1
|
Greenwold MJ, Merritt K, Richardson TL, Dudycha JL. A three-genome ultraconserved element phylogeny of cryptophytes. Protist 2023; 174:125994. [PMID: 37935085 DOI: 10.1016/j.protis.2023.125994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Cryptophytes are single celled protists found in all aquatic environments. They are composed of a heterotrophic genus, Goniomonas, and a largely autotrophic group comprising many genera. Cryptophytes evolved through secondary endosymbiosis between a host eukaryotic heterotroph and a symbiont red alga. This merger resulted in a four-genome system that includes the nuclear and mitochondrial genomes from the host and a second nuclear genome (nucleomorph) and plastid genome inherited from the symbiont. Here, we make use of different genomes (with potentially distinct evolutionary histories) to perform a phylogenomic study of the early history of cryptophytes. Using ultraconserved elements from the host nuclear genome and symbiont nucleomorph and plastid genomes, we produce a three-genome phylogeny of 91 strains of cryptophytes. Our phylogenetic analyses find that that there are three major cryptophyte clades: Clade 1 comprises Chroomonas and Hemiselmis species, Clade 2, a taxonomically rich clade, comprises at least twelve genera, and Clade 3, comprises the heterotrophic Goniomonas species. Each of these major clades include both freshwater and marine species, but subclades within these clades differ in degrees of niche conservatism. Finally, we discuss priorities for taxonomic revision to Cryptophyceae based on previous studies and in light of these phylogenomic analyses.
Collapse
Affiliation(s)
- Matthew J Greenwold
- Biology Department, University of Texas at Tyler, 3900 University Blvd., Tyler, TX, 75799, USA.
| | - Kristiaän Merritt
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| | - Tammi L Richardson
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA; School of the Earth, Ocean, and Environment, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| |
Collapse
|
2
|
Hunt EP, Willis SC, Conway KW, Portnoy DS. Interrelationships and biogeography of the New World pufferfish genus Sphoeroides (Tetraodontiformes: Tetraodontidae) inferred using ultra-conserved DNA elements. Mol Phylogenet Evol 2023; 189:107935. [PMID: 37778529 DOI: 10.1016/j.ympev.2023.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Colonization of the New World by marine taxa has been hypothesized to have occurred through the Tethys Sea or by crossing the East Pacific Barrier. To better understand patterns and timing of diversification, geological events can be coupled with time calibrated phylogenetic hypotheses to infer major drivers of diversification. Phylogenetic relationships among members of Sphoeroides, a genus of four toothed pufferfishes (Tetraodontiformes: Tetraodontidae) which are found nearly exclusively in the New World (eastern Pacific and western Atlantic), were reconstructed using sequences from ultra-conserved DNA elements, nuclear markers with clear homology among many vertebrate taxa. Hypotheses derived from concatenated maximum-likelihood and species tree summary methods support a paraphyletic Sphoeroides, with Colomesus deeply nested within the genus. Analyses also revealed S. pachygaster, a pelagic species with a cosmopolitan distribution, as the sister taxon to the remainder of Sphoeroides and recovered distinct lineages within S. pachygaster, indicating that this cosmopolitan species may represent a species complex. Ancestral range reconstruction may suggest the genus colonized the New World through the eastern Pacific before diversifying in the western Atlantic, though date estimates for these events are uncertain due to the lack of reliable fossil record for the genus.
Collapse
Affiliation(s)
- Elizabeth P Hunt
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX 78412, USA.
| | - Stuart C Willis
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX 78412, USA; Columbia River Inter-Tribal Fish Commission - Hagerman Genetics Lab, 3059-F National Fish Hatchery Road, Hagerman, ID 83332, USA
| | - Kevin W Conway
- Department of Ecology and Conservation Biology and Biodiversity Research and Teaching Collections, Texas A&M University, 534 John Kimbrough Blvd., College Station, TX 77843, USA
| | - David S Portnoy
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX 78412, USA
| |
Collapse
|
3
|
Literman R, Windsor AM, Bart HL, Hunter ES, Deeds JR, Handy SM. Using low-coverage whole genome sequencing (genome skimming) to delineate three introgressed species of buffalofish (Ictiobus). Mol Phylogenet Evol 2023; 182:107715. [PMID: 36707011 DOI: 10.1016/j.ympev.2023.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/03/2022] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Consumption of buffalofish has been sporadically associated with Haff disease-like illnesses involving sudden onset muscle pain and weakness due to skeletal muscle rhabdomyolysis, but determination of precisely which species are associated with these illnesses has been impeded by a lack of species-specific DNA-based markers. Here, three closely related species of buffalofish native to the Mississippi River Basin (Ictiobus bubalus, Ictiobus cyprinellus and Ictiobus niger) that have previously proven genetically indistinguishable using both mitochondrial and nuclear single-locus sequencing were reliably discriminated using low-coverage whole genome sequencing ('genome skimming'). Using 44 specimens representing the three species collected from the mid/upper (Missouri) and lower (Louisiana) regions of the species' native ranges, the SISRS (Site Identification from Short Read Sequences) bioinformatics pipeline was adapted to (1) identify over 620Mbp of putatively homologous nuclear sequence data and (2) isolate over 140,000 single-nucleotide polymorphisms (SNPs) that supported accurate species delimitation, all without the use of a reference genome or annotation data. These sites were used to classify Ictiobus spp. samples with genome-skim data, along with a larger set (n = 67) where ultraconserved elements (UCEs) were sequenced. Analyses of whole mitochondrial data revealed more limited signal. Nearly all samples matched their purported species based on morphologic identification, but two Missouri samples morphologically identified as I. niger grouped with samples of I. bubalus, albeit with significant enrichment of I. niger SNPs. To our knowledge this is the first report of a DNA-based tool to reliably discriminate these three morphologically distinct species.
Collapse
Affiliation(s)
- Robert Literman
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration, College Park, MD, USA.
| | - Amanda M Windsor
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration, College Park, MD, USA
| | - Henry L Bart
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Elizabeth Sage Hunter
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration, College Park, MD, USA
| | - Jonathan R Deeds
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration, College Park, MD, USA
| | - Sara M Handy
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
4
|
Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B, Bruford EA, Nebert DW, Vasiliou V, Yohe LR, Yoder JA, Townsend JP. Placing human gene families into their evolutionary context. Hum Genomics 2022; 16:56. [PMID: 36369063 PMCID: PMC9652883 DOI: 10.1186/s40246-022-00429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA.
| | - Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey P Townsend
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Zhao X, Liu Y, Du X, Ma S, Song N, Zhao L. Whole-Genome Survey Analyses Provide a New Perspective for the Evolutionary Biology of Shimofuri Goby, Tridentiger bifasciatus. Animals (Basel) 2022; 12:ani12151914. [PMID: 35953903 PMCID: PMC9367431 DOI: 10.3390/ani12151914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
The shimofuri goby (Tridentiger bifasciatus) is a small and highly adaptable goby, distributed along the coasts of China, the Sea of Japan, and the west coastal and estuarine areas of the Northwest Pacific. Next-generation sequencing was used to generate genome-wide survey data to provide essential characterization of the shimofuri goby genome and for the further mining of genomic information. The genome size of the shimofuri goby was estimated to be approximately 887.60 Mb through K-mer analysis, with a heterozygosity ratio and repeat sequence ratio of 0.47% and 32.60%, respectively. The assembled genome was used to identify microsatellite motifs (Simple Sequence Repeats, SSRs), extract single-copy homologous genes and assemble the mitochondrial genome. A total of 288,730 SSRs were identified. The most frequent SSRs were dinucleotide repeats (with a frequency of 61.15%), followed by trinucleotide (29.87%), tetranucleotide (6.19%), pentanucleotide (1.13%), and hexanucleotide repeats (1.66%). The results of the phylogenetic analysis based on single-copy homologous genes showed that the shimofuri goby and Rhinogobius similis can be clustered into one branch. The shimofuri goby was originally thought to be the same as the chameleon goby (Tridentiger trigonocephalus) due to their close morphological resemblance. However, a complete mitochondrial genome was assembled and the results of the phylogenetic analysis support the inclusion of the shimofuri goby as a separate species. PSMC analysis indicated that the shimofuri goby experienced a bottleneck event during the Pleistocene Glacial Epoch, in which its population size decreased massively, and then it began to recover gradually after the Last Glacial Maximum. This study provides a reference for the further assembly of the complete genome map of the shimofuri goby, and is a valuable genomic resource for the study of its evolutionary biology.
Collapse
Affiliation(s)
- Xiang Zhao
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China; (X.Z.); (X.D.); (S.M.); (N.S.)
| | - Yaxian Liu
- Yantai Laishan Marine Fisheries Supervision and Monitoring Brigade, Yantai 264000, China;
| | - Xueqing Du
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China; (X.Z.); (X.D.); (S.M.); (N.S.)
| | - Siyu Ma
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China; (X.Z.); (X.D.); (S.M.); (N.S.)
| | - Na Song
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China; (X.Z.); (X.D.); (S.M.); (N.S.)
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
6
|
Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. Nat Ecol Evol 2022; 6:1211-1220. [PMID: 35835827 DOI: 10.1038/s41559-022-01801-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
Spiny-rayed fishes (Acanthomorpha) dominate modern marine habitats and account for more than a quarter of all living vertebrate species. Previous time-calibrated phylogenies and patterns from the fossil record explain this dominance by correlating the origin of major acanthomorph lineages with the Cretaceous-Palaeogene mass extinction. Here we infer a time-calibrated phylogeny using ultraconserved elements that samples 91.4% of all acanthomorph families and investigate patterns of body shape disparity. Our results show that acanthomorph lineages steadily accumulated throughout the Cenozoic and underwent a significant expansion of among-clade morphological disparity several million years after the end-Cretaceous. These acanthomorph lineages radiated into and diversified within distinct regions of morphospace that characterize iconic lineages, including fast-swimming open-ocean predators, laterally compressed reef fishes, bottom-dwelling flatfishes, seahorses and pufferfishes. The evolutionary success of spiny-rayed fishes is the culmination of multiple species-rich and phenotypically disparate lineages independently diversifying across the globe under a wide range of ecological conditions.
Collapse
|
7
|
Snetkova V, Pennacchio LA, Visel A, Dickel DE. Perfect and imperfect views of ultraconserved sequences. Nat Rev Genet 2022; 23:182-194. [PMID: 34764456 PMCID: PMC8858888 DOI: 10.1038/s41576-021-00424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.
