1
|
Krug J, Perner B, Albertz C, Mörl H, Hopfenmüller VL, Englert C. Generation of a transparent killifish line through multiplex CRISPR/Cas9mediated gene inactivation. eLife 2023; 12:81549. [PMID: 36820520 PMCID: PMC10010688 DOI: 10.7554/elife.81549] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/23/2023] [Indexed: 02/24/2023] Open
Abstract
Body pigmentation is a limitation for in vivo imaging and thus for the performance of longitudinal studies in biomedicine. A possibility to circumvent this obstacle is the employment of pigmentation mutants, which are used in fish species like zebrafish and medaka. To address the basis of aging, the short-lived African killifish Nothobranchius furzeri has recently been established as a model organism. Despite its short lifespan, N. furzeri shows typical signs of mammalian aging including telomere shortening, accumulation of senescent cells, and loss of regenerative capacity. Here, we report the generation of a transparent N. furzeri line by the simultaneous inactivation of three key loci responsible for pigmentation. We demonstrate that this stable line, named klara, can serve as a tool for different applications including behavioral experiments and the establishment of a senescence reporter by integration of a fluorophore into the cdkn1a (p21) locus and in vivo microscopy of the resulting line.
Collapse
Affiliation(s)
- Johannes Krug
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Birgit Perner
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
- Core Facility Imaging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Carolin Albertz
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Hanna Mörl
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Vera L Hopfenmüller
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University JenaJenaGermany
| |
Collapse
|
2
|
Reichard M, Giannetti K, Ferreira T, Maouche A, Vrtílek M, Polačik M, Blažek R, Ferreira MG. Lifespan and telomere length variation across populations of wild-derived African killifish. Mol Ecol 2022; 31:5979-5992. [PMID: 34826177 DOI: 10.1111/mec.16287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 01/31/2023]
Abstract
Telomeres and telomerase prevent the continuous erosion of chromosome-ends caused by lifelong cell division. Shortened telomeres are associated with age-related pathologies. While short telomere length is positively correlated with increased lethality at the individual level, in comparisons across species short telomeres are associated with long (and not short) lifespans. Here, we tested this contradiction between individual and evolutionary patterns in telomere length using African annual killifish. We analysed lifespan and telomere length in a set of captive strains derived from well-defined wild populations of Nothobranchius furzeri and its sister species, N. kadleci, from sites along a strong gradient of aridity which ultimately determines maximum natural lifespan. Overall, males were shorter-lived than females, and also had shorter telomeres. Male lifespan (measured in controlled laboratory conditions) was positively associated with the amount of annual rainfall in the site of strain origin. However, fish from wetter climates had shorter telomeres. In addition, individual fish which grew largest over the juvenile period possessed shorter telomeres at the onset of adulthood. This demonstrates that individual condition and environmentally-driven selection indeed modulate the relationship between telomere length and lifespan in opposite directions, validating the existence of inverse trends within a single taxon. Intraindividual heterogeneity of telomere length (capable to detect very short telomeres) was not associated with mean telomere length, suggesting that the shortest telomeres are controlled by regulatory pathways other than those that determine mean telomere length. The substantial variation in telomere length between strains from different environments identifies killifish as a powerful system in understanding the adaptive value of telomere length.
Collapse
Affiliation(s)
- Martin Reichard
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.,Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | - Ahmed Maouche
- Institute for Research on Cancer and Aging of Nice (IRCAN), UMR7284 U1081 Université Côte d'Azur, Nice, France
| | - Milan Vrtílek
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Matej Polačik
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Radim Blažek
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Miguel Godinho Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Institute for Research on Cancer and Aging of Nice (IRCAN), UMR7284 U1081 Université Côte d'Azur, Nice, France
| |
Collapse
|
3
|
Richter A, Krug J, Englert C. Molecular Sexing of Nothobranchius furzeri Embryos and Larvae. Cold Spring Harb Protoc 2022; 2022:630-640. [PMID: 36167675 DOI: 10.1101/pdb.prot107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Differences between the sexes are of increasing interest in basic and applied research with regard to development, behavior, aging, and diseases. Although the African turquoise killifish Nothobranchius furzeri, a model for aging research well known for its remarkably short life span, develops strong sexual dimorphism in adulthood, there is no visible indicator of its sex in embryonic and juvenile stages. To address this issue, we developed a molecular sexing assay exploiting two large sequence polymorphisms in the minimal sex-determining region (SDR) of N. furzeri These polymorphisms are sequence deletions on the Y chromosome that involve the lack or truncation of one or multiple microsatellites. The simple polymerase chain reaction (PCR) readout of the assays described here allows the sexing of N. furzeri embryos and larvae in a medium- to high-throughput and cost-efficient manner.
Collapse
Affiliation(s)
- Annekatrin Richter
- Molecular Genetics, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Johannes Krug
- Molecular Genetics, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Christoph Englert
- Molecular Genetics, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany.,Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
4
|
Terzibasi Tozzini E, Cellerino A. Nothobranchius annual killifishes. EvoDevo 2020; 11:25. [PMID: 33323125 PMCID: PMC7739477 DOI: 10.1186/s13227-020-00170-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Annual fishes of the genus Nothobranchius inhabit ephemeral habitats in Eastern and Southeastern Africa. Their life cycle is characterized by very rapid maturation, a posthatch lifespan of a few weeks to months and embryonic diapause to survive the dry season. The species N. furzeri holds the record of the fastest-maturing vertebrate and of the vertebrate with the shortest captive lifespan and is emerging as model organism in biomedical research, evolutionary biology, and developmental biology. Extensive characterization of age-related phenotypes in the laboratory and of ecology, distribution, and demography in the wild are available. Species/populations from habitats differing in precipitation intensity show parallel evolution of lifespan and age-related traits that conform to the classical theories on aging. Genome sequencing and the establishment of CRISPR/Cas9 techniques made this species particularly attractive to investigate the effects genetic and non-genetic intervention on lifespan and aging-related phenotypes. At the same time, annual fishes are a very interesting subject for comparative approaches, including genomics, transcriptomics, and proteomics. The N. furzeri community is highly diverse and rapidly expanding and organizes a biannual meeting.
