1
|
Booth EJ, Brauer CJ, Sandoval-Castillo J, Harrisson K, Rourke ML, Attard CRM, Gilligan DM, Tonkin Z, Thiem JD, Unmack PJ, Zampatti B, Beheregaray LB. Genomic Vulnerability to Climate Change of an Australian Migratory Freshwater Fish, the Golden Perch (Macquaria ambigua). Mol Ecol 2024:e17570. [PMID: 39492632 DOI: 10.1111/mec.17570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024]
Abstract
Genomic vulnerability is a measure of how much evolutionary change is required for a population to maintain optimal genotype-environment associations under projected climates. Aquatic species, and in particular migratory ectotherms, are largely underrepresented in studies of genomic vulnerability. Such species might be well equipped for tracking suitable habitat and spreading diversity that could promote adaptation to future climates. We characterised range-wide genomic diversity and genomic vulnerability in the migratory and fisheries-important golden perch (Macquaria ambigua) from Australia's expansive Murray-Darling Basin (MDB). The MDB has a steep hydroclimatic gradient and is one of the world's most variable regions in terms of climate and streamflow. Golden perch are threatened by fragmentation and obstruction of waterways, alteration of flow regimes, and a progressively hotter and drying climate. We gathered a genomic dataset of 1049 individuals from 186 MDB localities. Despite high range-wide gene flow, golden perch in the warmer, northern catchments had higher predicted vulnerability than those in the cooler, southern catchments. A new cross-validation approach showed that these predictions were insensitive to the exclusion of individual catchments. The results raise concern for populations at warm range edges, which may already be close to their thermal limits. However, a population with functional variants beneficial for climate adaptation found in the most arid and hydrologically variable catchment was predicted to be less vulnerable. Native fish management plans, such as captive breeding and stocking, should consider spatial variation in genomic vulnerability to improve conservation outcomes under climate change, even for dispersive species with high connectivity.
Collapse
Affiliation(s)
- Emily J Booth
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Chris J Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Katherine Harrisson
- Department of Environment and Genetics, and Research Centre for Future Landscapes, La Trobe University, Bundoora, Victoria, Australia
- Department of Energy, Environment and Climate Action, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | - Meaghan L Rourke
- New South Wales Department of Primary Industries Fisheries, Narrandera Fisheries Centre, Narrandera, New South Wales, Australia
| | - Catherine R M Attard
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | | | - Zeb Tonkin
- Department of Energy, Environment and Climate Action, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | - Jason D Thiem
- New South Wales Department of Primary Industries Fisheries, Narrandera Fisheries Centre, Narrandera, New South Wales, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, University of Canberra, Canberra, Australian Capital Territory, Australia
| | | | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Sil M, Mahveen J, Roy A, Karanth KP, Aravind NA. Insight into the evolutionary history of Indoplanorbis exustus (Bulinidae: Gastropoda) at the scale of population and species. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The history of a lineage is intertwined with the history of the landscape it inhabits. Here we showcase how the geo-tectonic and climatic evolution of South Asia and surrounding landmasses have shaped the biogeographical history of Indoplanorbis exustus, a tropical Asian, freshwater snail. We amplified partial COI gene fragments from all over India and combined this with a larger dataset from South and Southeast Asia to carry out phylogenetic reconstruction, species delimitation analysis and population genetic analyses. Two nuclear genes were also amplified from a few individuals per putative species to carry out divergence dating and ancestral area reconstruction analyses. The results suggest that I. exustus dispersed out of Africa into India during the Eocene. Furthermore, molecular data suggest I. exustus is a species complex consisting of multiple putative species. Primary diversification took place in the Northern Indian plains or in Northeast India. The speciation events appear to be primarily allopatric caused by a series of aridification events starting from the late Miocene to early Pleistocene. None of the species appears to have any underlying genetic structure suggestive of high vagility. All the species underwent population fluctuations during the Pleistocene, probably driven by the Quaternary climatic fluctuations.