Collapse
Affiliation(s)
- Valentina Snetkova
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Len A Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
| | - Axel Visel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Diane E Dickel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
8
|
Literman R, Schwartz R. Genome-Scale Profiling Reveals Noncoding Loci Carry Higher Proportions of Concordant Data. Mol Biol Evol 2021; 38:2306-2318. [PMID: 33528497 PMCID: PMC8136493 DOI: 10.1093/molbev/msab026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many evolutionary relationships remain controversial despite whole-genome sequencing data. These controversies arise, in part, due to challenges associated with accurately modeling the complex phylogenetic signal coming from genomic regions experiencing distinct evolutionary forces. Here, we examine how different regions of the genome support or contradict well-established relationships among three mammal groups using millions of orthologous parsimony-informative biallelic sites (PIBS) distributed across primate, rodent, and Pecora genomes. We compared PIBS concordance percentages among locus types (e.g. coding sequences (CDS), introns, intergenic regions), and contrasted PIBS utility over evolutionary timescales. Sites derived from noncoding sequences provided more data and proportionally more concordant sites compared with those from CDS in all clades. CDS PIBS were also predominant drivers of tree incongruence in two cases of topological conflict. PIBS derived from most locus types provided surprisingly consistent support for splitting events spread across the timescales we examined, although we find evidence that CDS and intronic PIBS may, respectively and to a limited degree, inform disproportionately about older and younger splits. In this era of accessible wholegenome sequence data, these results:1) suggest benefits to more intentionally focusing on noncoding loci as robust data for tree inference and 2) reinforce the importance of accurate modeling, especially when using CDS data.
Collapse
Affiliation(s)
- Robert Literman
- Department of Biological Sciences, University of Rhode Island, South Kingstown, RI, USA.,Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration, College Park, MD, USA
| | - Rachel Schwartz
- Department of Biological Sciences, University of Rhode Island, South Kingstown, RI, USA
| |
Collapse
|
9
|
Alda F, Ludt WB, Elías DJ, McMahan CD, Chakrabarty P. Comparing Ultraconserved Elements and Exons for Phylogenomic Analyses of Middle American Cichlids: When Data Agree to Disagree. Genome Biol Evol 2021; 13:evab161. [PMID: 34272856 PMCID: PMC8369075 DOI: 10.1093/gbe/evab161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Choosing among types of genomic markers to be used in a phylogenomic study can have a major influence on the cost, design, and results of a study. Yet few attempts have been made to compare categories of next-generation sequence markers limiting our ability to compare the suitability of these different genomic fragment types. Here, we explore properties of different genomic markers to find if they vary in the accuracy of component phylogenetic trees and to clarify the causes of conflict obtained from different data sets or inference methods. As a test case, we explore the causes of discordance between phylogenetic hypotheses obtained using a novel data set of ultraconserved elements (UCEs) and a recently published exon data set of the cichlid tribe Heroini. Resolving relationships among heroine cichlids has historically been difficult, and the processes of colonization and diversification in Middle America and the Greater Antilles are not yet well understood. Despite differences in informativeness and levels of gene tree discordance between UCEs and exons, the resulting phylogenomic hypotheses generally agree on most relationships. The independent data sets disagreed in areas with low phylogenetic signal that were overwhelmed by incomplete lineage sorting and nonphylogenetic signals. For UCEs, high levels of incomplete lineage sorting were found to be the major cause of gene tree discordance, whereas, for exons, nonphylogenetic signal is most likely caused by a reduced number of highly informative loci. This paucity of informative loci in exons might be due to heterogeneous substitution rates that are problematic to model (i.e., computationally restrictive) resulting in systematic errors that UCEs (being less informative individually but more uniform) are less prone to. These results generally demonstrate the robustness of phylogenomic methods to accommodate genomic markers with different biological and phylogenetic properties. However, we identify common and unique pitfalls of different categories of genomic fragments when inferring enigmatic phylogenetic relationships.
Collapse
Affiliation(s)
- Fernando Alda
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, Tennessee, USA
| | - William B Ludt
- Department of Ichthyology, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Diego J Elías
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Prosanta Chakrabarty
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
10
|
Lv X, Hu J, Hu Y, Li Y, Xu D, Ryder OA, Irwin DM, Yu L. Diverse phylogenomic datasets uncover a concordant scenario of laurasiatherian interordinal relationships. Mol Phylogenet Evol 2020; 157:107065. [PMID: 33387649 DOI: 10.1016/j.ympev.2020.107065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Resolving the interordinal relationships in the mammalian superorder Laurasiatheria has been among the most intractable problems in higher-level mammalian systematics, with many conflicting hypotheses having been proposed. The present study collected three different sources of genome-scale data with comprehensive taxon sampling of laurasiatherian species, including two protein-coding datasets (4,186 protein-coding genes for an amino acid dataset comprising 2,761,247 amino acid residues and a nucleotide dataset comprising 5,516,340 nucleotides from 1st and 2nd codon positions), an intronic dataset (1,210 introns comprising 1,162,723 nucleotides) and an ultraconserved elements (UCEs) dataset (1,246 UCEs comprising 1,946,472 nucleotides) from 40 species representing all six laurasiatherian orders and 7 non-laurasiatherian outgroups. Remarkably, phylogenetic trees reconstructed with the four datasets using different tree-building methods (RAxML, FastTree, ASTRAL and MP-EST) all supported the relationship (Eulipotyphla, (Chiroptera, ((Carnivora, Pholidota), (Cetartiodactyla, Perissodactyla)))). We find a resolution of interordinal relationships of Laurasiatheria among all types of markers used in the present study, and the likelihood ratio tests for tree comparisons confirmed that the present tree topology is the optimal hypothesis compared to other examined hypotheses. Jackknifing subsampling analyses demonstrate that the results of laurasiatherian tree reconstruction varied with the number of loci and ordinal representatives used, which are likely the two main contributors to phylogenetic disagreements of Laurasiatheria seen in previous studies. Our study provides significant insight into laurasiatherian evolution, and moreover, an important methodological strategy and reference for resolving phylogenies of adaptive radiation, which have been a long-standing challenge in the field of phylogenetics.
Collapse
Affiliation(s)
- Xue Lv
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yiwen Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Yitian Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Dongming Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming, China
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
11
|
Roa-Varón A, Dikow RB, Carnevale G, Tornabene L, Baldwin CC, Li C, Hilton EJ. Confronting Sources of Systematic Error to Resolve Historically Contentious Relationships: A Case Study Using Gadiform Fishes (Teleostei, Paracanthopterygii, Gadiformes). Syst Biol 2020; 70:739-755. [PMID: 33346841 PMCID: PMC8561434 DOI: 10.1093/sysbio/syaa095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/14/2022] Open
Abstract
Reliable estimation of phylogeny is central to avoid inaccuracy in downstream macroevolutionary inferences. However, limitations exist in the implementation of concatenated and summary coalescent approaches, and Bayesian and full coalescent inference methods may not yet be feasible for computation of phylogeny using complicated models and large data sets. Here, we explored methodological (e.g., optimality criteria, character sampling, model selection) and biological (e.g., heterotachy, branch length heterogeneity) sources of systematic error that can result in biased or incorrect parameter estimates when reconstructing phylogeny by using the gadiform fishes as a model clade. Gadiformes include some of the most economically important fishes in the world (e.g., Cods, Hakes, and Rattails). Despite many attempts, a robust higher-level phylogenetic framework was lacking due to limited character and taxonomic sampling, particularly from several species-poor families that have been recalcitrant to phylogenetic placement. We compiled the first phylogenomic data set, including 14,208 loci (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$>$\end{document}2.8 M bp) from 58 species representing all recognized gadiform families, to infer a time-calibrated phylogeny for the group. Data were generated with a gene-capture approach targeting coding DNA sequences from single-copy protein-coding genes. Species-tree and concatenated maximum-likelihood (ML) analyses resolved all family-level relationships within Gadiformes. While there were a few differences between topologies produced by the DNA and the amino acid data sets, most of the historically unresolved relationships among gadiform lineages were consistently well resolved with high support in our analyses regardless of the methodological and biological approaches used. However, at deeper levels, we observed inconsistency in branch support estimates between bootstrap and gene and site coefficient factors (gCF, sCF). Despite numerous short internodes, all relationships received unequivocal bootstrap support while gCF and sCF had very little support, reflecting hidden conflict across loci. Most of the gene-tree and species-tree discordance in our study is a result of short divergence times, and consequent lack of informative characters at deep levels, rather than incomplete lineage sorting. We use this phylogeny to establish a new higher-level classification of Gadiformes as a way of clarifying the evolutionary diversification of the order. We recognize 17 families in five suborders: Bregmacerotoidei, Gadoidei, Ranicipitoidei, Merluccioidei, and Macrouroidei (including two subclades). A time-calibrated analysis using 15 fossil taxa suggests that Gadiformes evolved \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sim $\end{document}79.5 Ma in the late Cretaceous, but that most extant lineages diverged after the Cretaceous–Paleogene (K-Pg) mass extinction (66 Ma). Our results reiterate the importance of examining phylogenomic analyses for evidence of systematic error that can emerge as a result of unsuitable modeling of biological factors and/or methodological issues, even when data sets are large and yield high support for phylogenetic relationships. [Branch length heterogeneity; Codfishes; commercial fish species; Cretaceous-Paleogene (K-Pg); heterotachy; systematic error; target enrichment.]
Collapse
Affiliation(s)
- Adela Roa-Varón
- National Systematics Laboratory of the National Oceanic Atmospheric Administration Fisheries Service, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA.,Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Rebecca B Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, 35, 10125 Torino, Italy
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA
| | - Carole C Baldwin
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, 999 Hucheng Ring Rd, Pudong, Shanghai, China
| | - Eric J Hilton
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| |
Collapse
|
12
|
Comprehensive phylogeny of Myrmecocystus honey ants highlights cryptic diversity and infers evolution during aridification of the American Southwest. Mol Phylogenet Evol 2020; 155:107036. [PMID: 33278587 DOI: 10.1016/j.ympev.2020.107036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
The New World ant genus Myrmecocystus Wesmael, 1838 (Formicidae: Formicinae: Lasiini) is endemic to arid and semi-arid habitats of the western United States and Mexico. Several intriguing life history traits have been described for the genus, the best-known of which are replete workers, that store liquified food in their largely expanded crops and are colloquially referred to as "honeypots". Despite their interesting biology and ecological importance for arid ecosystems, the evolutionary history of Myrmecocystus ants is largely unknown and the current taxonomy presents an unsatisfactory systematic framework. We use ultraconserved elements to infer the evolutionary history of Myrmecocystus ants and provide a comprehensive, dated phylogenetic framework that clarifies the molecular systematics within the genus with high statistical support, reveals cryptic diversity, and reconstructs ancestral foraging activity. Using maximum likelihood, Bayesian and species tree approaches on a data set of 134 ingroup specimens (including samples from natural history collections and type material), we recover largely identical topologies that leave the position of only few clades uncertain and cover the intra- and interspecific variation of 28 of the 29 described and six undescribed species. In addition to traditional support values, such as bootstrap and posterior probability, we quantify genealogical concordance to estimate the effects of conflicting evolutionary histories on phylogenetic inference. Our analyses reveal that the current taxonomic classification of the genus is inconsistent with the molecular phylogenetic inference, and we identify cryptic diversity in seven species. Divergence dating suggests that the split between Myrmecocystus and its sister taxon Lasius occurred in the early Miocene. Crown group Myrmecocystus started diversifying about 14.08 Ma ago when the gradual aridification of the southwestern United States and northern Mexico led to formation of the American deserts and to adaptive radiations of many desert taxa.