Collapse
Affiliation(s)
| | - Alessandro Cellerino
- Scuola Normale Superiore, Pisa, Italy. .,Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.
| |
Collapse
|
5
|
van der Merwe PDW, Cotterill FPD, Kandziora M, Watters BR, Nagy B, Genade T, Flügel TJ, Svendsen DS, Bellstedt DU. Genomic fingerprints of palaeogeographic history: The tempo and mode of rift tectonics across tropical Africa has shaped the diversification of the killifish genus Nothobranchius (Teleostei: Cyprinodontiformes). Mol Phylogenet Evol 2020; 158:106988. [PMID: 33059071 DOI: 10.1016/j.ympev.2020.106988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/16/2020] [Accepted: 10/07/2020] [Indexed: 01/04/2023]
Abstract
This paper reports a phylogeny of the African killifishes (Genus Nothobranchius, Order Cyprinodontiformes) informed by five genetic markers (three nuclear, two mitochondrial) of 80 taxa (seven undescribed and 73 of the 92 recognized species). These short-lived annual fishes occupy seasonally wet habitats in central and eastern Africa, and their distribution coincides largely with the East African Rift System (EARS). The fossil dates of sister clades used to constrain a chronometric tree of all sampled Nothobranchius recovered the origin of the genus at ~13.27 Mya. It was followed by the radiations of six principal clades through the Neogene. An ancestral area estimation tested competing biogeographical hypotheses to constrain the ancestral origin of the genus to the Nilo-Sudan Ecoregion, which seeded a mid-Miocene dispersal event into the Coastal ecoregion, followed closely (~10 Mya) by dispersals southward across the Mozambique coastal plain into the Limpopo Ecoregion. Extending westwards across the Tanzanian plateau, a pulse of radiations through the Pliocene were associated with dispersals and fragmentation of wetlands across the Kalahari and Uganda Ecoregions. We interpret this congruence of drainage rearrangements with dispersals and cladogenic events of Nothobranchius to reflect congruent responses to recurrent uplift and rifting. The coevolution of these freshwater fishes and wetlands is attributed to ultimate control by tectonics, as the EARS extended southwards during the Neogene. Geobiological consilience of the combined evidence supports a tectonic hypothesis for the evolution of Nothobranchius.
Collapse
Affiliation(s)
| | | | - Martha Kandziora
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Brian R Watters
- 6141 Parkwood Drive, Nanaimo, British Columbia V9T6A2, Canada
| | - Béla Nagy
- 30, Rue du Mont Ussy, 77300 Fontainebleau, France
| | - Tyrone Genade
- Biomedical Sciences, East Tennessee State University, USA
| | - Tyrel J Flügel
- Department of Geography and Environmental Studies, Stellenbosch University, South Africa
| | - David S Svendsen
- Department of Geography and Environmental Studies, Stellenbosch University, South Africa
| | - Dirk U Bellstedt
- Department of Biochemistry, Stellenbosch University, South Africa.
| |
Collapse
|
6
|
Willemsen D, Cui R, Reichard M, Valenzano DR. Intra-species differences in population size shape life history and genome evolution. eLife 2020; 9:e55794. [PMID: 32869739 PMCID: PMC7462614 DOI: 10.7554/elife.55794] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
The evolutionary forces shaping life history divergence within species are largely unknown. Turquoise killifish display differences in lifespan among wild populations, representing an ideal natural experiment in evolution and diversification of life history. By combining genome sequencing and population genetics, we investigate the evolutionary forces shaping lifespan among wild turquoise killifish populations. We generate an improved reference genome assembly and identify genes under positive and purifying selection, as well as those evolving neutrally. Short-lived populations from the outer margin of the species range have small population size and accumulate deleterious mutations in genes significantly enriched in the WNT signaling pathway, neurodegeneration, cancer and the mTOR pathway. We propose that limited population size due to habitat fragmentation and repeated population bottlenecks, by increasing the genome-wide mutation load, exacerbates the effects of mutation accumulation and cumulatively contribute to the short adult lifespan.