Collapse
Affiliation(s)
- Maitreya Sil
- SMS Foundation Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment , Royal Enclave, Sriramapura, Jakkur PO, Bangalore 560064 , India
| | - Juveriya Mahveen
- SMS Foundation Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment , Royal Enclave, Sriramapura, Jakkur PO, Bangalore 560064 , India
- Department of Microbiology, St. Joseph’s College , Bangalore 560027 , India
| | - Abhishikta Roy
- SMS Foundation Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment , Royal Enclave, Sriramapura, Jakkur PO, Bangalore 560064 , India
| | - K Praveen Karanth
- Centre for Ecological Sciences, Indian Institute of Science , Bangalore 560012 , India
| | - N A Aravind
- SMS Foundation Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment , Royal Enclave, Sriramapura, Jakkur PO, Bangalore 560064 , India
- Yenepoya Research Centre, Yenepoya (deemed to be University) , University Road, Derlakatte, Mangalore 575018 , India
| |
Collapse
|
3
|
Thacker CE, Shelley JJ, McCraney WT, Adams M, Hammer MP, Unmack PJ. Phylogeny, diversification, and biogeography of a hemiclonal hybrid system of native Australian freshwater fishes (Gobiiformes: Gobioidei: Eleotridae: Hypseleotris). BMC Ecol Evol 2022; 22:22. [PMID: 35236294 PMCID: PMC8892812 DOI: 10.1186/s12862-022-01981-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Carp gudgeons (genus Hypseleotris) are a prominent part of the Australian freshwater fish fauna, with species distributed around the western, northern, and eastern reaches of the continent. We infer a calibrated phylogeny of the genus based on nuclear ultraconserved element (UCE) sequences and using Bayesian estimation of divergence times, and use this phylogeny to investigate geographic patterns of diversification with GeoSSE. The southeastern species have hybridized to form hemiclonal lineages, and we also resolve relationships of hemiclones and compare their phylogenetic placement in the UCE phylogeny with a hypothesis based on complete mitochondrial genomes. We then use phased SNPs extracted from the UCE sequences for population structure analysis among the southeastern species and hemiclones. Results Hypseleotris cyprinoides, a widespread euryhaline species known from throughout the Indo-Pacific, is resolved outside the remainder of the species. Two Australian radiations comprise the bulk of Hypseleotris, one primarily in the northwestern coastal rivers and a second inhabiting the southeastern region including the Murray–Darling, Bulloo-Bancannia and Lake Eyre basins, plus coastal rivers east of the Great Dividing Range. Our phylogenetic results reveal cytonuclear discordance between the UCE and mitochondrial hypotheses, place hemiclone hybrids among their parental taxa, and indicate that the genus Kimberleyeleotris is nested within the northwestern Hypseleotris radiation along with three undescribed species. We infer a crown age for Hypseleotris of 17.3 Ma, date the radiation of Australian species at roughly 10.1 Ma, and recover the crown ages of the northwestern (excluding H. compressa) and southeastern radiations at 5.9 and 7.2 Ma, respectively. Range-dependent diversification analyses using GeoSSE indicate that speciation and extinction rates have been steady between the northwestern and southeastern Australian radiations and between smaller radiations of species in the Kimberley region and the Arnhem Plateau. Analysis of phased SNPs confirms inheritance patterns and reveals high levels of heterozygosity among the hemiclones. Conclusions The northwestern species have restricted ranges and likely speciated in allopatry, while the southeastern species are known from much larger areas, consistent with peripatric speciation or allopatric speciation followed by secondary contact. Species in the northwestern Kimberley region differ in shape from those in the southeast, with the Kimberley species notably more elongate and slender than the stocky southeastern species, likely due to the different topographies and flow regimes of the rivers they inhabit.
Collapse
Affiliation(s)
- Christine E Thacker
- Vertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa Barbara, CA, 93105, USA. .,Research and Collections, Department of Ichthyology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA, 90007, USA.