Collapse
|
13
|
Reid BN, Moran RL, Kopack CJ, Fitzpatrick SW. Rapture-ready darters: Choice of reference genome and genotyping method (whole-genome or sequence capture) influence population genomic inference in Etheostoma. Mol Ecol Resour 2020; 21:404-420. [PMID: 33058399 DOI: 10.1111/1755-0998.13275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 11/26/2022]
Abstract
Researchers studying nonmodel organisms have an increasing number of methods available for generating genomic data. However, the applicability of different methods across species, as well as the effect of reference genome choice on population genomic inference, remain difficult to predict in many cases. We evaluated the impact of data type (whole-genome vs. reduced representation) and reference genome choice on data quality and on population genomic and phylogenomic inference across several species of darters (subfamily Etheostomatinae), a highly diverse radiation of freshwater fish. We generated a high-quality reference genome and developed a hybrid RADseq/sequence capture (Rapture) protocol for the Arkansas darter (Etheostoma cragini). Rapture data from 1,900 individuals spanning four darter species showed recovery of most loci across darter species at high depth and consistent estimates of heterozygosity regardless of reference genome choice. Loci with baits spanning both sides of the restriction enzyme cut site performed especially well across species. For low-coverage whole-genome data, choice of reference genome affected read depth and inferred heterozygosity. For similar amounts of sequence data, Rapture performed better at identifying fine-scale genetic structure compared to whole-genome sequencing. Rapture loci also recovered an accurate phylogeny for the study species and demonstrated high phylogenetic informativeness across the evolutionary history of the genus Etheostoma. Low cost and high cross-species effectiveness regardless of reference genome suggest that Rapture and similar sequence capture methods may be worthwhile choices for studies of diverse species radiations.
Collapse
Affiliation(s)
- Brendan N Reid
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Rachel L Moran
- Department of Evolution, Ecology, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | | | - Sarah W Fitzpatrick
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA.,Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Beninde J, Möst M, Meyer A. Optimized and affordable high-throughput sequencing workflow for preserved and nonpreserved small zooplankton specimens. Mol Ecol Resour 2020; 20:1632-1646. [PMID: 32677266 DOI: 10.1111/1755-0998.13228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Genomic analysis of hundreds of individuals is increasingly becoming standard in evolutionary and ecological research. Individual-based sequencing generates large amounts of valuable data from experimental and field studies, while using preserved samples is an invaluable resource for studying biodiversity in remote areas or across time. Yet, small-bodied individuals or specimens from collections are often of limited use for genomic analyses due to a lack of suitable extraction and library preparation protocols for preserved or small amounts of tissues. Currently, high-throughput sequencing in zooplankton is mostly restricted to clonal species, that can be maintained in live cultures to obtain sufficient amounts of tissue, or relies on a whole-genome amplification step that comes with several biases and high costs. Here, we present a workflow for high-throughput sequencing of single small individuals omitting the need for prior whole-genome amplification or live cultures. We establish and demonstrate this method using 27 species of the genus Daphnia, aquatic keystone organisms, and validate it with small-bodied ostracods. Our workflow is applicable to both live and preserved samples at low costs per sample. We first show that a silica-column based DNA extraction method resulted in the highest DNA yields for nonpreserved samples while a precipitation-based technique gave the highest yield for ethanol-preserved samples and provided the longest DNA fragments. We then successfully performed short-read whole genome sequencing from single Daphnia specimens and ostracods. Moreover, we assembled a draft reference genome from a single Daphnia individual (>50× coverage) highlighting the value of the workflow for non-model organisms.
Collapse
Affiliation(s)
- Jannik Beninde
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Markus Möst
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
15
|
Campbell MA, Buser TJ, Alfaro ME, López JA. Addressing incomplete lineage sorting and paralogy in the inference of uncertain salmonid phylogenetic relationships. PeerJ 2020; 8:e9389. [PMID: 32685284 PMCID: PMC7337038 DOI: 10.7717/peerj.9389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent and continued progress in the scale and sophistication of phylogenetic research has yielded substantial advances in knowledge of the tree of life; however, segments of that tree remain unresolved and continue to produce contradicting or unstable results. These poorly resolved relationships may be the product of methodological shortcomings or of an evolutionary history that did not generate the signal traits needed for its eventual reconstruction. Relationships within the euteleost fish family Salmonidae have proven challenging to resolve in molecular phylogenetics studies in part due to ancestral autopolyploidy contributing to conflicting gene trees. We examine a sequence capture dataset from salmonids and use alternative strategies to accommodate the effects of gene tree conflict based on aspects of salmonid genome history and the multispecies coalescent. We investigate in detail three uncertain relationships: (1) subfamily branching, (2) monophyly of Coregonus and (3) placement of Parahucho. Coregoninae and Thymallinae are resolved as sister taxa, although conflicting topologies are found across analytical strategies. We find inconsistent and generally low support for the monophyly of Coregonus, including in results of analyses with the most extensive dataset and complex model. The most consistent placement of Parahucho is as sister lineage of Salmo.
Collapse
Affiliation(s)
- Matthew A. Campbell
- University of Alaska Museum, University of Alaska—Fairbanks, Fairbanks, AK, USA
| | - Thaddaeus J. Buser
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Michael E. Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - J. Andrés López
- University of Alaska Museum, University of Alaska—Fairbanks, Fairbanks, AK, USA
- College of Fisheries and Ocean Sciences, University of Alaska—Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
16
|
Menezes RST, Lloyd MW, Brady SG. Phylogenomics indicates Amazonia as the major source of Neotropical swarm-founding social wasp diversity. Proc Biol Sci 2020; 287:20200480. [PMID: 32486978 DOI: 10.1098/rspb.2020.0480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Neotropical realm harbours unparalleled species richness and hence has challenged biologists to explain the cause of its high biotic diversity. Empirical studies to shed light on the processes underlying biological diversification in the Neotropics are focused mainly on vertebrates and plants, with little attention to the hyperdiverse insect fauna. Here, we use phylogenomic data from ultraconserved element (UCE) loci to reconstruct for the first time the evolutionary history of Neotropical swarm-founding social wasps (Hymenoptera, Vespidae, Epiponini). Using maximum likelihood, Bayesian, and species tree approaches we recovered a highly resolved phylogeny for epiponine wasps. Additionally, we estimated divergence dates, diversification rates, and the biogeographic history for these insects in order to test whether the group followed a 'museum' (speciation events occurred gradually over many millions of years) or 'cradle' (lineages evolved rapidly over a short time period) model of diversification. The origin of many genera and all sampled extant Epiponini species occurred during the Miocene and Plio-Pleistocene. Moreover, we detected no major shifts in the estimated diversification rate during the evolutionary history of Epiponini, suggesting a relatively gradual accumulation of lineages with low extinction rates. Several lines of evidence suggest that the Amazonian region played a major role in the evolution of Epiponini wasps. This spatio-temporal diversification pattern, most likely concurrent with climatic and landscape changes in the Neotropics during the Miocene and Pliocene, establishes the Amazonian region as the major source of Neotropical swarm-founding social wasp diversity.
Collapse
Affiliation(s)
- Rodolpho S T Menezes
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0188, USA.,Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras - Universidade de São Paulo (FFCLRP/USP), Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Michael W Lloyd
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0188, USA.,Computational Sciences, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0188, USA
| |
Collapse
|
17
|
Phylogenomic analysis of trichomycterid catfishes (Teleostei: Siluriformes) inferred from ultraconserved elements. Sci Rep 2020; 10:2697. [PMID: 32060350 PMCID: PMC7021825 DOI: 10.1038/s41598-020-59519-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/28/2020] [Indexed: 11/22/2022] Open
Abstract
The family Trichomycteridae is one of the most diverse groups of freshwater catfishes in South and Central America with eight subfamilies, 41 genera and more than 300 valid species. Its members are widely distributed throughout South America, reaching Costa Rica in Central America and are recognized by extraordinary anatomical specializations and trophic diversity. In order to assess the phylogenetic relationships of Trichomycteridae, we collected sequence data from ultraconserved elements (UCEs) of the genome from 141 specimens of Trichomycteridae and 12 outgroup species. We used a concatenated matrix to assess the phylogenetic relationships by Bayesian inference (BI) and maximum likelihood (ML) searches and a coalescent analysis of species trees. The results show a highly resolved phylogeny with broad agreement among the three distinct analyses, providing overwhelming support for the monophyletic status of subfamily Trichomycterinae including Ituglanis and Scleronema. Previous relationship hypotheses among subfamilies are strongly corroborated, such as the sister relationship between Copionodontinae and Trichogeninae forming a sister clade to the remaining trichomycterids and the intrafamilial clade TSVSG (Tridentinae-Stegophilinae-Vandelliinae-Sarcoglanidinae-Glanapteryginae). Monophyly of Glanapteryginae and Sarcoglanidinae was not supported and the enigmatic Potamoglanis is placed outside Tridentinae.
Collapse
|
18
|
Pie MR, Bornschein MR, Ribeiro LF, Faircloth BC, McCormack JE. Phylogenomic species delimitation in microendemic frogs of the Brazilian Atlantic Forest. Mol Phylogenet Evol 2019; 141:106627. [PMID: 31539606 DOI: 10.1016/j.ympev.2019.106627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/17/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
The advent of next-generation sequencing allows researchers to use large-scale datasets for species delimitation analyses, yet one can envision an inflection point where the added accuracy of including more loci does not offset the increased computational burden. One alternative to including all loci could be to prioritize the analysis of loci for which there is an expectation of high informativeness. Here, we explore the issue of species delimitation and locus selection with montane species from two anuran genera that have been isolated in sky islands across the southern Brazilian Atlantic Forest: Melanophryniscus (Bufonidae) and Brachycephalus (Brachycephalidae). To delimit species, we obtained genetic data using target enrichment of ultraconserved elements from 32 populations (13 for Melanophryniscus and 19 for Brachycephalus), and we were able to create datasets that included over 800 loci with no missing data. We ranked loci according to their number of parsimony-informative sites, and we performed species delimitation analyses using BPP with the most informative 10, 20, 40, 80, 160, 320, and 640 loci. We identified three types of phylogenetic node: nodes with either consistently high or low support regardless of the number of loci or their informativeness and nodes that were initially poorly supported where support became stronger as we included more data. When viewed across all sensitivity analyses, our results suggest that the current species richness in both genera is likely underestimated. In addition, our results show the effects of different sampling strategies on species delimitation using phylogenomic datasets.
Collapse
Affiliation(s)
- Marcio R Pie
- Departamento de Zoologia, Universidade Federal do Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; Mater Natura - Instituto de Estudos Ambientais, CEP 80250-020 Curitiba, Paraná, Brazil.
| | - Marcos R Bornschein
- Mater Natura - Instituto de Estudos Ambientais, CEP 80250-020 Curitiba, Paraná, Brazil; Instituto de Biociências, Universidade Estadual Paulista, Praça Infante Dom Henrique s/no, Parque Bitaru, CEP 11330-900 São Vicente, São Paulo, Brazil
| | - Luiz F Ribeiro
- Mater Natura - Instituto de Estudos Ambientais, CEP 80250-020 Curitiba, Paraná, Brazil; Escola de Ciências da Vida, Pontifícia Universidade Católica do Paraná, CEP 80215-901 Curitiba, Paraná, Brazil
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| |
Collapse
|
19
|
Phylogenomic Reconstruction of the Neotropical Poison Frogs (Dendrobatidae) and Their Conservation. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11080126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The evolutionary history of the Dendrobatidae, the charismatic Neotropical poison frog family, remains in flux, even after a half-century of intensive research. Understanding the evolutionary relationships between dendrobatid genera and the larger-order groups within Dendrobatidae is critical for making accurate assessments of all aspects of their biology and evolution. In this study, we provide the first phylogenomic reconstruction of Dendrobatidae with genome-wide nuclear markers known as ultraconserved elements. We performed sequence capture on 61 samples representing 33 species across 13 of the 16 dendrobatid genera, aiming for a broadly representative taxon sample. We compare topologies generated using maximum likelihood and coalescent methods and estimate divergence times using Bayesian methods. We find most of our dendrobatid tree to be consistent with previously published results based on mitochondrial and low-count nuclear data, with notable exceptions regarding the placement of Hyloxalinae and certain genera within Dendrobatinae. We also characterize how the evolutionary history and geographic distributions of the 285 poison frog species impact their conservation status. We hope that our phylogeny will serve as a backbone for future evolutionary studies and that our characterizations of conservation status inform conservation practices while highlighting taxa in need of further study.