Collapse
Affiliation(s)
| | - Rongfeng Cui
- Max Planck Institute for Biology of AgeingCologneGermany
| | - Martin Reichard
- Czech Academy of Sciences, Institute of Vertebrate BiologyBrnoCzech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk UniversityBrnoCzech Republic
| | - Dario Riccardo Valenzano
- Max Planck Institute for Biology of AgeingCologneGermany
- CECAD, University of CologneCologneGermany
| |
Collapse
|
7
|
Coolen M, Labusch M, Mannioui A, Bally-Cuif L. Mosaic Heterochrony in Neural Progenitors Sustains Accelerated Brain Growth and Neurogenesis in the Juvenile Killifish N. furzeri. Curr Biol 2020; 30:736-745.e4. [PMID: 32004451 PMCID: PMC7040570 DOI: 10.1016/j.cub.2019.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/16/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022]
Abstract
Although developmental mechanisms driving an increase in brain size during vertebrate evolution are actively studied, we know less about evolutionary strategies allowing accelerated brain growth. In zebrafish and other vertebrates studied to date, apical radial glia (RG) constitute the primary neurogenic progenitor population throughout life [1]; thus, RG activity is a determining factor of growth speed. Here, we ask whether enhanced RG activity is the mechanism selected to drive explosive growth, in adaptation to an ephemeral habitat. In post-hatching larvae of the turquoise killifish, which display drastic developmental acceleration, we show that the dorsal telencephalon (pallium) grows three times faster than in zebrafish. Rather than resulting from enhanced RG activity, we demonstrate that pallial growth is the product of a second type of progenitors (that we term NGPs for non-glial progenitors) that actively sustains neurogenesis and germinal zone self-renewal. Intriguingly, NGPs appear to retain, at larval stages, features of early embryonic progenitors. In parallel, RGs enter premature quiescence and express markers of astroglial function. Altogether, we propose that mosaic heterochrony within the neural progenitor population might permit rapid pallial growth by safeguarding both continued neurogenesis and astroglial function. Two types of apical progenitors exist in the pallium of the fast-growing killifish Killifish pallial RGs enter precociously into an adult-like quiescent state NGPs, both self-renewing and neurogenic, resemble early neuroepithelial progenitors Mosaic heterochrony among progenitors sustains rapid killifish pallial growth
Collapse
Affiliation(s)
- Marion Coolen
- Zebrafish Neurogenetics Unit, Developmental & Stem Cell Biology Department, Institut Pasteur, UMR3738, CNRS, 25 rue du Dr Roux, 75015 Paris, France.
| | - Miriam Labusch
- Zebrafish Neurogenetics Unit, Developmental & Stem Cell Biology Department, Institut Pasteur, UMR3738, CNRS, 25 rue du Dr Roux, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Abdelkrim Mannioui
- Institut de Biologie Paris-Seine (IBPS), Aquatic Facility, Sorbonne Université, 7 quai Saint Bernard, 75005 Paris, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Developmental & Stem Cell Biology Department, Institut Pasteur, UMR3738, CNRS, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
8
|
Bartáková V, Nagy B, Polačik M, Blažek R, Lamtane H, Reichard M. Genetic diversity of a widespread annual killifish from coastal Tanzania. BMC Evol Biol 2020; 20:1. [PMID: 31906845 PMCID: PMC6943906 DOI: 10.1186/s12862-019-1549-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background African annual killifishes (Nothobranchius spp.) are adapted to seasonally desiccating habitats (ephemeral pools), surviving dry periods as dormant eggs. Given their peculiar life history, geographic aspects of their diversity uniquely combine patterns typical for freshwater taxa (river basin structure and elevation gradient) and terrestrial animals (rivers acting as major dispersal barriers). However, our current knowledge on fine-scale inter-specific and intra-specific genetic diversity of African annual fish is limited to a single, particularly dry region of their distribution (subtropical Mozambique). Using a widespread annual killifish from coastal Tanzania and Kenya, we tested whether the same pattern of genetic divergence pertains to a wet equatorial region in the centre of Nothobranchius distribution. Results In populations of Nothobranchius melanospilus species group across its range, we genotyped a part of mitochondrial cytochrome oxidase subunit 1 (COI) gene (83 individuals from 22 populations) and 10 nuclear microsatellite markers (251 individuals from 16 populations). We found five lineages with a clear phylogeographic structure but frequent secondary contact. Mitochondrial lineages were largely congruent with main population genetic clusters identified on microsatellite markers. In the upper Wami basin, populations are isolated as a putative Nothobranchius prognathus, but include also a population from a periphery of the middle Ruvu basin. Other four lineages (including putative Nothobranchius kwalensis) coexisted in secondary contact zones, but possessed clear spatial pattern. Main river channels did not form apparent barriers to dispersal. The most widespread lineage had strong signal of recent population expansion. Conclusions We conclude that dispersal of a Nothobranchius species from a wet part of the genus distribution (tropical lowland) is not constrained by main river channels and closely related lineages frequently coexist in secondary contact zones. We also demonstrate contemporary connection between the Ruvu and Rufiji river basins. Our data do not provide genetic support for existence of recently described cryptic species from N. melanospilus complex, but cannot resolve this issue.
Collapse
Affiliation(s)
- Veronika Bartáková
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65, Brno, Czech Republic
| | | | - Matej Polačik
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65, Brno, Czech Republic
| | - Radim Blažek
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65, Brno, Czech Republic
| | - Hieromin Lamtane
- Department of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture, P.O. Box 3004, Morogoro, Tanzania
| | - Martin Reichard
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65, Brno, Czech Republic.