| | - James J Shelley
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia.,Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, 123 Brown Street, Heidelberg, VIC, 3084, Australia
| | - W Tyler McCraney
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Drive South, Box 957246, Los Angeles, CA, 90095-7246, USA
| | - Mark Adams
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, 5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Michael P Hammer
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, 5000, Australia.,Museum and Art Gallery of the Northern Territory, GPO Box 4646, Darwin, NT, 0801, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| |
Collapse
|
4
|
Vernygora OV, Campbell EO, Grishin NV, Sperling FA, Dupuis JR. Gauging ages of tiger swallowtail butterflies using alternate SNP analyses. Mol Phylogenet Evol 2022; 171:107465. [DOI: 10.1016/j.ympev.2022.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
5
|
Attard CRM, Sandoval-Castillo J, Brauer CJ, Unmack PJ, Schmarr D, Bernatchez L, Beheregaray LB. Fish out of water: Genomic insights into persistence of rainbowfish populations in the desert. Evolution 2021; 76:171-183. [PMID: 34778944 DOI: 10.1111/evo.14399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
How populations of aquatic fauna persist in extreme desert environments is an enigma. Individuals often breed and disperse during favorable conditions. Theory predicts that adaptive capacity should be low in small populations, such as in desert fishes. We integrated satellite-derived surface water data and population genomic diversity from 20,294 single-nucleotide polymorphisms across 344 individuals to understand metapopulation persistence of the desert rainbowfish (Melanotaenia splendida tatei) in central Australia. Desert rainbowfish showed very small effective population sizes, especially at peripheral populations, and low connectivity between river catchments. Yet, there was no evidence of population-level inbreeding and a signal of possible adaptive divergence associated with aridity was detected. Candidate genes for local adaptation included functions related to environmental cues and stressful conditions. Eco-evolutionary modeling showed that positive selection in refugial subpopulations combined with connectivity during flood periods can enable retention of adaptive diversity. Our study suggests that adaptive variation can be maintained in small populations and integrate with neutral metapopulation processes to allow persistence in the desert.
Collapse
Affiliation(s)
- Catherine R M Attard
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Chris J Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - David Schmarr
- Inland Waters and Catchment Ecology Program, SARDI Aquatic Sciences, Henley Beach, SA, 5022, Australia
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, Québec, QC, G1V 0A6, Canada
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| |
Collapse
|
6
|
Ottenburghs J. The genic view of hybridization in the Anthropocene. Evol Appl 2021; 14:2342-2360. [PMID: 34745330 PMCID: PMC8549621 DOI: 10.1111/eva.13223] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Human impact is noticeable around the globe, indicating that a new era might have begun: the Anthropocene. Continuing human activities, including land-use changes, introduction of non-native species and rapid climate change, are altering the distributions of countless species, often giving rise to human-mediated hybridization events. While the interbreeding of different populations or species can have detrimental effects, such as genetic extinction, it can be beneficial in terms of adaptive introgression or an increase in genetic diversity. In this paper, I first review the different mechanisms and outcomes of anthropogenic hybridization based on literature from the last five years (2016-2020). The most common mechanisms leading to the interbreeding of previously isolated taxa include habitat change (51% of the studies) and introduction of non-native species (34% intentional and 19% unintentional). These human-induced hybridization events most often result in introgression (80%). The high incidence of genetic exchange between the hybridizing taxa indicates that the application of a genic view of speciation (and introgression) can provide crucial insights on how to address hybridization events in the Anthropocene. This perspective considers the genome as a dynamic collection of genetic loci with distinct evolutionary histories, giving rise to a heterogenous genomic landscape in terms of genetic differentiation and introgression. First, understanding this genomic landscape can lead to a better selection of diagnostic genetic markers to characterize hybrid populations. Second, describing how introgression patterns vary across the genome can help to predict the likelihood of negative processes, such as demographic and genetic swamping, as well as positive outcomes, such as adaptive introgression. It is especially important to not only quantify how much genetic material introgressed, but also what has been exchanged. Third, comparing introgression patterns in pre-Anthropocene hybridization events with current human-induced cases might provide novel insights into the likelihood of genetic swamping or species collapse during an anthropogenic hybridization event. However, this comparative approach remains to be tested before it can be applied in practice. Finally, the genic view of introgression can be combined with conservation genomic studies to determine the legal status of hybrids and take appropriate measures to manage anthropogenic hybridization events. The interplay between evolutionary and conservation genomics will result in the constant exchange of ideas between these fields which will not only improve our knowledge on the origin of species, but also how to conserve and protect them.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Wildlife Ecology and ConservationWageningen University & ResearchWageningenThe Netherlands