Collapse
|
20
|
Ludt WB, Bernal MA, Kenworthy E, Salas E, Chakrabarty P. Genomic, ecological, and morphological approaches to investigating species limits: A case study in modern taxonomy from Tropical Eastern Pacific surgeonfishes. Ecol Evol 2019; 9:4001-4012. [PMID: 31015983 PMCID: PMC6467843 DOI: 10.1002/ece3.5029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 01/02/2023] Open
Abstract
A wide variety of species are distinguished by slight color variations. However, molecular analyses have repeatedly demonstrated that coloration does not always correspond to distinct evolutionary histories between closely related groups, suggesting that this trait is labile and can be misleading for species identification. In the present study, we analyze the evolutionary history of sister species of Prionurus surgeonfishes in the Tropical Eastern Pacific (TEP), which are distinguished by the presence or absence of dark spots on their body. We examined the species limits in this system using comparative specimen-based approaches, a mitochondrial gene (COI), more than 800 nuclear loci (Ultraconserved Elements), and abiotic niche comparisons. The results indicate there is a complete overlap of meristic counts and morphometric measurements between the two species. Further, we detected multiple individuals with intermediate spotting patterns suggesting that coloration is not diagnostic. Mitochondrial data recovered a single main haplotype shared between the species and all locations resulting in a complete lack of structure (ΦST = 0). Genomic analyses also suggest low levels of genetic differentiation (F ST = 0.013), and no alternatively fixed SNPs were detected between the two phenotypes. Furthermore, niche comparisons could not reject niche equivalency or similarity between the species. These results suggest that these two phenotypes are conspecific and widely distributed in the TEP. Here, we recognize Prionurus punctatus Gill 1862 as a junior subjective synonym of P. laticlavius (Valenciennes 1846). The underlying causes of phenotypic variation in this species are unknown. However, this system gives insight into general evolutionary dynamics within the TEP.
Collapse
Affiliation(s)
- William B. Ludt
- National Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of Columbia
| | - Moisés A. Bernal
- Department of Biological Sciences109 Cooke HallState University of New York at BuffaloBuffaloNew York
| | - Erica Kenworthy
- Ichthyology Section, 119 Foster Hall, Museum of Natural Science, Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | | | - Prosanta Chakrabarty
- Ichthyology Section, 119 Foster Hall, Museum of Natural Science, Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| |
Collapse
|
21
|
Jiang J, Yuan H, Zheng X, Wang Q, Kuang T, Li J, Liu J, Song S, Wang W, Cheng F, Li H, Huang J, Li C. Gene markers for exon capture and phylogenomics in ray-finned fishes. Ecol Evol 2019; 9:3973-3983. [PMID: 31015981 PMCID: PMC6468074 DOI: 10.1002/ece3.5026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Gene capture coupled with the next-generation sequencing has become one of the preferred methods of subsampling genomes for phylogenomic studies. Many exon markers have been developed in plants, sharks, frogs, reptiles, fishes, and others, but no universal exon markers have been tested in ray-finned fishes. Here, we identified a suite of "single-copy" protein-coding sequence (CDS) markers through comparing eight fish genomes, and tested them empirically in 83 species (33 families and nine orders or higher clades: Acipenseriformes, Lepisosteiformes, Elopomorpha, Osteoglossomorpha, Clupeiformes, Cypriniformes, Gobiaria, Carangaria, and Eupercaria; sensu Betancur et al. 2013). Sorting the markers according to their completeness and phylogenetic decisiveness in taxa tested resulted in a selection of 4,434 markers, which were proven to be useful in reconstructing phylogenies of the ray-finned fishes at different taxonomic levels. We also proposed a strategy of refining baits (probes) design a posteriori based on empirical data. The markers that we have developed may greatly enrich the batteries of exon markers for phylogenomic study in ray-finned fishes.
Collapse
Affiliation(s)
- Jiamei Jiang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Hao Yuan
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Xin Zheng
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Qian Wang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Ting Kuang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Jingyan Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Junning Liu
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Shuli Song
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Weicai Wang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Fangyuan Cheng
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Hongjie Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Junman Huang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| |
Collapse
|
22
|
Digging for the spiny rat and hutia phylogeny using a gene capture approach, with the description of a new mammal subfamily. Mol Phylogenet Evol 2019; 136:241-253. [PMID: 30885830 DOI: 10.1016/j.ympev.2019.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
Next generation sequencing (NGS) and genomic database mining allow biologists to gather and select large molecular datasets well suited to address phylogenomics and molecular evolution questions. Here we applied this approach to a mammal family, the Echimyidae, for which generic relationships have been difficult to recover and often referred to as a star phylogeny. These South-American spiny rats represent a family of caviomorph rodents exhibiting a striking diversity of species and life history traits. Using a NGS exon capture protocol, we isolated and sequenced ca. 500 nuclear DNA exons for 35 species belonging to all major echimyid and capromyid clades. Exons were carefully selected to encompass as much diversity as possible in terms of rate of evolution, heterogeneity in the distribution of site-variation and nucleotide composition. Supermatrix inferences and coalescence-based approaches were subsequently applied to infer this family's phylogeny. The inferred topologies were the same for both approaches, and support was maximal for each node, entirely resolving the ambiguous relationships of previous analyses. Fast-evolving nuclear exons tended to yield more reliable phylogenies, as slower-evolving sequences were not informative enough to disentangle the short branches of the Echimyidae radiation. Based on this resolved phylogeny and on molecular and morphological evidence, we confirm the rank of the Caribbean hutias - formerly placed in the Capromyidae family - as Capromyinae, a clade nested within Echimyidae. We also name and define Carterodontinae, a new subfamily of Echimyidae, comprising the extant monotypic genus Carterodon from Brazil, which is the closest living relative of West Indies Capromyinae.
Collapse
|
23
|
Kieran TJ, Gordon ER, Forthman M, Hoey-Chamberlain R, Kimball RT, Faircloth BC, Weirauch C, Glenn TC. Insight from an ultraconserved element bait set designed for hemipteran phylogenetics integrated with genomic resources. Mol Phylogenet Evol 2019; 130:297-303. [DOI: 10.1016/j.ympev.2018.10.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/12/2018] [Accepted: 10/20/2018] [Indexed: 02/05/2023]
|
24
|
Alda F, Tagliacollo VA, Bernt MJ, Waltz BT, Ludt WB, Faircloth BC, Alfaro ME, Albert JS, Chakrabarty P. Resolving Deep Nodes in an Ancient Radiation of Neotropical Fishes in the Presence of Conflicting Signals from Incomplete Lineage Sorting. Syst Biol 2018; 68:573-593. [DOI: 10.1093/sysbio/syy085] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Fernando Alda
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Victor A Tagliacollo
- Museu de Zoologia da Universidade de São Paulo (MZUSP), Ipirianga, 04263-000, São Paulo, São Paulo, Brazil
| | - Maxwell J Bernt
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Brandon T Waltz
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - William B Ludt
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Brant C Faircloth
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - James S Albert
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Prosanta Chakrabarty
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
25
|
Collins RA, Hrbek T. An In Silico Comparison of Protocols for Dated Phylogenomics. Syst Biol 2018; 67:633-650. [PMID: 29319797 DOI: 10.1093/sysbio/syx089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 10/24/2017] [Indexed: 01/02/2023] Open
Abstract
In the age of genome-scale DNA sequencing, choice of molecular marker arguably remains an important decision in planning a phylogenetic study. Using published genomes from 23 primate species, we make a standardized comparison of four of the most frequently used protocols in phylogenomics, viz., targeted sequence-enrichment using ultraconserved element and exon-capture probes, and restriction-site-associated DNA sequencing (RADseq and ddRADseq). Here, we present a procedure to perform in silico extractions from genomes and create directly comparable data sets for each class of marker. We then compare these data sets in terms of both phylogenetic resolution and ability to consistently and precisely estimate clade ages using fossil-calibrated molecular-clock models. Furthermore, we were also able to directly compare these results to previously published data sets from Sanger-sequenced nuclear exons and mitochondrial genomes under the same analytical conditions. Our results show-although with the exception of the mitochondrial genome data set and the smallest ddRADseq data set-that for uncontroversial nodes all data classes performed equally well, that is they recovered the same well supported topology. However, for one difficult-to-resolve node comprising a rapid diversification, we report well supported but conflicting topologies among the marker classes consistent with the mismodeling of gene tree heterogeneity as demonstrated by species tree analyses of single nucleotide polymorphisms. Likewise, clade age estimates showed consistent discrepancies between data sets under strict and relaxed clock models; for recent nodes, clade ages estimated by nuclear exon data sets were younger than those of the UCE, RADseq and mitochondrial data, but vice versa for the deepest nodes in the primate phylogeny. This observation is explained by temporal differences in phylogenetic informativeness (PI), with the data sets with strong PI peaks toward the present underestimating the deepest node ages. Finally, we conclude by emphasizing that while huge numbers of loci are probably not required for uncontroversial phylogenetic questions-for which practical considerations such as ease of data generation, sharing, and aggregating, therefore become increasingly important-accurately modeling heterogeneous data remains as relevant as ever for the more recalcitrant problems.