| |
Collapse
|
9
|
Lambert JW, Reichard M, Pincheira-Donoso D. Live fast, diversify non-adaptively: evolutionary diversification of exceptionally short-lived annual killifishes. BMC Evol Biol 2019; 19:10. [PMID: 30626330 PMCID: PMC6327596 DOI: 10.1186/s12862-019-1344-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/02/2019] [Indexed: 11/17/2022] Open
Abstract
Background Adaptive radiations are triggered by ecological opportunity – the access to novel niche domains with abundant available resources that facilitate the formation of new ecologically divergent species. Therefore, as new species saturate niche space, clades experience a diversity-dependent slowdown of diversification over time. At the other extreme of the radiation continuum, non-adaptively radiating lineages undergo diversification with minimal niche differentiation when ‘spatial opportunity’ (i.e. areas with suitable ‘ancestral’ ecological conditions) is available. Traditionally, most research has focused on adaptive radiations, while empirical studies on non-adaptive radiations remain lagging behind. A prolific clade of African fish with extremely short lifespan (Nothobranchius killifish), show the key evolutionary features of a candidate non-adaptive radiation – primarily allopatric species with minimal niche and phenotypic divergence. Here, we test the hypothesis that Nothobranchius killifish have non-adaptively diversified. We employ phylogenetic modelling to investigate the tempo and mode of macroevolutionary diversification of these organisms. Results Nothobranchius diversification has proceeded with minor niche differentiation and minimal morphological disparity among allopatric species. Additionally, we failed to identify evidence for a role of body size or biogeography in influencing diversification rates. Diversification has been homogeneous within this genus, with the only hotspot of species-richness not resulting from rapid diversification. However, species in sympatry show higher disparity, which may have been caused by character displacement among coexisting species. Conclusions Nothobranchius killifish have proliferated following the tempo and mode of a non-adaptive radiation. Our study confirms that this exceptionally short-lived group have diversified with minimal divergent niche adaptation, while one group of coexisting species seems to have facilitated spatial overlap among these taxa via the evolution of ecological character displacement. Electronic supplementary material The online version of this article (10.1186/s12862-019-1344-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua W Lambert
- School of Life Sciences, Joseph Banks Laboratories, Brayford Campus, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Martin Reichard
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Daniel Pincheira-Donoso
- MacroBiodiversity Lab, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
10
|
Reichard M, Polačik M. Nothobranchius furzeri, an 'instant' fish from an ephemeral habitat. eLife 2019; 8:41548. [PMID: 30616713 PMCID: PMC6324871 DOI: 10.7554/elife.41548] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
The turquoise killifish, Nothobranchius furzeri, is a promising vertebrate model in ageing research and an emerging model organism in genomics, regenerative medicine, developmental biology and ecotoxicology. Its lifestyle is adapted to the ephemeral nature of shallow pools on the African savannah. Its rapid and short active life commences when rains fill the pool: fish hatch, grow rapidly and mature in as few as two weeks, and then reproduce daily until the pool dries out. Its embryos then become inactive, encased in the dry sediment and protected from the harsh environment until the rains return. This invertebrate-like life cycle (short active phase and long developmental arrest) combined with a vertebrate body plan provide the ideal attributes for a laboratory animal.
Collapse
Affiliation(s)
- Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Matej Polačik
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
11
|
Reichard M, Blažek R, Polačik M, Vrtílek M. Hatching date variability in wild populations of four coexisting species of African annual fishes. Dev Dyn 2017; 246:827-837. [DOI: 10.1002/dvdy.24500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Martin Reichard
- Institute of Vertebrate Biology; Academy of Sciences of the Czech Republic; Czech Republic
| | - Radim Blažek
- Institute of Vertebrate Biology; Academy of Sciences of the Czech Republic; Czech Republic
| | - Matej Polačik
- Institute of Vertebrate Biology; Academy of Sciences of the Czech Republic; Czech Republic
| | - Milan Vrtílek
- Institute of Vertebrate Biology; Academy of Sciences of the Czech Republic; Czech Republic
| |
Collapse
|
12
|
Reichard M, Janáč M, Polačik M, Blažek R, Vrtílek M. Community assembly in Nothobranchius annual fishes: Nested patterns, environmental niche and biogeographic history. Ecol Evol 2017; 7:2294-2306. [PMID: 28405293 PMCID: PMC5383470 DOI: 10.1002/ece3.2851] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/20/2017] [Accepted: 02/07/2017] [Indexed: 01/02/2023] Open
Abstract
The assembly of local communities from regional species pools is shaped by historical aspects of distribution, environmental conditions, and biotic interactions. We studied local community assembly patterns in African annual killifishes of the genus Nothobranchius (Cyprinodontiformes), investigating data from 168 communities across the entire range of regionally co-existing species. Nothobranchius are small fishes associated with annually desiccating pools. We detected a nested pattern of local communities in one region (Southern Mozambique, with Nothobranchius furzeri as the core and dominant species), but no nestedness was found in the second region (Central Mozambique, with Nothobranchius orthonotus being the dominant species). A checkerboard pattern of local Nothobranchius community assembly was demonstrated in both regions. Multivariate environmental niche modeling revealed moderate differences in environmental niche occupancy between three monophyletic clades that largely co-occurred geographically and greater differences between strictly allopatric species within the clades. Most variation among species was observed along an altitudinal gradient; N. furzeri and Nothobranchius kadleci were absent from coastal plains, Nothobranchius pienaari, Nothobranchius rachovii, and Nothobranchius krysanovi were associated with lower altitude and N. orthonotus was intermediate and geographically most widespread species. We discuss implications for ecological and evolutionary research in this taxon.
Collapse
Affiliation(s)
- Martin Reichard
- Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
| | - Michal Janáč
- Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
| | - Matej Polačik
- Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
| | - Radim Blažek
- Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
| | - Milan Vrtílek
- Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
| |
Collapse
|
13
|
Tang QY, Shi LX, Liu F, Yu D, Liu HZ. Evolution and phylogenetic application of the MC1R gene in the Cobitoidea (Teleostei: Cypriniformes). Zool Res 2017; 37:281-9. [PMID: 27686787 DOI: 10.13918/j.issn.2095-8137.2016.5.281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fish of the superfamily Cobitoidea sensu stricto (namely loaches) exhibit extremely high diversity of color patterns, but so far little is known about their evolutionary mechanism. Melanocortin 1 receptor gene (MC1R) plays an important role during the synthesis of melanin and formation of animal body color patterns. In this study, we amplified and sequenced the partial MC1R gene for 44 loach individuals representing 31 species of four families. Phylogenetic analyses yielded a topology congruent with previous studies using multiple nuclear loci, showing that each of the four families was monophyletic with sister relationships of Botiidae+ (Cobitidae+(Balitoridae+Nemacheilidae)). Gene evolutionary analyses indicated that MC1R in loaches was under purifying selection pressure, with various sites having different dN/dS values. Both Botiidae and Cobitidae had lower dN/dS values than those of background lineages, suggesting their evolution might be strongly affected by purifying selection pressure. For Balitoridae and Nemacheilidae, both had larger dN/dS values than those of background lineages, suggesting they had a faster evolutionary rate under more relaxed selection pressure. Consequently, we inferred that the relatively stable color patterns in Botiidae and Cobitidae might result from the strong purifying selection pressure on the MC1R gene, whereas the complicated and diverse color patterns in Balitoridae and Nemacheilidae might be associated with the relaxed selection pressure. Given the easy experimental procedure for the partial MC1R gene and its excellent performance in reconstructing phylogeny, we suggest this gene could be used as a good molecular marker for the phylogenetic study of fish species.
