barriers contribute to regional diversification.
Collapse
Affiliation(s)
- Kyle E Jaynes
- Department of Biology, Adrian College, Michigan, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Integrative Biology, W.K. Kellogg Biological Station, Michigan State University, Michigan, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, Michigan, USA
| | - Edward A Myers
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Václav Gvoždík
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Department of Zoology, National Museum, Prague, Czech Republic
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Daniel M Portik
- Herpetology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California, USA
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Gregory F M Jongsma
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA.,Department of Biology, University of Florida, Florida, USA
| | - Mark-Oliver Rödel
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Berlin, Germany
| | - Gabriel Badjedjea
- Département d'Ecologie et Biodiversité des Ressources Aquatiques, Centre de Surveillance de la Biodiversité, Université de Kisangani, Kisangani, République Démocratique du Congo
| | | | - Ninda L Baptista
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal.,Faculdade de Ciências da, Universidade do Porto, Porto, Portugal.,Instituto Superior de Ciências da Educação da Huíla (ISCED-Huíla), Rua Sarmento Rodrigues, Lubango, Angola
| | - Jeannot B Akuboy
- Département d'Ecologie et Biodiversité des Ressources Terrestres, Centre de Surveillance de la Biodiversité, Université de Kisangani, République Démocratique du Congo, Kisangani
| | - Raffael Ernst
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Dresden, Germany
| | - Marcel T Kouete
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA.,School of Natural Resources and Environment, University of Florida, Florida, USA
| | - Chifundera Kusamba
- Laboratoire d'Herpétologie, Département de Biologie, Centre de Recherche en Sciences Naturelles, République Démocratique du Congo, Lwiro
| | - Franck M Masudi
- Département d'Ecologie et Biodiversité des Ressources Terrestres, Centre de Surveillance de la Biodiversité, Université de Kisangani, République Démocratique du Congo, Kisangani
| | - Patrick J McLaughlin
- Bioko Biodiversity Protection Project, Drexel University, Philadelphia, Pennsylvania, USA.,Institute of Conservation Science and Learning, Bristol Zoological Society, Bristol, UK
| | - Lotanna M Nneji
- Department of Ecology and Evolutionary Biology, Princeton University, New Jersey, USA
| | - Abiodun B Onadeko
- Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Johannes Penner
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Berlin, Germany.,Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Germany
| | - Pedro Vaz Pinto
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal.,Fundação Kissama, Luanda, Angola
| | - Bryan L Stuart
- Section of Research & Collections, North Carolina Museum of Natural Sciences, North Carolina, USA
| | - Elie Tobi
- Gabon Biodiversity Program, Smithsonian Conservation Biology Institute, Gamba, Gabon
| | | | - Adam D Leaché
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| | - Matthew K Fujita
- Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Herpetology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California, USA
| |
Collapse
|
2
|
Couvreur TL, Dauby G, Blach‐Overgaard A, Deblauwe V, Dessein S, Droissart V, Hardy OJ, Harris DJ, Janssens SB, Ley AC, Mackinder BA, Sonké B, Sosef MS, Stévart T, Svenning J, Wieringa JJ, Faye A, Missoup AD, Tolley KA, Nicolas V, Ntie S, Fluteau F, Robin C, Guillocheau F, Barboni D, Sepulchre P. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol Rev Camb Philos Soc 2021; 96:16-51. [PMID: 32924323 PMCID: PMC7821006 DOI: 10.1111/brv.12644] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022]
Abstract
Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel, extended geological and palaeoclimatic records together with detailed numerical simulations have refined our understanding of past geological and climatic changes in Africa. To date, these important advances have not been reviewed within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences. We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing 89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant clades and discuss three major models of speciation: (i) geographic speciation via vicariance (allopatry); (ii) ecological speciation impacted by climate and geological changes, and (iii) genomic speciation via genome duplication. Geographic speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We conclude with four important challenges faced by tropical African biodiversity research: (i) to increase knowledge by gathering basic and fundamental biodiversity information; (ii) to improve modelling of African geophysical evolution throughout the Cenozoic via better constraints and downscaling approaches; (iii) to increase the precision of phylogenetic reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together with better fossil calibrations; (iv) finally, as done here, to integrate data better from Earth and life sciences by focusing on the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.