Collapse
Affiliation(s)
- Rupert A Collins
- Laboratório de Evolução e Genética Animal, Department of Genetics, Federal University of Amazonas, Av. Rodrigo Otavio Ramos, 3000, Manaus, AM, 69077-000, Brazil.,School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TH, UK
| | - Tomas Hrbek
- Laboratório de Evolução e Genética Animal, Department of Genetics, Federal University of Amazonas, Av. Rodrigo Otavio Ramos, 3000, Manaus, AM, 69077-000, Brazil.,Department of Biology, 4102 LSB Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|
26
|
Winker K, Glenn TC, Faircloth BC. Ultraconserved elements (UCEs) illuminate the population genomics of a recent, high-latitude avian speciation event. PeerJ 2018; 6:e5735. [PMID: 30310754 PMCID: PMC6174879 DOI: 10.7717/peerj.5735] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/05/2018] [Indexed: 01/08/2023] Open
Abstract
Using a large, consistent set of loci shared by descent (orthologous) to study relationships among taxa would revolutionize among-lineage comparisons of divergence and speciation processes. Ultraconserved elements (UCEs), highly conserved regions of the genome, offer such genomic markers. The utility of UCEs for deep phylogenetics is clearly established and there are mature analytical frameworks available, but fewer studies apply UCEs to recent evolutionary events, creating a need for additional example datasets and analytical approaches. We used UCEs to study population genomics in snow and McKay's buntings (Plectrophenax nivalis and P. hyperboreus). Prior work suggested divergence of these sister species during the last glacial maximum (∼18-74 Kya). With a sequencing depth of ∼30× from four individuals of each species, we used a series of analysis tools to genotype both alleles, obtaining a complete dataset of 2,635 variable loci (∼3.6 single nucleotide polymorphisms/locus) and 796 invariable loci. We found no fixed allelic differences between the lineages, and few loci had large allele frequency differences. Nevertheless, individuals were 100% diagnosable to species, and the two taxa were different genetically (F ST = 0.034; P = 0.03). The demographic model best fitting the data was one of divergence with gene flow. Estimates of demographic parameters differed from published mtDNA research, with UCE data suggesting lower effective population sizes (∼92,500-240,500 individuals), a deeper divergence time (∼241,000 years), and lower gene flow (2.8-5.2 individuals per generation). Our methods provide a framework for future population studies using UCEs, and our results provide additional evidence that UCEs are useful for answering questions at shallow evolutionary depths.
Collapse
Affiliation(s)
- Kevin Winker
- University of Alaska Museum & Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Travis C. Glenn
- Department of Environmental Health Science and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
27
|
Mclean BS, Bell KC, Allen JM, Helgen KM, Cook JA. Impacts of Inference Method and Data set Filtering on Phylogenomic Resolution in a Rapid Radiation of Ground Squirrels (Xerinae: Marmotini). Syst Biol 2018; 68:298-316. [DOI: 10.1093/sysbio/syy064] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Bryan S Mclean
- Department of Biology and Museum of Southwestern Biology, 1 University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA
| | - Kayce C Bell
- Department of Biology and Museum of Southwestern Biology, 1 University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA
- Department of Invertebrate Zoology, Smithsonian Institution National Museum of Natural History, P.O. Box 37012, MRC 163, Washington, DC 20013-7012, USA
| | - Julie M Allen
- Department of Biology, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Kristofer M Helgen
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, 1 University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA
| |
Collapse
|
28
|
Near TJ, MacGuigan DJ, Parker E, Struthers CD, Jones CD, Dornburg A. Phylogenetic analysis of Antarctic notothenioids illuminates the utility of RADseq for resolving Cenozoic adaptive radiations. Mol Phylogenet Evol 2018; 129:268-279. [PMID: 30195039 DOI: 10.1016/j.ympev.2018.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
Notothenioids are a clade of ∼120 species of marine fishes distributed in extreme southern hemisphere temperate near-shore habitats and in the Southern Ocean surrounding Antarctica. Over the past 25 years, molecular and morphological approaches have redefined hypotheses of relationships among notothenioid lineages as well as their relationships among major lineages of percomorph teleosts. These phylogenies provide a basis for investigation of mechanisms of evolutionary diversification within the clade and have enhanced our understanding of the notothenioid adaptive radiation. Despite extensive efforts, there remain several questions concerning the phylogeny of notothenioids. In this study, we deploy DNA sequences of ∼100,000 loci obtained using RADseq to investigate the phylogenetic relationships of notothenioids and to assess the utility of RADseq loci for lineages that exhibit divergence times ranging from the Paleogene to the Quaternary. The notothenioid phylogenies inferred from the RADseq loci provide unparalleled resolution and node support for several long-standing problems including, (1) relationships among species of Trematomus, (2) resolution of Indonotothenia cyanobrancha as the sister lineage of Trematomus, (3) the deep paraphyly of Nototheniidae, (4) the paraphyly of Lepidonotothen s.l., (5) paraphyly of Artedidraco, and 6) the monophyly of the Bathydraconidae. Assessment of site rates demonstrates that RADseq loci are similar to mtDNA protein coding genes and exhibit peak phylogenetic informativeness at the time interval during which the major Antarctic notothenioid lineages originated and diversified. In addition to providing a well-resolved phylogenetic hypothesis for notothenioids, our analyses quantify the predicted utility of RADseq loci for Cenozoic phylogenetic inferences.
Collapse
Affiliation(s)
- Thomas J Near
- Department of Ecology & Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA; Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA.
| | - Daniel J MacGuigan
- Department of Ecology & Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Elyse Parker
- Department of Ecology & Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Carl D Struthers
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Christopher D Jones
- Antarctic Ecosystem Research Division, NOAA Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| |
Collapse
|
29
|
Gilbert PS, Wu J, Simon MW, Sinsheimer JS, Alfaro ME. Filtering nucleotide sites by phylogenetic signal to noise ratio increases confidence in the Neoaves phylogeny generated from ultraconserved elements. Mol Phylogenet Evol 2018; 126:116-128. [PMID: 29626666 PMCID: PMC6217972 DOI: 10.1016/j.ympev.2018.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
Despite genome scale analyses, high-level relationships among Neoaves birds remain contentious. The placements of the Neoaves superorders are notoriously difficult to resolve because they involve deep splits followed by short internodes. Using our approach, we investigate whether filtering UCE loci on their phylogenetic signal to noise ratio helps to resolve key nodes in the Neoaves tree of life. We find that our analysis of data sets filtered for high signal to noise ratio results in topologies that are inconsistent with unfiltered results but that are congruent with whole-genome analyses. These relationships include the Columbea + Passerea sister relationship and the Phaethontimorphae + Aequornithia sister relationship. We also find increased statistical support for more recent nodes (i.e. the Pelecanidae + Ardeidae sister relationship, the Eucavitaves clade, and the Otidiformes + Musophagiformes sister relationship). We also find instances where support is reduced for well-established clades, possibly due to the removal of sites with moderate signal-to-noise ratio. Our results suggest that filtering on the basis of signal to noise ratio is a useful tool for resolving problematic splits in phylogenomic data sets.
Collapse
Affiliation(s)
- Princess S Gilbert
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA, USA.
| | - Jing Wu
- Henry Samueli School of Engineering and Applied Science, Department of Computer Science, University of California, Los Angeles, CA, USA
| | - Margaret W Simon
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Janet S Sinsheimer
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Michael E Alfaro
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Mongiardino Koch N, Gauthier JA. Noise and biases in genomic data may underlie radically different hypotheses for the position of Iguania within Squamata. PLoS One 2018; 13:e0202729. [PMID: 30133514 PMCID: PMC6105018 DOI: 10.1371/journal.pone.0202729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/08/2018] [Indexed: 12/23/2022] Open
Abstract
Squamate reptiles are a major component of vertebrate biodiversity whose crown-clade traces its origin to a narrow window of time in the Mesozoic during which the main subclades diverged in rapid succession. Deciphering phylogenetic relationships among these lineages has proven challenging given the conflicting signals provided by genomic and phenomic data. Most notably, the placement of Iguania has routinely differed between data sources, with morphological evidence supporting a sister relationship to the remaining squamates (Scleroglossa hypothesis) and molecular data favoring a highly nested position alongside snakes and anguimorphs (Toxicofera hypothesis). We provide novel insights by generating an expanded morphological dataset and exploring the presence of phylogenetic signal, noise, and biases in molecular data. Our analyses confirm the presence of strong conflicting signals for the position of Iguania between morphological and molecular datasets. However, we also find that molecular data behave highly erratically when inferring the deepest branches of the squamate tree, a consequence of limited phylogenetic signal to resolve this ancient radiation with confidence. This, in turn, seems to result from a rate of evolution that is too high for historical signals to survive to the present. Finally, we detect significant systematic biases, with iguanians and snakes sharing faster rates of molecular evolution and a similarly biased nucleotide composition. A combination of scant phylogenetic signal, high levels of noise, and the presence of systematic biases could result in the misplacement of Iguania. We regard this explanation to be at least as plausible as the complex scenario of convergence and reversals required for morphological data to be misleading. We further evaluate and discuss the utility of morphological data to resolve ancient radiations, as well as its impact in combined-evidence phylogenomic analyses, with results relevant for the assessment of evidence and conflict across the Tree of Life.
Collapse
Affiliation(s)
- Nicolás Mongiardino Koch
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut, United States of America
| | - Jacques A. Gauthier
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut, United States of America
- Yale Peabody Museum of Natural History, New Haven, Connecticut, United States of America
| |
Collapse
|
31
|
Herrando-Moraira S. Exploring data processing strategies in NGS target enrichment to disentangle radiations in the tribe Cardueae (Compositae). Mol Phylogenet Evol 2018; 128:69-87. [PMID: 30036700 DOI: 10.1016/j.ympev.2018.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Target enrichment is a cost-effective sequencing technique that holds promise for elucidating evolutionary relationships in fast-evolving lineages. However, potential biases and impact of bioinformatic sequence treatments in phylogenetic inference have not been thoroughly explored yet. Here, we investigate this issue with an ultimate goal to shed light into a highly diversified group of Compositae (Asteraceae) constituted by four main genera: Arctium, Cousinia, Saussurea, and Jurinea. Specifically, we compared sequence data extraction methods implemented in two easy-to-use workflows, PHYLUCE and HybPiper, and assessed the impact of two filtering practices intended to reduce phylogenetic noise. In addition, we compared two phylogenetic inference methods: (1) the concatenation approach, in which all loci were concatenated in a supermatrix; and (2) the coalescence approach, in which gene trees were produced independently and then used to construct a species tree under coalescence assumptions. Here we confirm the usefulness of the set of 1061 COS targets (a nuclear conserved orthology loci set developed for the Compositae) across a variety of taxonomic levels. Intergeneric relationships were completely resolved: there are two sister groups, Arctium-Cousinia and Saussurea-Jurinea, which are in agreement with a morphological hypothesis. Intrageneric relationships among species of Arctium, Cousinia, and Saussurea are also well defined. Conversely, conflicting species relationships remain for Jurinea. Methodological choices significantly affected phylogenies in terms of topology, branch length, and support. Across all analyses, the phylogeny obtained using HybPiper and the strictest scheme of removing fast-evolving sites was estimated as the optimal. Regarding methodological choices, we conclude that: (1) trees obtained under the coalescence approach are topologically more congruent between them than those inferred using the concatenation approach; (2) refining treatments only improved support values under the concatenation approach; and (3) branch support values are maximized when fast-evolving sites are removed in the concatenation approach, and when a higher number of loci is analyzed in the coalescence approach.