- Forest Ecology and Forest ManagementWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
7
|
Guinand B, Oral M, Tougard C. Brown trout phylogenetics: A persistent mirage towards (too) many species. JOURNAL OF FISH BIOLOGY 2021; 99:298-307. [PMID: 33483952 DOI: 10.1111/jfb.14686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Bruno Guinand
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Münevver Oral
- Faculty of Fisheries and Aquatic Science, Recep Tayyip Erdogan University, Rize, Turkey
| | | |
Collapse
|
8
|
Buckley SJ, Brauer C, Unmack PJ, Hammer MP, Beheregaray LB. The roles of aridification and sea level changes in the diversification and persistence of freshwater fish lineages. Mol Ecol 2021; 30:4866-4883. [PMID: 34265125 DOI: 10.1111/mec.16082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
While the influence of Pleistocene climatic changes on divergence and speciation has been well-documented across the globe, complex spatial interactions between hydrology and eustatics over longer timeframes may also determine species evolutionary trajectories. Within the Australian continent, glacial cycles were not associated with changes in ice cover and instead largely resulted in fluctuations from moist to arid conditions across the landscape. We investigated the role of hydrological and coastal topographic changes brought about by Plio-Pleistocene climatic changes on the biogeographic history of a small Australian freshwater fish, the southern pygmy perch Nannoperca australis. Using 7958 ddRAD-seq (double digest restriction-site associated DNA) loci and 45,104 filtered SNPs, we combined phylogenetic, coalescent and species distribution analyses to assess the various roles of aridification, sea level and tectonics and associated biogeographic changes across southeast Australia. Sea-level changes since the Pliocene and reduction or disappearance of large waterbodies throughout the Pleistocene were determining factors in strong divergence across the clade, including the initial formation and maintenance of a cryptic species, N. 'flindersi'. Isolated climatic refugia and fragmentation due to lack of connected waterways maintained the identity and divergence of inter- and intraspecific lineages. Our historical findings suggest that predicted increases in aridification and sea level due to anthropogenic climate change might result in markedly different demographic impacts, both spatially and across different landscape types.
Collapse
Affiliation(s)
- Sean James Buckley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Chris Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, ACT, Australia
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, NT, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
9
|
Kim D, Bauer BH, Near TJ. Introgression and Species Delimitation in the Longear Sunfish Lepomis megalotis (Teleostei: Percomorpha: Centrarchidae). Syst Biol 2021; 71:273-285. [PMID: 33944950 DOI: 10.1093/sysbio/syab029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
Introgression and hybridization are major impediments to genomic-based species delimitation because many implementations of the multispecies coalescent framework assume no gene flow among species. The sunfish genus Lepomis, one of the world's most popular groups of freshwater sport fish, has a complicated taxonomic history. The results of ddRAD phylogenomic analyses do not provide support for the current taxonomy that recognizes two species, L. megalotis and L. peltastes, in the L. megalotis complex. Instead, evidence from phylogenomics and phenotype warrants recognizing six relatively ancient evolutionary lineages in the complex. The introgressed and hybridizing populations in the L. megalotis complex are localized and appear to be the result of secondary contact or rare hybridization events between non-sister species. Segregating admixed populations from our multispecies coalescent analyses identifies six species with moderate to high genealogical divergence, whereas including admixed populations drives all but one lineage below the species threshold of genealogical divergence. Segregation of admixed individuals also helps reveal phenotypic distinctiveness among the six species in morphological traits used by ichthyologists to discover and delimit species over the last two centuries. Our protocols allow for the identification and accommodation of hybridization and introgression in species delimitation. Genomic-based species delimitation validated with multiple lines of evidence provides a path towards the discovery of new biodiversity and resolving long-standing taxonomic problems.