Collapse
Affiliation(s)
| | - Gilles Dauby
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - Anne Blach‐Overgaard
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Vincent Deblauwe
- Center for Tropical Research (CTR), Institute of the Environment and SustainabilityUniversity of California, Los Angeles (UCLA)Los AngelesCA90095U.S.A.
- International Institute of Tropical Agriculture (IITA)YaoundéCameroon
| | | | - Vincent Droissart
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Oliver J. Hardy
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - David J. Harris
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghU.K.
| | | | - Alexandra C. Ley
- Institut für Geobotanik und Botanischer GartenUniversity Halle‐WittenbergNeuwerk 21Halle06108Germany
| | | | - Bonaventure Sonké
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
| | | | - Tariq Stévart
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Jens‐Christian Svenning
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Jan J. Wieringa
- Naturalis Biodiversity CenterDarwinweg 2Leiden2333 CRThe Netherlands
| | - Adama Faye
- Laboratoire National de Recherches sur les Productions Végétales (LNRPV)Institut Sénégalais de Recherches Agricoles (ISRA)Route des Hydrocarbures, Bel Air BP 1386‐ CP18524DakarSenegal
| | - Alain D. Missoup
- Zoology Unit, Laboratory of Biology and Physiology of Animal Organisms, Faculty of ScienceUniversity of DoualaPO Box 24157DoualaCameroon
| | - Krystal A. Tolley
- South African National Biodiversity InstituteKirstenbosch Research CentrePrivate Bag X7, ClaremontCape Town7735South Africa
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandPrivate Bag 3Wits2050South Africa
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHEUniversité des AntillesCP51, 57 rue CuvierParis75005France
| | - Stéphan Ntie
- Département de Biologie, Faculté des SciencesUniversité des Sciences et Techniques de MasukuFrancevilleBP 941Gabon
| | - Frédiéric Fluteau
- Institut de Physique du Globe de Paris, CNRSUniversité de ParisParisF‐75005France
| | - Cécile Robin
- CNRS, Géosciences Rennes, UMR6118University of RennesRennes35042France
| | | | - Doris Barboni
- CEREGE, Aix‐Marseille University, CNRS, IRD, Collège de France, INRA, Technopole Arbois MéditerranéeBP80Aix‐en‐Provence cedex413545France
| | - Pierre Sepulchre
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteF‐91191France
| |
Collapse
|
3
|
Huntley JW, Harvey JA, Pavia M, Boano G, Voelker G. The systematics and biogeography of the Bearded Greenbuls (Aves: Criniger) reveals the impact of Plio-Pleistocene forest fragmentation on Afro-tropical avian diversity. Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jerry W Huntley
- Department of Wildlife and Fisheries Sciences, Texas A&M University, TX, USA
| | - Johanna A Harvey
- Department of Wildlife and Fisheries Sciences, Texas A&M University, TX, USA
| | - Marco Pavia
- University of Torino, DST, via Valperga Caluso Torino, Italy
| | - Giovanni Boano
- Museo Civico di Storia Naturale, Cascina Vigna, Carmagnola, Italy
| | - Gary Voelker
- Department of Wildlife and Fisheries Sciences, Texas A&M University, TX, USA
| |
Collapse
|
4
|
Bell RC, Parra JL, Badjedjea G, Barej MF, Blackburn DC, Burger M, Channing A, Dehling JM, Greenbaum E, Gvoždík V, Kielgast J, Kusamba C, Lötters S, McLaughlin PJ, Nagy ZT, Rödel M, Portik DM, Stuart BL, VanDerWal J, Zassi‐Boulou AG, Zamudio KR. Idiosyncratic responses to climate‐driven forest fragmentation and marine incursions in reed frogs from Central Africa and the Gulf of Guinea Islands. Mol Ecol 2017; 26:5223-5244. [DOI: 10.1111/mec.14260] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Rayna C. Bell
- Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington DC USA
- Museum of Vertebrate Zoology University of California, Berkeley CA USA
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados Instituto de Biología Universidad de Antioquia Medellín Colombia
| | - Gabriel Badjedjea
- Département d'Ecologie et Biodiversité des ressources Aquatiques Centre de Surveillance de la Biodiversité Kisangani Democratic Republic of the Congo
| | - Michael F. Barej
- Museum für Naturkunde ‐ Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
| | - David C. Blackburn
- Florida Museum of Natural History University of Florida Gainesville FL USA
- Department of Herpetology California Academy of Sciences San Francisco CA USA
| | - Marius Burger
- African Amphibian Conservation Research Group Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
- Flora Fauna & Man, Ecological Services Ltd. Tortola British Virgin Islands
| | - Alan Channing
- Biodiversity and Conservation Biology Department University of the Western Cape Bellville South Africa
| | - Jonas Maximilian Dehling
- Abteilung Biologie Institut für Integrierte Naturwissenschaften Universität Koblenz‐Landau Koblenz Germany