Collapse
Affiliation(s)
- Sonia Herrando-Moraira
- Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain.
| | | |
Collapse
|
32
|
Light in the darkness: New perspective on lanternfish relationships and classification using genomic and morphological data. Mol Phylogenet Evol 2018; 121:71-85. [DOI: 10.1016/j.ympev.2017.12.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 01/29/2023]
|
33
|
Affiliation(s)
- David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
34
|
Chakrabarty P, Faircloth BC, Alda F, Ludt WB, Mcmahan CD, Near TJ, Dornburg A, Albert JS, Arroyave J, Stiassny MLJ, Sorenson L, Alfaro ME. Phylogenomic Systematics of Ostariophysan Fishes: Ultraconserved Elements Support the Surprising Non-Monophyly of Characiformes. Syst Biol 2018; 66:881-895. [PMID: 28334176 DOI: 10.1093/sysbio/syx038] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/24/2016] [Indexed: 12/30/2022] Open
Abstract
Ostariophysi is a superorder of bony fishes including more than 10,300 species in 1100 genera and 70 families. This superorder is traditionally divided into five major groups (orders): Gonorynchiformes (milkfishes and sandfishes), Cypriniformes (carps and minnows), Characiformes (tetras and their allies), Siluriformes (catfishes), and Gymnotiformes (electric knifefishes). Unambiguous resolution of the relationships among these lineages remains elusive, with previous molecular and morphological analyses failing to produce a consensus phylogeny. In this study, we use over 350 ultraconserved element (UCEs) loci comprising 5 million base pairs collected across 35 representative ostariophysan species to compile one of the most data-rich phylogenies of fishes to date. We use these data to infer higher level (interordinal) relationships among ostariophysan fishes, focusing on the monophyly of the Characiformes-one of the most contentiously debated groups in fish systematics. As with most previous molecular studies, we recover a non-monophyletic Characiformes with the two monophyletic suborders, Citharinoidei and Characoidei, more closely related to other ostariophysan clades than to each other. We also explore incongruence between results from different UCE data sets, issues of orthology, and the use of morphological characters in combination with our molecular data. [Conserved sequence; ichthyology; massively parallel sequencing; morphology; next-generation sequencing; UCEs.].
Collapse
Affiliation(s)
- Prosanta Chakrabarty
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
| | - Brant C Faircloth
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
| | - Fernando Alda
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
| | - William B Ludt
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
| | - Caleb D Mcmahan
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA.,The Field Museum of Natural History, 1400 S Lake Shore Dr, Chicago, IL 60605, USA
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - James S Albert
- Department of Biology, University of Louisiana, Lafayette, LA 70504, USA
| | - Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Laurie Sorenson
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, 610 Yound Drive South, Los Angeles, CA 90095, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 610 Yound Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Van Dam MH, Lam AW, Sagata K, Gewa B, Laufa R, Balke M, Faircloth BC, Riedel A. Ultraconserved elements (UCEs) resolve the phylogeny of Australasian smurf-weevils. PLoS One 2017; 12:e0188044. [PMID: 29166661 PMCID: PMC5699822 DOI: 10.1371/journal.pone.0188044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022] Open
Abstract
Weevils (Curculionoidea) comprise one of the most diverse groups of organisms on earth. There is hardly a vascular plant or plant part without its own species of weevil feeding on it and weevil species diversity is greater than the number of fishes, birds, reptiles, amphibians and mammals combined. Here, we employ ultraconserved elements (UCEs) designed for beetles and a novel partitioning strategy of loci to help resolve phylogenetic relationships within the radiation of Australasian smurf-weevils (Eupholini). Despite being emblematic of the New Guinea fauna, no previous phylogenetic studies have been conducted on the Eupholini. In addition to a comprehensive collection of fresh specimens, we supplement our taxon sampling with museum specimens, and this study is the first target enrichment phylogenomic dataset incorporating beetle specimens from museum collections. We use both concatenated and species tree analyses to examine the relationships and taxonomy of this group. For species tree analyses we present a novel partitioning strategy to better model the molecular evolutionary process in UCEs. We found that the current taxonomy is problematic, largely grouping species on the basis of similar color patterns. Finally, our results show that most loci required multiple partitions for nucleotide rate substitution, suggesting that single partitions may not be the optimal partitioning strategy to accommodate rate heterogeneity for UCE loci.
Collapse
Affiliation(s)
- Matthew H. Van Dam
- SNSB-Zoological State Collection, Münchhausenstraße 21, München, Germany
| | - Athena W. Lam
- SNSB-Zoological State Collection, Münchhausenstraße 21, München, Germany
| | - Katayo Sagata
- School of Natural & Physical Sciences, The University of Papua New Guinea, UNIVERSITY 134, National Capital District, Papua New Guinea
| | - Bradley Gewa
- The New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Raymond Laufa
- The New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Michael Balke
- SNSB-Zoological State Collection, Münchhausenstraße 21, München, Germany
- GeoBioCenter, Ludwig-Maximilians-Universität, München, Germany
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, United States of America
| | | |
Collapse
|
36
|
Campbell MA, Alfaro ME, Belasco M, López JA. Early-branching euteleost relationships: areas of congruence between concatenation and coalescent model inferences. PeerJ 2017; 5:e3548. [PMID: 28929008 PMCID: PMC5592902 DOI: 10.7717/peerj.3548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/15/2017] [Indexed: 11/20/2022] Open
Abstract
Phylogenetic inference based on evidence from DNA sequences has led to significant strides in the development of a stable and robustly supported framework for the vertebrate tree of life. To date, the bulk of those advances have relied on sequence data from a small number of genome regions that have proven unable to produce satisfactory answers to consistently recalcitrant phylogenetic questions. Here, we re-examine phylogenetic relationships among early-branching euteleostean fish lineages classically grouped in the Protacanthopterygii using DNA sequence data surrounding ultraconserved elements. We report and examine a dataset of thirty-four OTUs with 17,957 aligned characters from fifty-three nuclear loci. Phylogenetic analysis is conducted in concatenated, joint gene trees and species tree estimation and summary coalescent frameworks. All analytical frameworks yield supporting evidence for existing hypotheses of relationship for the placement of Lepidogalaxias salamandroides, monophyly of the Stomiatii and the presence of an esociform + salmonid clade. Lepidogalaxias salamandroides and the Esociformes + Salmoniformes are successive sister lineages to all other euteleosts in the majority of analyses. The concatenated and joint gene trees and species tree analysis types produce high support values for this arrangement. However, inter-relationships of Argentiniformes, Stomiatii and Neoteleostei remain uncertain as they varied by analysis type while receiving strong and contradictory indices of support. Topological differences between analysis types are also apparent within the otomorph and the percomorph taxa in the data set. Our results identify concordant areas with strong support for relationships within and between early-branching euteleost lineages but they also reveal limitations in the ability of larger datasets to conclusively resolve other aspects of that phylogeny.
Collapse
Affiliation(s)
- Matthew A Campbell
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States of America.,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States of America
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Max Belasco
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - J Andrés López
- School of Fisheries and Ocean Sciencs, University of Alaska Fairbanks, Fairbanks, AK, United States of America.,University of Alaska Museum, Fairbanks, AK, United States of America
| |
Collapse
|
37
|
Shaffer HB, McCartney-Melstad E, Near TJ, Mount GG, Spinks PQ. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines). Mol Phylogenet Evol 2017; 115:7-15. [PMID: 28711671 DOI: 10.1016/j.ympev.2017.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/30/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
Accurate time-calibrated phylogenies are the centerpiece of many macroevolutionary studies, and the relationship between the size and scale of molecular data sets and the density and accuracy of fossil calibrations is a key element of time tree studies. Here, we develop a target capture array specifically for living turtles, compare its efficiency to an ultraconserved element (UCE) dataset, and present a time-calibrated molecular phylogeny based on 539 nuclear loci sequenced from 26 species representing the breadth of living turtle diversity plus outgroups. Our gene array, based on three fully sequenced turtle genomes, is 2.4 times more variable across turtles than a recently published UCE data set for an identical subset of 13 species, confirming that taxon-specific arrays return more informative data per sequencing effort than UCEs. We used our genomic data to estimate the ages of living turtle clades including a mid-late Triassic origin for crown turtles and a mid-Carboniferous split of turtles from their sister group, Archosauria. By specifically excluding several of the earliest potential crown turtle fossils and limiting the age of fossil calibration points to the unambiguous crown lineage Caribemys oxfordiensis from the Late Jurassic (Oxfordian, 163.5-157.3Ma) we corroborate a relatively ancient age for living turtles. We also provide novel age estimates for five of the ten testudine families containing more than a single species, as well as several intrafamilial clades. Most of the diversity of crown turtles appears to date to the Paleogene, well after the Cretaceous-Paleogene mass extinction 66mya.
Collapse
Affiliation(s)
- H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA.
| | - Evan McCartney-Melstad
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Genevieve G Mount
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA; Department of Biological Sciences, Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Phillip Q Spinks
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, Lecointre G, Ortí G. Phylogenetic classification of bony fishes. BMC Evol Biol 2017; 17:162. [PMID: 28683774 PMCID: PMC5501477 DOI: 10.1186/s12862-017-0958-3] [Citation(s) in RCA: 420] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fish classifications, as those of most other taxonomic groups, are being transformed drastically as new molecular phylogenies provide support for natural groups that were unanticipated by previous studies. A brief review of the main criteria used by ichthyologists to define their classifications during the last 50 years, however, reveals slow progress towards using an explicit phylogenetic framework. Instead, the trend has been to rely, in varying degrees, on deep-rooted anatomical concepts and authority, often mixing taxa with explicit phylogenetic support with arbitrary groupings. Two leading sources in ichthyology frequently used for fish classifications (JS Nelson's volumes of Fishes of the World and W. Eschmeyer's Catalog of Fishes) fail to adopt a global phylogenetic framework despite much recent progress made towards the resolution of the fish Tree of Life. The first explicit phylogenetic classification of bony fishes was published in 2013, based on a comprehensive molecular phylogeny ( www.deepfin.org ). We here update the first version of that classification by incorporating the most recent phylogenetic results. RESULTS The updated classification presented here is based on phylogenies inferred using molecular and genomic data for nearly 2000 fishes. A total of 72 orders (and 79 suborders) are recognized in this version, compared with 66 orders in version 1. The phylogeny resolves placement of 410 families, or ~80% of the total of 514 families of bony fishes currently recognized. The ordinal status of 30 percomorph families included in this study, however, remains uncertain (incertae sedis in the series Carangaria, Ovalentaria, or Eupercaria). Comments to support taxonomic decisions and comparisons with conflicting taxonomic groups proposed by others are presented. We also highlight cases were morphological support exist for the groups being classified. CONCLUSIONS This version of the phylogenetic classification of bony fishes is substantially improved, providing resolution for more taxa than previous versions, based on more densely sampled phylogenetic trees. The classification presented in this study represents, unlike any other, the most up-to-date hypothesis of the Tree of Life of fishes.