Collapse
Affiliation(s)
- Qiong-Ying Tang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Li-Xia Shi
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dan Yu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Huan-Zhang Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
14
|
Sungani H, Ngatunga BP, Koblmüller S, Mäkinen T, Skelton PH, Genner MJ. Multiple colonisations of the Lake Malawi catchment by the genus Opsaridium (Teleostei: Cyprinidae). Mol Phylogenet Evol 2017; 107:256-265. [DOI: 10.1016/j.ympev.2016.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 09/13/2016] [Accepted: 09/29/2016] [Indexed: 01/19/2023]
|
15
|
Nezhybová V, Reichard M, Blažek R, Ondračková M. Metazoan parasites of African annual killifish (Nothobranchiidae): abundance, diversity, and their environmental correlates. Biotropica 2016. [DOI: 10.1111/btp.12396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Veronika Nezhybová
- Institute of Vertebrate Biology, v.v.i.; Academy of Sciences of the Czech Republic; Květná 8 603 65 Brno Czech Republic
- Department of Botany and Zoology; Faculty of Science; Masaryk University; Kotlářská 2 611 37 Brno Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, v.v.i.; Academy of Sciences of the Czech Republic; Květná 8 603 65 Brno Czech Republic
| | - Radim Blažek
- Institute of Vertebrate Biology, v.v.i.; Academy of Sciences of the Czech Republic; Květná 8 603 65 Brno Czech Republic
- Department of Botany and Zoology; Faculty of Science; Masaryk University; Kotlářská 2 611 37 Brno Czech Republic
| | - Markéta Ondračková
- Institute of Vertebrate Biology, v.v.i.; Academy of Sciences of the Czech Republic; Květná 8 603 65 Brno Czech Republic
| |
Collapse
|
16
|
Vrtílek M, Reichard M. Patterns of morphological variation among populations of the widespread annual killifish Nothobranchius orthonotus
are independent of genetic divergence and biogeography. J ZOOL SYST EVOL RES 2016. [DOI: 10.1111/jzs.12134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Milan Vrtílek
- Institute of Vertebrate Biology; Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
17
|
Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish. Cell 2016; 163:1527-38. [PMID: 26638077 DOI: 10.1016/j.cell.2015.10.071] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/11/2015] [Accepted: 10/21/2015] [Indexed: 01/16/2023]
Abstract
The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution "in action." Our data suggest that gdf6Y, encoding a TGF-β family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes, identified genes under positive selection, and revealed significant similarities of gene expression profiles between diapause and aging, particularly for genes controlling cell cycle and translation. The annotated genome sequence is provided as an online resource (http://www.nothobranchius.info/NFINgb).
Collapse
|
18
|
Cellerino A, Valenzano DR, Reichard M. From the bush to the bench: the annual
Nothobranchius
fishes as a new model system in biology. Biol Rev Camb Philos Soc 2015; 91:511-33. [DOI: 10.1111/brv.12183] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/04/2015] [Accepted: 03/13/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Alessandro Cellerino
- Bio@SNS, Scuola Normale Superiore Department of Neurosciences Piazza dei Cavalieri 7 56126 Pisa Italy
- Fritz Lipmann Institute for Age Research, Leibniz Institute Beutenbergstr. 11 D‐07745 Jena Germany
| | - Dario R. Valenzano
- Max Planck Institute for Biology of Ageing Joseph‐Stelzmann‐Str. 9b D‐50931 Cologne Germany
| | - Martin Reichard
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic Květná 8 603 65 Brno Czech Republic
| |
Collapse
|
19
|
Priami C, De Michele G, Cotelli F, Cellerino A, Giorgio M, Pelicci PG, Migliaccio E. Modelling the p53/p66Shc Aging Pathway in the Shortest Living Vertebrate Nothobranchius Furzeri. Aging Dis 2015; 6:95-108. [PMID: 25821638 DOI: 10.14336/ad.2014.0228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/28/2014] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress induced by reactive oxygen species (ROS) increases during lifespan and is involved in aging processes. The p66Shc adaptor protein is a master regulator of oxidative stress response in mammals. Ablation of p66Shc enhances oxidative stress resistance both in vitro and in vivo. Most importantly, it has been demonstrated that its deletion retards aging in mice. Recently, new insights in the molecular mechanisms involving p66Shc and the p53 tumor suppressor genes were given: a specific p66Shc/p53 transcriptional regulation pathway was uncovered as determinant in oxidative stress response and, likely, in aging. p53, in a p66Shc-dependent manner, negatively downregulates the expression of 200 genes which are involved in the G2/M transition of mitotic cell cycle and are downregulated during physiological aging. p66Shc modulates the response of p53 by activating a p53 isoform (p44/p53, also named Delta40p53). Based on these latest results, several developments are expected in the future, as the generation of animal models to study aging and the evaluation of the use of the p53/p66Shc target genes as biomarkers in aging related diseases. The aim of this review is to investigate the conservation of the p66Shc and p53 role in oxidative stress between fish and mammals. We propose to approach this study trough a new model organism, the annual fish Nothobranchius furzeri, that has been demonstrated to develop typical signs of aging, like in mammals, including senescence, neurodegeneration, metabolic disorders and cancer.