| | - Eli Greenbaum
- Department of Biological Sciences University of Texas at El Paso El Paso TX USA
| | - Václav Gvoždík
- Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
- Department of Zoology National Museum Prague Czech Republic
| | - Jos Kielgast
- Section of Freshwater Biology Department of Biology University of Copenhagen Copenhagen Denmark
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark Copenhagen Denmark
| | - Chifundera Kusamba
- Laboratoire d'Herpétologie Département de Biologie Centre de Recherche en Sciences Naturelles Lwiro Democratic Republic of the Congo
| | | | | | - Zoltán T. Nagy
- Museum für Naturkunde ‐ Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
- Royal Belgian Institute of Natural Sciences Brussels Belgium
| | - Mark‐Oliver Rödel
- Museum für Naturkunde ‐ Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
| | - Daniel M. Portik
- Museum of Vertebrate Zoology University of California, Berkeley CA USA
- Department of Biology University of Texas Arlington TX USA
| | | | - Jeremy VanDerWal
- Centre for Tropical Biodiveristy & Climate Change College of Science and Engineering James Cook University Townsville Qld Australia
- Division of Research and Innovation eResearch Centre James Cook University Townsville Qld Australia
| | | | - Kelly R. Zamudio
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| |
Collapse
|
5
|
Huntley JW, Voelker G. A tale of the nearly tail-less: the effects of Plio-Pleistocene climate change on the diversification of the African avian genusSylvietta. ZOOL SCR 2017. [DOI: 10.1111/zsc.12240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jerry W. Huntley
- Department of Wildlife and Fisheries Sciences; Texas A&M University; 210 Nagle Hall College Station TX 77843 USA
| | - Gary Voelker
- Department of Wildlife and Fisheries Sciences; Texas A&M University; 210 Nagle Hall College Station TX 77843 USA
| |
Collapse
|
6
|
Biogeography and diversification dynamics of the African woodpeckers. Mol Phylogenet Evol 2017; 108:88-100. [DOI: 10.1016/j.ympev.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/21/2016] [Accepted: 01/07/2017] [Indexed: 12/27/2022]
|
7
|
Zimkus BM, Lawson LP, Barej MF, Barratt CD, Channing A, Dash KM, Dehling JM, Du Preez L, Gehring PS, Greenbaum E, Gvoždík V, Harvey J, Kielgast J, Kusamba C, Nagy ZT, Pabijan M, Penner J, Rödel MO, Vences M, Lötters S. Leapfrogging into new territory: How Mascarene ridged frogs diversified across Africa and Madagascar to maintain their ecological niche. Mol Phylogenet Evol 2016; 106:254-269. [PMID: 27664344 DOI: 10.1016/j.ympev.2016.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 11/26/2022]
Abstract
The Mascarene ridged frog, Ptychadena mascareniensis, is a species complex that includes numerous lineages occurring mostly in humid savannas and open forests of mainland Africa, Madagascar, the Seychelles, and the Mascarene Islands. Sampling across this broad distribution presents an opportunity to examine the genetic differentiation within this complex and to investigate how the evolution of bioclimatic niches may have shaped current biogeographic patterns. Using model-based phylogenetic methods and molecular-clock dating, we constructed a time-calibrated molecular phylogenetic hypothesis for the group based on mitochondrial 16S rRNA and cytochrome b (cytb) genes and the nuclear RAG1 gene from 173 individuals. Haplotype networks were reconstructed and species boundaries were investigated using three species-delimitation approaches: Bayesian generalized mixed Yule-coalescent model (bGMYC), the Poisson Tree Process model (PTP) and a cluster algorithm (SpeciesIdentifier). Estimates of similarity in bioclimatic niche were calculated from species-distribution models (maxent) and multivariate statistics (Principal Component Analysis, Discriminant Function Analysis). Ancestral-area reconstructions were performed on the phylogeny using probabilistic approaches implemented in BioGeoBEARS. We detected high levels of genetic differentiation yielding ten distinct lineages or operational taxonomic units, and Central Africa was found to be a diversity hotspot for these frogs. Most speciation events took place throughout the Miocene, including "out-of-Africa" overseas dispersal events to Madagascar in the East and to São Tomé in the West. Bioclimatic niche was remarkably well conserved, with most species tolerating similar temperature and rainfall conditions common to the Central African region. The P. mascareniensis complex provides insights into how bioclimatic niche shaped the current biogeographic patterns with niche conservatism being exhibited by the Central African radiation and niche divergence shaping populations in West Africa and Madagascar. Central Africa, including the Albertine Rift region, has been an important center of diversification for this species complex.