Collapse
Affiliation(s)
- Daemin Kim
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Bruce H Bauer
- David A. Etnier Ichthyological Collection, 515 Hesler Biology Building, University of Tennessee, Knoxville, TN 37996, USA
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Conservation in the face of hybridisation: genome-wide study to evaluate taxonomic delimitation and conservation status of a threatened orchid species. CONSERV GENET 2021. [DOI: 10.1007/s10592-020-01325-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Klanten OS, Gaither MR, Greaves S, Mills K, O’Keeffe K, Turnbull J, McKinnon R, Booth DJ. Genomic and morphological evidence of distinct populations in the endemic common (weedy) seadragon Phyllopteryx taeniolatus (Syngnathidae) along the east coast of Australia. PLoS One 2020; 15:e0243446. [PMID: 33362197 PMCID: PMC7757807 DOI: 10.1371/journal.pone.0243446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/22/2020] [Indexed: 11/30/2022] Open
Abstract
The common or weedy seadragon, Phyllopteryx taeniolatus, is an iconic and endemic fish found across temperate reefs of southern Australia. Despite its charismatic nature, few studies have been published, and the extent of population sub-structuring remains poorly resolved. Here we used 7462 single nucleotide polymorphisms (SNPs) to identify the extent of population structure in the weedy seadragon along the temperate southeast coast of Australia. We identified four populations, with strong genetic structure (FST = 0.562) between them. Both Discriminant Analysis of Principle Components (DAPC) and Bayesian clustering analyses support four distinct genetic clusters (north to south: central New South Wales, southern NSW, Victoria and Tasmania). In addition to these genetic differences, geographical variation in external morphology was recorded, with individuals from New South Wales shaped differently for a few measurements to those from the Mornington Peninsula (Victoria). We posit that these genetic and morphological differences suggest that the Victorian population of P. taeniolatus was historically isolated by the Bassian Isthmus during the last glacial maximum and should now be considered at least a distinct population. We also recorded high levels of genetic structure among the other locations. Based on the genomic and to a degree morphological evidence presented in this study, we recommend that the Victorian population be managed separately from the eastern populations (New South Wales and Tasmania).
Collapse
Affiliation(s)
- O. Selma Klanten
- Fish Ecology Lab, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
- * E-mail:
| | - Michelle R. Gaither
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, United States of America
| | - Samuel Greaves
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, United States of America
| | - Kade Mills
- Victorian National Parks Association, Carlton Melbourne, VIC, Australia
| | | | - John Turnbull
- Underwater Research Group (URG), Sydney, NSW, Australia
- Centre for Marine Biodiversity and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rob McKinnon
- New South Wales National Parks and Wildlife Service, Merimbula, NSW, Australia
| | - David J. Booth
- Fish Ecology Lab, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Schmidt DJ, Huey JA, Hughes JM. Genome-Wide SNPs Identify Limits to Connectivity in the Extreme Freshwater Disperser, Spangled Perch Leiopotherapon unicolor (Terapontidae). J Hered 2019; 109:320-325. [PMID: 29228349 DOI: 10.1093/jhered/esx101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022] Open
Abstract
The utility of restriction-site associated DNA sequencing (RADseq) to resolve fine-scale population structure was tested on an abundant and vagile fish species in a tropical river. Australia's most widespread freshwater fish, the "extreme disperser" Leiopotherapon unicolor was sampled from 6 locations in an unregulated system, the Daly River in Australia's Northern Territory. Despite an expectation of high connectivity based on life history knowledge of this species derived from arid zone habitats, L. unicolor was not a panmictic population in the tropical lower Daly. Using ~14000 polymorphic RADseq loci, we found a pattern of upstream versus downstream population subdivision and evidence for differentiation among tributary populations. The magnitude of population structure was low with narrow confidence intervals (global FST = 0.014; 95% CI = 0.012-0.016). Confidence intervals around pairwise FST estimates were all nonzero and consistent with the results of clustering analyses. This population structure was not explained by spatially heterogeneous selection acting on a subset of loci, or by sampling groups of closely related individuals (average within-site relatedness ≈ 0). One implication of the low but significant structure observed in the tropics is the possibility that L. unicolor may exhibit contrasting patterns of migratory biology in tropical versus arid zone habitats. We conclude that the RADseq revolution holds promise for delineating subtle patterns of population subdivision in species characterized by high within-population variation and low among-population differentiation.