Collapse
Affiliation(s)
- Chiara Priami
- 1European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy. ; 3Dipartimento di Bioscienze, University of Milan, Italy
| | - Giulia De Michele
- 1European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | | | | | - Marco Giorgio
- 1European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | - Pier Giuseppe Pelicci
- 1European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy. ; 2Dipartimento di Medicina, Chirurgia e Odontoiatria, University of Milan, Italy
| | - Enrica Migliaccio
- 1European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
20
|
Reichenbacher B, Reichard M. Otoliths of five extant species of the annual killifish Nothobranchius from the East African savannah. PLoS One 2014; 9:e112459. [PMID: 25383789 PMCID: PMC4226545 DOI: 10.1371/journal.pone.0112459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/15/2014] [Indexed: 01/17/2023] Open
Abstract
This study presents, for the first time, a comprehensive dataset that documents the range of inter- and intraspecific otolith variation in aplocheiloid killifish, based on a total of 86 individuals representing five extant species of Nothobranchius PETERS, 1868, from East Africa: the sympatric pairs N. rubripinnis SEEGERS, 1986 and N. ruudwildekampi COSTA, 2009 (Eastern Tanzania), and N. orthonotus (PETERS, 1844) and N. furzeri JUBB, 1971 (Southern Mozambique), and two isolated populations of N. korthausae MEINKEN, 1973 (Eastern Tanzania). Otolith characters were analysed based on SEM images, and otolith morphometry was conducted using uni- and multivariate statistics. Two ancient clades of probably Early to Middle Miocene age in eastern Tanzania and southern Mozambique can be recognized based on otolith morphologies, which is consistent with previous work based on molecular data. The distinctive sulcus morphologies in the otoliths of sympatric species may be linked to species-specific hearing capabilities, perhaps constituting a case of character displacement in an area of secondary sympatry. The otoliths of the studied species of Nothobranchius are diagnostic at the species level, even in the case of closely related species diagnosable otherwise only by minor differences in coloration. The two populations of N. korthausae also displayed some differences in their otolith characters. The new data may facilitate future recognition of fossil species of Nothobranchius. As no fossil remains of extant aplocheiloid killifishes have yet been described, the discovery of fossil otoliths of Nothobranchius would significantly advance understanding of the evolutionary history of this interesting group of fishes.
Collapse
Affiliation(s)
- Bettina Reichenbacher
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Reichard
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
21
|
Dorn A, Musilová Z, Platzer M, Reichwald K, Cellerino A. The strange case of East African annual fishes: aridification correlates with diversification for a savannah aquatic group? BMC Evol Biol 2014; 14:210. [PMID: 25311226 PMCID: PMC4209228 DOI: 10.1186/s12862-014-0210-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/23/2014] [Indexed: 01/03/2023] Open
Abstract
Background Annual Nothobranchius fishes are distributed in East and Southern Africa and inhabit ephemeral pools filled during the monsoon season. Nothobranchius show extreme life-history adaptations: embryos survive by entering diapause and they are the vertebrates with the fastest maturation and the shortest lifespan. The distribution of Nothobranchius overlaps with the East Africa Rift System. The geological and paleoclimatic history of this region is known in detail: in particular, aridification of East Africa and expansion of grassland habitats started 8 Mya and three humid periods between 3 and 1 Mya are superimposed on the longer-term aridification. These climatic oscillations are thought to have shaped evolution of savannah African mammals. We reconstructed the phylogeny of Nothobranchius and dated the different stages of diversification in relation to these paleoclimatic events. Results We sequenced one mitochondrial locus and five nuclear loci in 63 specimens and obtained a robust phylogeny. Nothobranchius can be divided in four geographically separated clades whose boundaries largely correspond to the East Africa Rift system. Statistical analysis of dispersal and vicariance identifies a Nilo-Sudan origin with southwards dispersion and confirmed that these four clades are the result of vicariance events In the absence of fossil Nothobranchius, molecular clock was calibrated using more distant outgroups (secondary calibration). This method estimates the age of the Nothobranchius genus to be 8.3 (6.0 – 10.7) My and the separation of the four clades 4.8 (2.7-7.0) Mya. Diversification within the clades was estimated to have started ~3 Mya and most species pairs were estimated to have an age of 0.5-1 My. Conclusions The mechanism of Nothobranchius diversification was allopatric and driven by geographic isolation. We propose a scenario where diversification of Nothobranchius started in rough coincidence with aridification of East Africa, establishment of grassland habitats and the appearance of the typical African bovid fauna of the savannah. Although confidence intervals for the estimated ages of the four Nothobranchius clades are quite large, this scenario is compatible with the biology of extant Nothobranchius that are critically dependent on savannah habitats. Therefore, Nothobranchius diversification might have been shaped by the same paleoclimatic events that shaped African ungulate evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0210-3) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Ng'oma E, Groth M, Ripa R, Platzer M, Cellerino A. Transcriptome profiling of natural dichromatism in the annual fishes Nothobranchius furzeri and Nothobranchius kadleci. BMC Genomics 2014; 15:754. [PMID: 25183398 PMCID: PMC4168119 DOI: 10.1186/1471-2164-15-754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Background The annual fish Nothobranchius furzeri is characterized by a natural dichromatism with yellow-tailed and red-tailed male individuals. These differences are due to different distributions of xanthophores and erythrophores in the two morphs. Previous crossing studies have showed that dichromatism in N. furzeri is inherited as a simple Mendelian trait with the yellow morph dominant over the red morph. The causative genetic variation was mapped by linkage analysis in a chromosome region containing the Mc1r locus. However, subsequent mapping showed that Mc1r is most likely not responsible for the color difference in N. furzeri. To gain further insight into the molecular basis of this phenotype, we performed RNA-seq on F2 progeny of a cross between N. furzeri male and N. kadleci female. Results We identified 210 differentially-expressed genes between yellow and red fin samples. Functional annotation analysis revealed that genes with higher transcript levels in the yellow morph are enriched for the melanin synthesis pathway indicating that xanthophores are more similar to melanophores than are the erythrophores. Genes with higher expression levels in red-tails included xanthine dehydrogenase (Xdh), coding for a biosynthetic enzyme in the pteridine synthesis pathway, and genes related to muscle contraction. Comparison of DEGs obtained in this study with genes associated with pigmentation in the Midas cichlid (A. citrinellus) reveal similarities like involvement of the melanin biosynthesis pathway, the genes Ptgir, Rasef (RAS and EF-hand domain containing), as well as genes primarily expressed in muscle such as Ttn and Ttnb (titin, titin b). Conclusions Regulation of genes in the melanin synthetic pathway is an expected finding and shows that N. furzeri is a genetically-tractable species for studying the genetic basis of natural phenotypic variations. The current list of differentially-expressed genes can be compared with the results of fine-mapping, to reveal the genetic architecture of this natural phenotype. However, an evolutionarily-conserved role of muscle-related genes in tail fin pigmentation is novel finding and interesting perspective for the future. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-754) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Alessandro Cellerino
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstraße 11, 07745 Jena, Germany.