Collapse
Affiliation(s)
- Breda M Zimkus
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| | - Lucinda P Lawson
- Department of Biological Sciences, University of Cincinnati, 820F Rieveschl Hall, Cincinnati, OH 45221, USA.
| | - Michael F Barej
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.
| | - Christopher D Barratt
- University of Basel, Biogeography Research Group, Department of Environmental Sciences, Klingelbergstrasse 27, Basel 4056, Switzerland.
| | - Alan Channing
- University of the Western Cape, Biodiversity and Conservation Biology, Private Bag X17, Bellville 7535, South Africa.
| | - Katrina M Dash
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA; Department of Biology, Tidewater Community College, 120 Campus Dr., Portsmouth, VA 23701, USA.
| | - J Maximilian Dehling
- Institute of Integrated Sciences, Department of Biology, University of Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany.
| | - Louis Du Preez
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa; South African Institute for Aquatic Biodiversity, Somerset Street, Grahamstown 6139, South Africa.
| | - Philip-Sebastian Gehring
- Fakultät für Biologie Universität Bielefeld, Abt. Biologiedidaktik, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA.
| | - Václav Gvoždík
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic; National Museum, Department of Zoology, 19300 Prague, Czech Republic.
| | - James Harvey
- Harvey Ecological, 35 Carbis Road, Pietermaritzburg 3201, KwaZulu-Natal, South Africa.
| | - Jos Kielgast
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Chifundera Kusamba
- Centre de Recherche en Sciences Naturelles, Département de Biologie, Lwiro, The Democratic Republic of the Congo.
| | - Zoltán T Nagy
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany; Joint Experimental Molecular Unit, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000 Brussels, Belgium.
| | - Maciej Pabijan
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Johannes Penner
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany; Wildlife Ecology & Management, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany.
| | - Mark-Oliver Rödel
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.
| | - Miguel Vences
- Division of Evolutionary Biology, Zoological Institute, Technical University of Braunschweig, Mendelssohnstraße. 4, 38106 Braunschweig, Germany.
| | - Stefan Lötters
- Trier University, Department of Biogeography, 54286 Trier, Germany.