Collapse
Affiliation(s)
- Daniel J Schmidt
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| | - Joel A Huey
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia.,Terrestrial Zoology & Molecular Systematics Unit, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Jane M Hughes
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
13
|
Hammer MP, Adams M, Thacker CE, Johnson JB, Unmack PJ. Comparison of genetic structure in co-occurring freshwater eleotrids (Actinopterygii: Philypnodon) reveals cryptic species, likely translocation and regional conservation hotspots. Mol Phylogenet Evol 2019; 139:106556. [DOI: 10.1016/j.ympev.2019.106556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 06/20/2019] [Accepted: 07/04/2019] [Indexed: 11/25/2022]
|
14
|
Karyotypes and Sex Chromosomes in Two Australian Native Freshwater Fishes, Golden Perch ( Macquaria ambigua) and Murray Cod ( Maccullochella peelii) (Percichthyidae). Int J Mol Sci 2019; 20:ijms20174244. [PMID: 31480228 PMCID: PMC6747191 DOI: 10.3390/ijms20174244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Karyotypic data from Australian native freshwater fishes are scarce, having been described from relatively few species. Golden perch (Macquaria ambigua) and Murray cod (Maccullochella peelii) are two large-bodied freshwater fish species native to Australia with significant indigenous, cultural, recreational and commercial value. The arid landscape over much of these fishes' range, coupled with the boom and bust hydrology of their habitat, means that these species have potential to provide useful evolutionary insights, such as karyotypes and sex chromosome evolution in vertebrates. Here we applied standard and molecular cytogenetic techniques to characterise karyotypes for golden perch and Murray cod. Both species have a diploid chromosome number 2n = 48 and a male heterogametic sex chromosome system (XX/XY). While the karyotype of golden perch is composed exclusively of acrocentric chromosomes, the karyotype of Murray cod consists of two submetacentric and 46 subtelocentric/acrocentric chromosomes. We have identified variable accumulation of repetitive sequences (AAT)10 and (CGG)10 along with diverse methylation patterns, especially on the sex chromosomes in both species. Our study provides a baseline for future cytogenetic analyses of other Australian freshwater fishes, especially species from the family Percichthyidae, to better understand their genome and sex chromosome evolution.
Collapse
|
15
|
Moy KG, Unmack PJ, Lintermans M, Duncan RP, Brown C. Barriers to hybridisation and their conservation implications for a highly threatened Australian fish species. Ethology 2019. [DOI: 10.1111/eth.12837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karl G. Moy
- Institute for Applied Ecology; University of Canberra; Canberra Australian Capital Territory Australia
| | - Peter J. Unmack
- Institute for Applied Ecology; University of Canberra; Canberra Australian Capital Territory Australia
| | - Mark Lintermans
- Institute for Applied Ecology; University of Canberra; Canberra Australian Capital Territory Australia
| | - Richard P. Duncan
- Institute for Applied Ecology; University of Canberra; Canberra Australian Capital Territory Australia
| | - Culum Brown
- Department of Biological Sciences; Macquarie University; Sydney New South Wales Australia
| |
Collapse
|
16
|
Koehn JD, Balcombe SR, Zampatti BP. Fish and flow management in the Murray-Darling Basin: Directions for research. ECOLOGICAL MANAGEMENT & RESTORATION 2019. [DOI: 10.1111/emr.12358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Arratia G, Quezada-Romegialli C. The South American and Australian percichthyids and perciliids. What is new about them? NEOTROPICAL ICHTHYOLOGY 2019. [DOI: 10.1590/1982-0224-20180102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT A study including morphological characters and mitogenomics of South American and Australian fishes previously assigned to Percichthyidae was conducted. Results generated from these different data sets reveal major disagreements concerning the content and interpretation of the so-called percichthyids. A phylogenetic analysis based on 54 morphological characters suggests the existence of two major clades: (1) Percichthyidae, including the South American Percichthys and the Australian taxa Macquaria australasica, Macquaria (= Plectroplites), and Maccullochella; (2) Perciliidae with the South American genus Percilia at the base plus more advanced Australian genera Nannoperca, Nannatherina, Bostockia, and Gadopsis. In contrast, molecular and mitogenomic evidence suggests only one clade (Percichthyidae), with the exclusion of species of Macquaria (= Percalates). Additionally, the results reveal the existence of various taxonomic problems, such as the current interpretation of only one species of Percichthys in Argentina, an interpretation that is not supported by the present study; the existence of cryptic species of Percilia as well as of Gadopsis, Nannoperca, and Macquaria that will increase the diversity of the genera; and the need for an extensive revision of species previously assigned to Percalates versus Macquaria. Disagreements point to the need to develop further research on the so-called percichthyids and perciliids.