Collapse
Affiliation(s)
- Ricardo Betancur-R
- Department of Biology, University of Puerto Rico, Río Piedras, P.O. Box 23360, San Juan, PR 00931 USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| | - Edward O. Wiley
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS USA
- Sam Houston State Natural History Collections, Sam Houston State University, Huntsville, Texas USA
| | - Gloria Arratia
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS USA
| | - Arturo Acero
- Universidad Nacional de Colombia sede Caribe, Cecimar, El Rodadero, Santa Marta, Magdalena Colombia
| | - Nicolas Bailly
- FishBase Information and Research Group, Los Baños, Philippines
| | - Masaki Miya
- Department Ecology and Environmental Sciences, Natural History Museum and Institute, Chiba, Japan
| | - Guillaume Lecointre
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, Paris, France
| | - Guillermo Ortí
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Department of Biology, The George Washington University, Washington, DC USA
| |
Collapse
|
39
|
Singhal S, Grundler M, Colli G, Rabosky DL. Squamate Conserved Loci (SqCL): A unified set of conserved loci for phylogenomics and population genetics of squamate reptiles. Mol Ecol Resour 2017; 17:e12-e24. [PMID: 28417603 DOI: 10.1111/1755-0998.12681] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/05/2017] [Accepted: 04/03/2017] [Indexed: 11/28/2022]
Abstract
The identification of conserved loci across genomes, along with advances in target capture methods and high-throughput sequencing, has helped spur a phylogenomics revolution by enabling researchers to gather large numbers of homologous loci across clades of interest with minimal upfront investment in locus design. Target capture for vertebrate animals is currently dominated by two approaches-anchored hybrid enrichment (AHE) and ultraconserved elements (UCE)-and both approaches have proven useful for addressing questions in phylogenomics, phylogeography and population genomics. However, these two sets of loci have minimal overlap with each other; moreover, they do not include many traditional loci that that have been used for phylogenetics. Here, we combine across UCE, AHE and traditional phylogenetic gene locus sets to generate the Squamate Conserved Loci set, a single integrated probe set that can generate high-quality and highly complete data across all three loci types. We use these probes to generate data for 44 phylogenetically disparate taxa that collectively span approximately 33% of terrestrial vertebrate diversity. Our results generated an average of 4.29 Mb across 4709 loci per individual, of which an average of 2.99 Mb was sequenced to high enough coverage (≥10×) to use for population genetic analyses. We validate the utility of these loci for both phylogenomic and population genomic questions, provide a comparison among these locus sets of their relative usefulness and suggest areas for future improvement.
Collapse
Affiliation(s)
- Sonal Singhal
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Maggie Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Guarino Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Brazil
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
40
|
Phylogenomic analysis of a rapid radiation of misfit fishes (Syngnathiformes) using ultraconserved elements. Mol Phylogenet Evol 2017; 113:33-48. [PMID: 28487262 DOI: 10.1016/j.ympev.2017.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/23/2022]
Abstract
Phylogenetics is undergoing a revolution as large-scale molecular datasets reveal unexpected but repeatable rearrangements of clades that were previously thought to be disparate lineages. One of the most unusual clades of fishes that has been found using large-scale molecular datasets is an expanded Syngnathiformes including traditional long-snouted syngnathiform lineages (Aulostomidae, Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), as well as a diverse set of largely benthic-associated fishes (Callionymoidei, Dactylopteridae, Mullidae, Pegasidae) that were previously dispersed across three orders. The monophyly of this surprising clade of fishes has been upheld by recent studies utilizing both nuclear and mitogenomic data, but the relationships among major lineages within Syngnathiformes remain ambiguous; previous analyses have inconsistent topologies and are plagued by low support at deep divergences between the major lineages. In this study, we use a dataset of ultraconserved elements (UCEs) to conduct the first phylogenomic study of Syngnathiformes. UCEs have been effective markers for resolving deep phylogenetic relationships in fishes and, combined with increased taxon sampling, we expected UCEs to resolve problematic syngnathiform relationships. Overall, UCEs were effective at resolving relationships within Syngnathiformes at a range of evolutionary timescales. We find consistent support for the monophyly of traditional long-snouted syngnathiform lineages (Aulostomidae, Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), which better agrees with morphological hypotheses than previously published topologies from molecular data. This result was supported by all Bayesian and maximum likelihood analyses, was robust to differences in matrix completeness and potential sources of bias, and was highly supported in coalescent-based analyses in ASTRAL when matrices were filtered to contain the most phylogenetically informative loci. While Bayesian and maximum likelihood analyses found support for a benthic-associated clade (Callionymidae, Dactylopteridae, Mullidae, and Pegasidae) as sister to the long-snouted clade, this result was not replicated in the ASTRAL analyses. The base of our phylogeny is characterized by short internodes separating major syngnathiform lineages and is consistent with the hypothesis of an ancient rapid radiation at the base of Syngnathiformes. Syngnathiformes therefore present an exciting opportunity to study patterns of morphological variation and functional innovation arising from rapid but ancient radiation.
Collapse
|
41
|
Dornburg A, Townsend JP, Brooks W, Spriggs E, Eytan RI, Moore JA, Wainwright PC, Lemmon A, Lemmon EM, Near TJ. New insights on the sister lineage of percomorph fishes with an anchored hybrid enrichment dataset. Mol Phylogenet Evol 2017; 110:27-38. [PMID: 28254474 DOI: 10.1016/j.ympev.2017.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 11/17/2022]
Abstract
Percomorph fishes represent over 17,100 species, including several model organisms and species of economic importance. Despite continuous advances in the resolution of the percomorph Tree of Life, resolution of the sister lineage to Percomorpha remains inconsistent but restricted to a small number of candidate lineages. Here we use an anchored hybrid enrichment (AHE) dataset of 132 loci with over 99,000 base pairs to identify the sister lineage of percomorph fishes. Initial analyses of this dataset failed to recover a strongly supported sister clade to Percomorpha, however, scrutiny of the AHE dataset revealed a bias towards high GC content at fast-evolving codon partitions (GC bias). By combining several existing approaches aimed at mitigating the impacts of convergence in GC bias, including RY coding and analyses of amino acids, we consistently recovered a strongly supported clade comprised of Holocentridae (squirrelfishes), Berycidae (Alfonsinos), Melamphaidae (bigscale fishes), Cetomimidae (flabby whalefishes), and Rondeletiidae (redmouth whalefishes) as the sister lineage to Percomorpha. Additionally, implementing phylogenetic informativeness (PI) based metrics as a filtration method yielded this same topology, suggesting PI based approaches will preferentially filter these fast-evolving regions and act in a manner consistent with other phylogenetic approaches aimed at mitigating GC bias. Our results provide a new perspective on a key issue for studies investigating the evolutionary history of more than one quarter of all living species of vertebrates.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA.
| | - Jeffrey P Townsend
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Biostatistics, Yale University, New Haven, CT 06510, USA
| | - Willa Brooks
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
| | - Elizabeth Spriggs
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Ron I Eytan
- Marine Biology Department, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Jon A Moore
- Florida Atlantic University, Wilkes Honors College, Jupiter, FL 33458, USA; Florida Atlantic University, Harbor Branch Oceanographic Institution, Fort Pierce, FL 34946, USA
| | - Peter C Wainwright
- Department of Evolution & Ecology, University of California, Davis, CA 95616, USA
| | - Alan Lemmon
- Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, FL 32306, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Thomas J Near
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA; Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Alexander AM, Su Y, Oliveros CH, Olson KV, Travers SL, Brown RM. Genomic data reveals potential for hybridization, introgression, and incomplete lineage sorting to confound phylogenetic relationships in an adaptive radiation of narrow‐mouth frogs. Evolution 2016; 71:475-488. [DOI: 10.1111/evo.13133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/07/2016] [Indexed: 12/30/2022]
Affiliation(s)
| | - Yong‐Chao Su
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
- Department of Biological Sciences National University of Singapore 117543 Singapore
| | - Carl H. Oliveros
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| | - Karen V. Olson
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
| | - Scott L. Travers
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
| | - Rafe M. Brown
- Biodiversity Institute University of Kansas Lawrence Kansas 66045
| |
Collapse
|
43
|
Dornburg A, Fisk JN, Tamagnan J, Townsend JP. PhyInformR: phylogenetic experimental design and phylogenomic data exploration in R. BMC Evol Biol 2016; 16:262. [PMID: 27905871 PMCID: PMC5134231 DOI: 10.1186/s12862-016-0837-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/24/2016] [Indexed: 12/02/2022] Open
Abstract
Background Analyses of phylogenetic informativeness represent an important step in screening potential or existing datasets for their proclivity toward convergent or parallel evolution of molecular sites. However, while new theory has been developed from which to predict the utility of sequence data, adoption of these advances have been stymied by a lack of software enabling application of advances in theory, especially for large next-generation sequence data sets. Moreover, there are no theoretical barriers to application of the phylogenetic informativeness or the calculation of quartet internode resolution probabilities in a Bayesian setting that more robustly accounts for uncertainty, yet there is no software with which a computationally intensive Bayesian approach to experimental design could be implemented. Results We introduce PhyInformR, an open source software package that performs rapid calculation of phylogenetic information content using the latest advances in phylogenetic informativeness based theory. These advances include modifications that incorporate uneven branch lengths and any model of nucleotide substitution to provide assessments of the phylogenetic utility of any given dataset or dataset partition. PhyInformR provides new tools for data visualization and routines optimized for rapid statistical calculations, including approaches making use of Bayesian posterior distributions and parallel processing. By implementing the computation on user hardware, PhyInformR increases the potential power users can apply toward screening datasets for phylogenetic/genomic information content by orders of magnitude. Conclusions PhyInformR provides a means to implement diverse substitution models and specify uneven branch lengths for phylogenetic informativeness or calculations providing quartet based probabilities of resolution, produce novel visualizations, and facilitate analyses of next-generation sequence datasets while incorporating phylogenetic uncertainty through the use parallel processing. As an open source program, PhyInformR is fully customizable and expandable, thereby allowing for advanced methodologies to be readily integrated into local bioinformatics pipelines. Software is available through CRAN and a package containing the software, a detailed manual, and additional sample data is also provided freely through github: https://github.com/carolinafishes/PhyInformR. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0837-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, North Carolina, 27601, USA.
| | - J Nick Fisk
- Department of Biostatistics, Yale University, New Haven, Connecticut, 06510, USA
| | - Jules Tamagnan
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, Yale University, New Haven, Connecticut, 06510, USA
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University, New Haven, Connecticut, 06510, USA.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06525, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 06511, USA
| |
Collapse
|
44
|
Starrett J, Derkarabetian S, Hedin M, Bryson RW, McCormack JE, Faircloth BC. High phylogenetic utility of an ultraconserved element probe set designed for Arachnida. Mol Ecol Resour 2016; 17:812-823. [PMID: 27768256 DOI: 10.1111/1755-0998.12621] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/24/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022]
Abstract
Arachnida is an ancient, diverse and ecologically important animal group that contains a number of species of interest for medical, agricultural and engineering applications. Despite their importance, many aspects of the arachnid tree of life remain unresolved, hindering comparative approaches to arachnid biology. Biologists have made considerable efforts to resolve the arachnid phylogeny; yet, limited and challenging morphological characters, as well as a dearth of genetic resources, have hindered progress. Here, we present a genomic toolkit for arachnids featuring hundreds of conserved DNA regions (ultraconserved elements or UCEs) that allow targeted sequencing of any species in the arachnid tree of life. We used recently developed capture probes designed from conserved regions of available arachnid genomes to enrich a sample of loci from 32 diverse arachnids. Sequence capture returned an average of 487 UCE loci for all species, with a range from 170 to 722. Phylogenetic analysis of these UCEs produced a highly resolved arachnid tree with relationships largely consistent with recent transcriptome-based phylogenies. We also tested the phylogenetic informativeness of UCE probes within the spider, scorpion and harvestman orders, demonstrating the utility of these markers at shallower taxonomic scales and suggesting that these loci will be useful for species-level differences. This probe set will open the door to phylogenomic and population genomic studies across the arachnid tree of life, enabling systematics, species delimitation, species discovery and conservation of these diverse arthropods.