| |
Collapse
|
8
|
Huntley JW, Voelker G. Cryptic diversity in Afro-tropical lowland forests: The systematics and biogeography of the avian genus Bleda. Mol Phylogenet Evol 2016; 99:297-308. [DOI: 10.1016/j.ympev.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/28/2016] [Accepted: 04/02/2016] [Indexed: 01/18/2023]
|
9
|
Alaei Kakhki N, Aliabadian M, Schweizer M. Out of Africa: biogeographic history of the open-habitat chats (Aves, Muscicapidae: Saxicolinae) across arid areas of the old world. ZOOL SCR 2016. [DOI: 10.1111/zsc.12151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Niloofar Alaei Kakhki
- Department of Biology; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - Mansour Aliabadian
- Department of Biology; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
- Research Department of Zoological Innovations; Institute of Applied Zoology; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - Manuel Schweizer
- Naturhistorisches Museum der Burgergemeinde Bern; Bernastrasse 15 CH 3005 Bern Switzerland
| |
Collapse
|
10
|
van Velzen R, Wahlberg N, Sosef MSM, Bakker FT. Effects of changing climate on species diversification in tropical forest butterflies of the genusCymothoe(Lepidoptera: Nymphalidae). Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robin van Velzen
- Biosystematics Group; Wageningen University; PO box 647 6708PB Wageningen the Netherlands
- Naturalis Biodiversity Centre (Section NHN); Wageningen University; Generaal Foulkesweg 37, 6703 BL Wageningen the Netherlands
| | - Niklas Wahlberg
- Laboratory of Genetics; Department of Biology; University of Turku; Turku 20014 Finland
| | - Marc S. M. Sosef
- Biosystematics Group; Wageningen University; PO box 647 6708PB Wageningen the Netherlands
- Naturalis Biodiversity Centre (Section NHN); Wageningen University; Generaal Foulkesweg 37, 6703 BL Wageningen the Netherlands
| | - Freek T. Bakker
- Biosystematics Group; Wageningen University; PO box 647 6708PB Wageningen the Netherlands
| |
Collapse
|
11
|
Holt BG, Lessard JP, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre PH, Graham CH, Graves GR, Jønsson KA, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J, Rahbek C. An Update of Wallace’s Zoogeographic Regions of the World. Science 2012; 339:74-8. [PMID: 23258408 DOI: 10.1126/science.1228282] [Citation(s) in RCA: 516] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modern attempts to produce biogeographic maps focus on the distribution of species, and the maps are typically drawn without phylogenetic considerations. Here, we generate a global map of zoogeographic regions by combining data on the distributions and phylogenetic relationships of 21,037 species of amphibians, birds, and mammals. We identify 20 distinct zoogeographic regions, which are grouped into 11 larger realms. We document the lack of support for several regions previously defined based on distributional data and show that spatial turnover in the phylogenetic composition of vertebrate assemblages is higher in the Southern than in the Northern Hemisphere. We further show that the integration of phylogenetic information provides valuable insight on historical relationships among regions, permitting the identification of evolutionarily unique regions of the world.
Collapse
Affiliation(s)
- Ben G Holt
- Center for Macroecology, Evolution, and Climate, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fjeldså J, Bowie RC, Rahbek C. The Role of Mountain Ranges in the Diversification of Birds. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2012. [DOI: 10.1146/annurev-ecolsys-102710-145113] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jon Fjeldså
- Center for Macroecology, Evolution, and Climate, Natural History Museum of Denmark, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| | - Rauri C.K. Bowie
- Museum of Vertebrate Zoology & Department of Integrative Biology, University of California, Berkeley, California 94720;
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| |
Collapse
|
13
|
Reddy S, Driskell A, Rabosky DL, Hackett SJ, Schulenberg TS. Diversification and the adaptive radiation of the vangas of Madagascar. Proc Biol Sci 2012; 279:2062-71. [PMID: 22217720 PMCID: PMC3311898 DOI: 10.1098/rspb.2011.2380] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/06/2011] [Indexed: 11/12/2022] Open
Abstract
The vangas of Madagascar exhibit extreme diversity in morphology and ecology. Recent studies have shown that several other Malagasy species also are part of this endemic radiation, even as the monophyly of the clade remains in question. Using DNA sequences from 13 genes and representatives of all 15 vanga genera, we find strong support for the monophyly of the Malagasy vangids and their inclusion in a family along with six aberrant genera of shrike-like corvoids distributed in Asia and Africa. Biogeographic reconstructions of these lineages include both Asia and Africa as possible dispersal routes to Madagascar. To study patterns of speciation through time, we introduce a method that can accommodate phylogenetically non-random patterns of incomplete taxon sampling in diversification studies. We demonstrate that speciation rates in vangas decreased dramatically through time following the colonization of Madagascar. Foraging strategies of these birds show remarkable congruence with phylogenetic relationships, indicating that adaptations to feeding specializations played a role in the diversification of these birds. Vangas fit the model of an 'adaptive radiation' in that they show an explosive burst of speciation soon after colonization, increased diversification into novel niches and extraordinary ecomorphological diversity.