| |
Collapse
|
23
|
Reichard M, Polačik M, Blažek R, Vrtílek M. Female bias in the adult sex ratio of African annual fishes: interspecific differences, seasonal trends and environmental predictors. Evol Ecol 2014. [DOI: 10.1007/s10682-014-9732-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Bartáková V, Reichard M, Janko K, Polačik M, Blažek R, Reichwald K, Cellerino A, Bryja J. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique. BMC Evol Biol 2013; 13:196. [PMID: 24028633 PMCID: PMC4231482 DOI: 10.1186/1471-2148-13-196] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/03/2013] [Indexed: 12/22/2022] Open
Abstract
Background Intraspecific genetic variation of African fauna has been significantly affected by pronounced climatic fluctuations in Plio-Pleistocene, but, with the exception of large mammals, very limited empirical data on diversity of natural populations are available for savanna-dwelling animals. Nothobranchius furzeri is an annual fish from south-eastern Africa, inhabiting discrete temporary savannah pools outside main river alluvia. Their dispersal is limited and population processes affecting its genetic structure are likely a combination of those affecting terrestrial and aquatic taxa. N. furzeri is a model taxon in ageing research and several populations of known geographical origin are used in laboratory studies. Here, we analysed the genetic structure, diversity, historical demography and temporal patterns of divergence in natural populations of N. furzeri across its entire distribution range. Results Genetic structure and historical demography of N. furzeri were analysed using a combination of mitochondrial (partial cytochrome b sequences, 687 bp) and nuclear (13 microsatellites) markers in 693 fish from 36 populations. Genetic markers consistently demonstrated strong population structuring and suggested two main genetic groups associated with river basins. The split was dated to the Pliocene (>2 Mya). The northern group inhabits savannah pools across the basin of the intermittent river Chefu in south-western Mozambique and eastern Zimbabwe. The southern group (from southernmost Mozambique) is subdivided, with the River Limpopo forming a barrier (maximum divergence time 1 Mya). A strong habitat fragmentation (isolated temporary pools) is reflected in significant genetic structuring even between adjacent pools, with a major influence of genetic drift and significant isolation-by-distance. Analysis of historical demography revealed that the expansion of both groups is ongoing, supported by frequent founder effects in marginal parts of the range and evidence of secondary contact between Chefu and Limpopo populations. Conclusions We demonstrated: (1) ancient (pre-Pleistocene) divergence between the two main N. furzeri lineages, their recent secondary contact and lack of reproductive isolation; (2) important genetic structuring attributed to the fragmented nature of their environment and isolation-by-distance, suggesting that dispersal is limited, occurs over short distances and is not directly associated with river routes; (3) an apparent role of the River Limpopo as a barrier to dispersal and gene flow.
Collapse
Affiliation(s)
- Veronika Bartáková
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, Brno 603 65, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Blažek R, Polačik M, Reichard M. Rapid growth, early maturation and short generation time in African annual fishes. EvoDevo 2013; 4:24. [PMID: 24007640 PMCID: PMC3844391 DOI: 10.1186/2041-9139-4-24] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/27/2013] [Indexed: 12/24/2022] Open
Abstract
Background Extreme environmental conditions can give rise to extreme adaptations. We document growth, sexual maturation and fecundity in two species of African annual fish inhabiting temporary savanna pools. Results Nothobranchius kadleci started to reproduce at the age of 17 days and size of 31 mm and Nothobranchius furzeri at 18 days and 32 mm. All four study populations demonstrated rapid growth rates of up to 2.72 mm/day (23.4% of their total length). Both species may produce diapausing embryos or embryos that are able to hatch in as few as 15 days, resulting in a minimum generation time as short as only one month. Incubation on the surface of damp peat moss results in high embryo survival (73%) and a high proportion of rapidly developing embryos (58%) that skip diapauses and hatch in less than 30 days. We further demonstrated that rapid growth and maturation do not compromise subsequent fecundity. Conclusions Our data suggest that both species have the most rapid sexual maturation and minimum generation time of any vertebrate species, and that rapid maturity does not involve paedogenesis.