Collapse
Affiliation(s)
- James Starrett
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Shahan Derkarabetian
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.,Department of Biology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Robert W Bryson
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, 4331 Memorial Way Northeast, Seattle, WA, 98195, USA.,Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, 90041, USA
| | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, 90041, USA
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
45
|
Harrington RC, Faircloth BC, Eytan RI, Smith WL, Near TJ, Alfaro ME, Friedman M. Phylogenomic analysis of carangimorph fishes reveals flatfish asymmetry arose in a blink of the evolutionary eye. BMC Evol Biol 2016; 16:224. [PMID: 27769164 PMCID: PMC5073739 DOI: 10.1186/s12862-016-0786-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
Abstract
Background Flatfish cranial asymmetry represents one of the most remarkable morphological innovations among vertebrates, and has fueled vigorous debate on the manner and rate at which strikingly divergent phenotypes evolve. A surprising result of many recent molecular phylogenetic studies is the lack of support for flatfish monophyly, where increasingly larger DNA datasets of up to 23 loci have either yielded a weakly supported flatfish clade or indicated the group is polyphyletic. Lack of resolution for flatfish relationships has been attributed to analytical limitations for dealing with processes such as nucleotide non-stationarity and incomplete lineage sorting (ILS). We tackle this phylogenetic problem using a sequence dataset comprising more than 1,000 ultraconserved DNA element (UCE) loci covering 45 carangimorphs, the broader clade containing flatfishes and several other specialized lineages such as remoras, billfishes, and archerfishes. Results We present a phylogeny based on UCE loci that unequivocally supports flatfish monophyly and a single origin of asymmetry. We document similar levels of discordance among UCE loci as in previous, smaller molecular datasets. However, relationships among flatfishes and carangimorphs recovered from multilocus concatenated and species tree analyses of our data are robust to the analytical framework applied and size of data matrix used. By integrating the UCE data with a rich fossil record, we find that the most distinctive carangimorph bodyplans arose rapidly during the Paleogene (66.0–23.03 Ma). Flatfish asymmetry, for example, likely evolved over an interval of no more than 2.97 million years. Conclusions The longstanding uncertainty in phylogenetic hypotheses for flatfishes and their carangimorph relatives highlights the limitations of smaller molecular datasets when applied to successive, rapid divergences. Here, we recovered significant support for flatfish monophyly and relationships among carangimorphs through analysis of over 1,000 UCE loci. The resulting time-calibrated phylogeny points to phenotypic divergence early within carangimorph history that broadly matches with the predictions of adaptive models of lineage diversification. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0786-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard C Harrington
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK. .,Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT, 06520, USA.
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ron I Eytan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - W Leo Smith
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Thomas J Near
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT, 06520, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Matt Friedman
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK.,Museum of Paleontology and Department of Earth and Environmental Science, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI, 48109-1079, USA
| |
Collapse
|
46
|
Genomic Mining of Phylogenetically Informative Nuclear Markers in Bark and Ambrosia Beetles. PLoS One 2016; 11:e0163529. [PMID: 27668729 PMCID: PMC5036811 DOI: 10.1371/journal.pone.0163529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/10/2016] [Indexed: 11/19/2022] Open
Abstract
Deep level insect relationships are generally difficult to resolve, especially within taxa of the most diverse and species rich holometabolous orders. In beetles, the major diversity occurs in the Phytophaga, including charismatic groups such as leaf beetles, longhorn beetles and weevils. Bark and ambrosia beetles are wood boring weevils that contribute 12 percent of the diversity encountered in Curculionidae, one of the largest families of beetles with more than 50000 described species. Phylogenetic resolution in groups of Cretaceous age has proven particularly difficult and requires large quantity of data. In this study, we investigated 100 nuclear genes in order to select a number of markers with low evolutionary rates and high phylogenetic signal. A PCR screening using degenerate primers was applied to 26 different weevil species. We obtained sequences from 57 of the 100 targeted genes. Sequences from each nuclear marker were aligned and examined for detecting multiple copies, pseudogenes and introns. Phylogenetic informativeness (PI) and the capacity for reconstruction of previously established phylogenetic relationships were used as proxies for selecting a subset of the 57 amplified genes. Finally, we selected 16 markers suitable for large-scale phylogenetics of Scolytinae and related weevil taxa.
Collapse
|
47
|
Hosner PA, Faircloth BC, Glenn TC, Braun EL, Kimball RT. Avoiding Missing Data Biases in Phylogenomic Inference: An Empirical Study in the Landfowl (Aves: Galliformes). Mol Biol Evol 2015; 33:1110-25. [PMID: 26715628 DOI: 10.1093/molbev/msv347] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Production of massive DNA sequence data sets is transforming phylogenetic inference, but best practices for analyzing such data sets are not well established. One uncertainty is robustness to missing data, particularly in coalescent frameworks. To understand the effects of increasing matrix size and loci at the cost of increasing missing data, we produced a 90 taxon, 2.2 megabase, 4,800 locus sequence matrix of landfowl using target capture of ultraconserved elements. We then compared phylogenies estimated with concatenated maximum likelihood, quartet-based methods executed on concatenated matrices and gene tree reconciliation methods, across five thresholds of missing data. Results of maximum likelihood and quartet analyses were similar, well resolved, and demonstrated increasing support with increasing matrix size and sparseness. Conversely, gene tree reconciliation produced unexpected relationships when we included all informative loci, with certain taxa placed toward the root compared with other approaches. Inspection of these taxa identified a prevalence of short average contigs, which potentially biased gene tree inference and caused erroneous results in gene tree reconciliation. This suggests that the more problematic missing data in gene tree-based analyses are partial sequences rather than entire missing sequences from locus alignments. Limiting gene tree reconciliation to the most informative loci solved this problem, producing well-supported topologies congruent with concatenation and quartet methods. Collectively, our analyses provide a well-resolved phylogeny of landfowl, including strong support for previously problematic relationships such as those among junglefowl (Gallus), and clarify the position of two enigmatic galliform genera (Lerwa, Melanoperdix) not sampled in previous molecular phylogenetic studies.
Collapse
Affiliation(s)
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia
| | | | | |
Collapse
|
48
|
Blaimer BB, Brady SG, Schultz TR, Lloyd MW, Fisher BL, Ward PS. Phylogenomic methods outperform traditional multi-locus approaches in resolving deep evolutionary history: a case study of formicine ants. BMC Evol Biol 2015; 15:271. [PMID: 26637372 PMCID: PMC4670518 DOI: 10.1186/s12862-015-0552-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/26/2015] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Ultraconserved elements (UCEs) have been successfully used in phylogenomics for a variety of taxa, but their power in phylogenetic inference has yet to be extensively compared with that of traditional Sanger sequencing data sets. Moreover, UCE data on invertebrates, including insects, are sparse. We compared the phylogenetic informativeness of 959 UCE loci with a multi-locus data set of ten nuclear markers obtained via Sanger sequencing, testing the ability of these two types of data to resolve and date the evolutionary history of the second most species-rich subfamily of ants in the world, the Formicinae. RESULTS Phylogenetic analyses show that UCEs are superior in resolving ancient and shallow relationships in formicine ants, demonstrated by increased node support and a more resolved phylogeny. Phylogenetic informativeness metrics indicate a twofold improvement relative to the 10-gene data matrix generated from the identical set of taxa. We were able to significantly improve formicine classification based on our comprehensive UCE phylogeny. Our divergence age estimations, using both UCE and Sanger data, indicate that crown-group Formicinae are older (104-117 Ma) than previously suggested. Biogeographic analyses infer that the diversification of the subfamily has occurred on all continents with no particular hub of cladogenesis. CONCLUSIONS We found UCEs to be far superior to the multi-locus data set in estimating formicine relationships. The early history of the clade remains uncertain due to ancient rapid divergence events that are unresolvable even with our genomic-scale data, although this might be largely an effect of several problematic taxa subtended by long branches. Our comparison of divergence ages from both Sanger and UCE data demonstrates the effectiveness of UCEs for dating analyses. This comparative study highlights both the promise and limitations of UCEs for insect phylogenomics, and will prove useful to the growing number of evolutionary biologists considering the transition from Sanger to next-generation sequencing approaches.
Collapse
Affiliation(s)
- Bonnie B Blaimer
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA.
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA.
| | - Ted R Schultz
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA.
| | - Michael W Lloyd
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA.
| | - Brian L Fisher
- Department of Entomology, California Academy of Sciences, San Francisco, CA, 94118, USA.
| | - Philip S Ward
- Department of Entomology and Nematology, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|
49
|
Sanciangco MD, Carpenter KE, Betancur-R R. Phylogenetic placement of enigmatic percomorph families (Teleostei: Percomorphaceae). Mol Phylogenet Evol 2015; 94:565-576. [PMID: 26493227 DOI: 10.1016/j.ympev.2015.10.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 11/26/2022]
Abstract
Percomorphs are a large and diverse group of spiny-finned fishes that have come to be known as the "bush at the top" due to their persistent lack of phylogenetic resolution. Recently, the broader Euteleost Tree of Life project (EToL) inferred a well-supported phylogenetic hypothesis that groups the diversity of percomorphs into nine well-supported series (supraordinal groups): Ophidiaria, Batrachoidaria, Gobiaria, Syngnatharia, Pelagiaria, Anabantaria, Carangaria, Ovalentaria, and Eupercaria. The EToL also provided, for the first time, a monophyletic definition of Perciformes - the largest order of vertebrates. Despite significant progress made in accommodating the diversity of percomorph taxa into major clades, some 62 families (most previously placed in "Perciformes", as traditionally defined) were not examined by the EToL. Here, we provide evidence for the phylogenetic affinities of 10 of those 62 families, seven of which have largely remained enigmatic. This expanded taxonomic sampling also provides further support for the nine EToL supraordinal series. We examined sequences from 21 genes previously used by the EToL and added two fast-evolving mitochondrial markers in an attempt to increase resolution within the rapid percomorph radiations. We restricted the taxonomic sampling to 1229 percomorph species, including expanded sampling from recent studies. Results of maximum likelihood analysis revealed that bathyclupeids (Bathyclupeidae), galjoen fishes (Dichistiidae), kelpfishes (Chironemidae), marblefishes (Aplodactylidae), trumpeters (Latridae), barbeled grunters (Hapalogenyidae), slopefishes (Symphysanodontidae), and picarel porgies (formerly Centracanthidae) are members of the series Eupercaria ("new bush at the top"). The picarel porgies and porgies (Sparidae) are now placed in the same family (Sparidae). Our analyses suggest a close affinity between the orders Spariformes (including Lethrinidae, Nemipteridae and Sparidae) and Lobotiformes (including the tripletails or Lobotidae, the barbeled grunters, and tigerperches or Datnioididae), albeit support for this group is low. None of the newly examined families belong in the order Perciformes, as recently defined. Finally, we confirm results from other recent studies that place the Australasian salmons (Arripidae) within Pelagiaria, and the false trevallies (Lactariidae) close to flatfishes, jacks, and trevallies, within Carangaria.
Collapse
Affiliation(s)
| | - Kent E Carpenter
- Department of Biology, Old Dominion University, Norfolk, VA 23529, USA
| | - Ricardo Betancur-R
- Department of Biology, University of Puerto Rico - Río Piedras, P.O. Box 23360, San Juan 00931, Puerto Rico.
| |
Collapse
|