Collapse
Affiliation(s)
- S Reddy
- Biology Department, Loyola University Chicago, Chicago, IL 60626, USA.
| | | | | | | | | |
Collapse
|
14
|
Molecular phylogeny of African bush-shrikes and allies: tracing the biogeographic history of an explosive radiation of corvoid birds. Mol Phylogenet Evol 2012; 64:93-105. [PMID: 22475817 DOI: 10.1016/j.ympev.2012.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 11/23/2022]
Abstract
The Malaconotidea (e.g., butcherbirds, bush-shrikes, batises, vangas) represent an Old World assemblage of corvoid passerines that encompass many different foraging techniques (e.g., typical flycatchers, flycatcher-shrikes, canopy creepers, undergrowth skulkers). At present, relationships among the primary Malaconotidea clades are poorly resolved, a result that could either be attributed to a rapid accumulation of lineages over a short period of time (hard polytomy) or to an insufficient amount of data having been brought to bear on the problem (soft polytomy). Our objective was to resolve the phylogenetic relationships and biogeographic history of the Malaconotidea using DNA sequences gathered from 10 loci with different evolutionary properties. Given the range of substitution rates of molecular markers we sequenced (mitochondrial, sex-linked, autosomal), we also sought to explore the effect of altering the branch-length prior in Bayesian tree estimation analyses. We found that changing the branch-length priors had no major effect on topology, but clearly improved mixing of the chains for some loci. Our phylogenetic analyses clarified the relationships of several genera (e.g., Pityriasis, Machaerirhynchus) and provide for the first time strong support for a sister-group relationship between core platysteirids and core vangids. Our biogeographic reconstruction somewhat unexpectedly suggests that the large African radiation of malaconotids originated after a single over-water dispersal from Australasia around 45-33.7 mya, shedding new light on the origins of the Afrotropical avifauna.
Collapse
|
15
|
García Z, Sarmiento CE. Relationship between body size and flying-related structures in Neotropical social wasps (Polistinae, Vespidae, Hymenoptera). ZOOMORPHOLOGY 2011. [DOI: 10.1007/s00435-011-0142-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Ancient host specificity within a single species of brood parasitic bird. Proc Natl Acad Sci U S A 2011; 108:17738-42. [PMID: 21949391 DOI: 10.1073/pnas.1109630108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parasites that exploit multiple hosts often experience diversifying selection for host-specific adaptations. This can result in multiple strains of host specialists coexisting within a single parasitic species. A long-standing conundrum is how such sympatric host races can be maintained within a single parasitic species in the face of interbreeding among conspecifics specializing on different hosts. Striking examples are seen in certain avian brood parasites such as cuckoos, many of which show host-specific differentiation in traits such as host egg mimicry. Exploiting a Zambian egg collection amassed over several decades and supplemented by recent fieldwork, we show that the brood parasitic Greater Honeyguide Indicator indicator exhibits host-specific differentiation in both egg size and egg shape. Genetic analysis of honeyguide eggs and chicks show that two highly divergent mitochondrial DNA lineages are associated with ground- and tree-nesting hosts, respectively, indicating perfect fidelity to two mutually exclusive sets of host species for millions of years. Despite their age and apparent adaptive diversification, however, these ancient lineages are not cryptic species; a complete lack of differentiation in nuclear genes shows that mating between individuals reared by different hosts is sufficiently frequent to prevent speciation. These results indicate that host specificity is maternally inherited, that host-specific adaptation among conspecifics can be maintained without reproductive isolation, and that host specificity can be remarkably ancient in evolutionary terms.
Collapse
|
17
|
Patterson S, Morris-Pocock J, Friesen V. A multilocus phylogeny of the Sulidae (Aves: Pelecaniformes). Mol Phylogenet Evol 2011; 58:181-91. [DOI: 10.1016/j.ympev.2010.11.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 12/19/2022]
|
18
|
Outlaw RK, Voelker G, Bowie RC. Shall we chat? Evolutionary relationships in the genus Cercomela (Muscicapidae) and its relation to Oenanthe reveals extensive polyphyly among chats distributed in Africa, India and the Palearctic. Mol Phylogenet Evol 2010; 55:284-292. [DOI: 10.1016/j.ympev.2009.09.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/26/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
|
19
|
Dinapoli A, Klussmann-Kolb A. The long way to diversity – Phylogeny and evolution of the Heterobranchia (Mollusca: Gastropoda). Mol Phylogenet Evol 2010; 55:60-76. [DOI: 10.1016/j.ympev.2009.09.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/27/2009] [Accepted: 09/12/2009] [Indexed: 10/20/2022]
|
20
|
|