Collapse
|
18
|
Wu W, Ng WL, Yang JX, Li WM, Ge XJ. High cryptic species diversity is revealed by genome-wide polymorphisms in a wild relative of banana, Musa itinerans, and implications for its conservation in subtropical China. BMC PLANT BIOLOGY 2018; 18:194. [PMID: 30217175 PMCID: PMC6137913 DOI: 10.1186/s12870-018-1410-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Species delimitation is a challenging but essential task in conservation biology. Morphologically similar species are sometimes difficult to recognize even after examination by experienced taxonomists. With the advent of molecular approaches in species delimitation, this hidden diversity has received much recent attention. In addition to DNA barcoding approaches, analytical tools based on the multi-species coalescence model (MSC) have been developed for species delimitation. Musa itinerans is widely distributed in subtropical Asia, and at least six varieties have been documented. However, the number of evolutionarily distinct lineages remains unknown. RESULTS Using genome resequencing data of five populations (making up four varieties), we examined genome-wide variation and found four varieties that were evolutionary significant units. A Bayesian Phylogenetics and Phylogeography (BP&P) analysis using 123 single copy nuclear genes support three speciation events of M. itinerans varieties with robust posterior speciation probabilities; However, a Bayes factor delimitation of species with genomic data (BFD*) analysis using 1201 unlinked single nucleotide polymorphisms gave decisive support for a five-lineage model. When reconciling divergence time estimates with a speciation time scale, a modified three-lineage model was consistent with that of BP&P, in which the speciation time of two varieties (M. itinerans var. itinerans and M. itinerans var. lechangensis) were dated to 26.2 kya and 10.7 kya, respectively. In contrast, other two varieties (M. itinerans var. chinensis and M. itinerans var. guangdongensis) diverged only 3.8 kya in the Anthropocene; this may be a consequence of genetic drift rather than a speciation event. CONCLUSION Our results showed that the M. itinerans species complex harbours high cryptic species diversity. We recommend that M. itinerans var. itinerans and M. itinerans var. lechangensis be elevated to subspecies status, and the extremely rare latter subspecies be given priority for conservation. We also recommend that the very recently diverged M. itinerans var. chinensis and M. itinerans var. guangdongensis should be merged under the subspecies M. itinerans var. chinensis. Finally, we speculate that species delimitation of recently diverged lineages may be more effective using genome-wide bi-allelic SNP markers with BFD* than by using unlinked loci and BP&P.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275 China
| | - Wei-Lun Ng
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275 China
| | - Jun-Xin Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei-Ming Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091 China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
19
|
Noguerales V, Cordero PJ, Ortego J. Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers. Mol Ecol 2018; 27:1229-1244. [DOI: 10.1111/mec.14504] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/16/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
20
|
Obregón C, Lyndon AR, Barker J, Christiansen H, Godley BJ, Kurland S, Piccolo JJ, Potts R, Short R, Tebb A, Mariani S. Valuing and understanding fish populations in the Anthropocene: key questions to address. JOURNAL OF FISH BIOLOGY 2018; 92:828-845. [PMID: 29411379 DOI: 10.1111/jfb.13536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/09/2017] [Indexed: 06/08/2023]
Abstract
Research on the values of fish populations and fisheries has primarily focused on bio-economic aspects; a more nuanced and multidimensional perspective is mostly neglected. Although a range of social aspects is increasingly being considered in fisheries research, there is still no clear understanding as to how to include these additional values within management policies nor is there a cogent appreciation of the major knowledge gaps that should be tackled by future research. This paper results from a workshop held during the 50th anniversary symposium of the Fisheries Society of the British Isles at the University of Exeter, UK, in July 2017. Here, we aim to highlight the current knowledge gaps on the values of fish populations and fisheries thus directing future research. To this end, we present eight questions that are deeply relevant to understanding the values of fish populations and fisheries. These can be applied to all habitats and fisheries, including freshwater, estuarine and marine.