Collapse
Affiliation(s)
- Radim Blažek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8 60365, Brno, Czech Republic.
| | | | | |
Collapse
|
26
|
Cox CL, Davis Rabosky AR. Spatial and Temporal Drivers of Phenotypic Diversity in Polymorphic Snakes. Am Nat 2013; 182:E40-57. [DOI: 10.1086/670988] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Parallel evolution of senescence in annual fishes in response to extrinsic mortality. BMC Evol Biol 2013; 13:77. [PMID: 23551990 PMCID: PMC3623659 DOI: 10.1186/1471-2148-13-77] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 03/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early evolutionary theories of aging predict that populations which experience low extrinsic mortality evolve a retarded onset of senescence. Experimental support for this theory in vertebrates is scarce, in part for the difficulty of quantifying extrinsic mortality and its condition- and density-dependent components that -when considered- can lead to predictions markedly different to those of the "classical" theories. Here, we study annual fish of the genus Nothobranchius whose maximum lifespan is dictated by the duration of the water bodies they inhabit. Different populations of annual fish do not experience different strengths of extrinsic mortality throughout their life span, but are subject to differential timing (and predictability) of a sudden habitat cessation. In this respect, our study allows testing how aging evolves in natural environments when populations vary in the prospect of survival, but condition-dependent survival has a limited effect. We use 10 Nothobranchius populations from seasonal pools that differ in their duration to test how this parameter affects longevity and aging in two independent clades of these annual fishes. RESULTS We found that replicated populations from a dry region showed markedly shorter captive lifespan than populations from a humid region. Shorter lifespan correlated with accelerated accumulation of lipofuscin (an established age marker) in both clades. Analysis of wild individuals confirmed that fish from drier habitats accumulate lipofuscin faster also under natural conditions. This indicates faster physiological deterioration in shorter-lived populations. CONCLUSIONS Our data provide a strong quantitative example of how extrinsic mortality can shape evolution of senescence in a vertebrate clade. Nothobranchius is emerging as a genomic model species. The characterization of pairs of closely related species with different longevities should provide a powerful paradigm for the identification of genetic variations responsible for evolution of senescence in natural populations.
Collapse
|
28
|
Sequence variation in the Mc1r gene for a group of polymorphic snakes. Gene 2012; 513:282-6. [PMID: 23116942 DOI: 10.1016/j.gene.2012.10.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/02/2012] [Accepted: 10/09/2012] [Indexed: 11/21/2022]
Abstract
Studying the genetic factors underlying phenotypic traits can provide insight into dynamics of selection and molecular basis of adaptation, but this goal can be difficult for non-model organisms without extensive genomic resources. However, sequencing candidate genes for the trait of interest can facilitate the study of evolutionary genetics in natural populations. We sequenced the melanocortin-1 receptor (Mc1r) to study the genetic basis of color polymorphism in a group of snake species with variable black banding, the genera Sonora, Chilomeniscus, and Chionactis. Mc1r is an important gene in the melanin synthesis pathway and is associated with ecologically important variation in color pattern in birds, mammals, and other squamate reptiles. We found that Mc1r nucleotide sequence was variable and that within our focal Sonora species, there are both fixed and heterozygous nucleotide substitutions that result in an amino acid change and selection analyses indicated that Mc1r sequence was likely under purifying selection. However, we did not detect any statistical association with the presence or absence of black bands. Our results agree with other studies that have found no role for sequence variation in Mc1r and highlight the importance of comparative data for studying the phenotypic associations of candidate genes.
Collapse
|
29
|
Hartmann N, Englert C. A microinjection protocol for the generation of transgenic killifish (Species: Nothobranchius furzeri). Dev Dyn 2012; 241:1133-41. [DOI: 10.1002/dvdy.23789] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2012] [Indexed: 01/10/2023] Open
|
30
|
Polačik M, Reichard M. Asymmetric reproductive isolation between two sympatric annual killifish with extremely short lifespans. PLoS One 2011; 6:e22684. [PMID: 21850233 PMCID: PMC3151246 DOI: 10.1371/journal.pone.0022684] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/27/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Interspecific reproductive isolation is typically achieved by a combination of intrinsic and extrinsic barriers. Behavioural isolating barriers between sympatric, closely related species are often of primary importance and frequently aided by extrinsic factors causing spatial and temporal interspecific separation. Study systems with a severely limited role of extrinsic factors on reproductive isolation may provide valuable insights into how reproductive isolation between sympatric species is maintained. We used no-choice experimental set-up to study reproductive barriers between two closely related sympatric African killifish species, Nothobranchius furzeri and Nothobranchius orthonotus. These fish live in small temporary savannah pools and have complete spatial and temporal overlap in reproductive activities and share a similar ecology. PRINCIPAL FINDINGS We found that the two species display largely incomplete and asymmetric reproductive isolation. Mating between N. furzeri males and N. orthonotus females was absent under standard experimental conditions and eggs were not viable when fish were forced to mate in a modified experimental setup. In contrast, male N. orthonotus indiscriminately mated with N. furzeri females, the eggs were viable, and offspring successfully hatched. Most spawnings, however, were achieved by male coercion and egg production and embryo survival were low. Behavioural asymmetry was likely facilitated by mating coercion from larger males of N. orthonotus and at relatively low cost to females. Interestingly, the direction of asymmetry was positively associated with asymmetry in post-mating reproductive barriers. SIGNIFICANCE We showed that, in fish species with a promiscuous mating system and multiple matings each day, selection for strong mate preferences was relaxed. This effect was likely due to the small proportion of resources allocated to each single mating and the high potential cost to females from mating refusal. We highlight and discuss the fact that males of rarer species may often coercively mate with females of a related, more abundant species.
Collapse
Affiliation(s)
- Matej Polačik
- Department of Fish Ecology, Academy of Sciences of the Czech Republic, Institute of Vertebrate Biology, Brno, Czech Republic.
| | | |
Collapse
|