Collapse
Affiliation(s)
- C Obregón
- Estuaries & Wetlands Conservation Programmes, Conservation Programmes Department, Zoological Society of London, Regents Park, London NW1 4RY, U.K
- Centre for Fish and Fisheries Research, Department of Biological Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - A R Lyndon
- Centre for Marine Biodiversity and Biotechnology, Institute of Life and Earth Sciences, John Muir Building, Heriot-Watt University, Edinburgh, EH14 4AS, U.K
| | - J Barker
- Estuaries & Wetlands Conservation Programmes, Conservation Programmes Department, Zoological Society of London, Regents Park, London NW1 4RY, U.K
| | - H Christiansen
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Charles Deberiotstraat 32 - Box 2439, 3000 Leuven, Belgium
| | - B J Godley
- Centre for Ecology and Conservation, Daphne du Maurier Building, College of Life and Environmental Sciences, Department of Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, U.K
| | - S Kurland
- Populations genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - J J Piccolo
- Institution for Environmental and Life Science, River Ecology and Management Group, Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| | - R Potts
- Biosciences, College of Life and Environmental Sciences, Department of Biosciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K
| | - R Short
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, U.K
| | - A Tebb
- Sussex Inshore Fisheries and Conservation Authority, Shoreham-by-Sea, West Sussex, BN43 6RE, U.K
| | - S Mariani
- School of Environment and Life Sciences, Peel Building, University of Salford, Salford, M5 4WT, U.K
| |
Collapse
|
21
|
Gruber B, Unmack PJ, Berry OF, Georges A. dartr
: An r
package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour 2018; 18:691-699. [DOI: 10.1111/1755-0998.12745] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Bernd Gruber
- Institute for Applied Ecology; University of Canberra; Canberra ACT Australia
| | - Peter J. Unmack
- Institute for Applied Ecology; University of Canberra; Canberra ACT Australia
| | - Oliver F. Berry
- CSIRO Environomics Future Science Platform; Indian Ocean Marine Research Centre; The University of Western Australia (M097); Crawley WA Australia
| | - Arthur Georges
- Institute for Applied Ecology; University of Canberra; Canberra ACT Australia
| |
Collapse
|
22
|
Attard CRM, Brauer CJ, Sandoval-Castillo J, Faulks LK, Unmack PJ, Gilligan DM, Beheregaray LB. Ecological disturbance influences adaptive divergence despite high gene flow in golden perch (Macquaria ambigua): Implications for management and resilience to climate change. Mol Ecol 2017; 27:196-215. [PMID: 29165848 DOI: 10.1111/mec.14438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 01/01/2023]
Abstract
Populations that are adaptively divergent but maintain high gene flow may have greater resilience to environmental change as gene flow allows the spread of alleles that have already been tested elsewhere. In addition, populations naturally subjected to ecological disturbance may already hold resilience to future environmental change. Confirming this necessitates ecological genomic studies of high dispersal, generalist species. Here we perform one such study on golden perch (Macquaria ambigua) in the Murray-Darling Basin (MDB), Australia, using a genome-wide SNP data set. The MDB spans across arid to wet and temperate to subtropical environments, with low to high ecological disturbance in the form of low to high hydrological variability. We found high gene flow across the basin and three populations with low neutral differentiation. Genotype-environment association analyses detected adaptive divergence predominantly linked to an arid region with highly variable riverine flow, and candidate loci included functions related to fat storage, stress and molecular or tissue repair. The high connectivity of golden perch in the MDB will likely allow locally adaptive traits in its most arid and hydrologically variable environment to spread and be selected in localities that are predicted to become arid and hydrologically variable in future climates. High connectivity in golden perch is likely due to their generalist life history and efforts of fisheries management. Our study adds to growing evidence of adaptation in the face of gene flow and highlights the importance of considering ecological disturbance and adaptive divergence in biodiversity management.
Collapse
Affiliation(s)
- Catherine R M Attard
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Chris J Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Leanne K Faulks
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Nagano, Japan
| | - Peter J Unmack
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Dean M Gilligan
- New South Wales Department of Primary Industries, Batemans Bay Fisheries Centre, Batemans Bay, NSW, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|